lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/oup/erevae/v47y2020i3p1276-1301..html
   My bibliography  Save this article

Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms

Author

Listed:
  • Eric Njuki
  • Boris E Bravo-Ureta
  • Víctor E Cabrera
Abstract
This study exploits temporal and cross-sectional variation in weather and long-run climate trends to investigate their effects on farm-level productivity. Using panel data for a sample of Wisconsin dairy producers, three stochastic production frontier models are estimated and a random parameters approach is chosen as the most desirable, which accounts for stochastic observed and unobserved environmental factors. The estimated coefficients are used to decompose a multiplicative total factor productivity index that accounts for different sources of productivity growth. Annual productivity growth is estimated at 2.16 per cent, driven primarily by technical progress (1.91 per cent per annum). The average per year contribution of the other productivity components is: climate adaptation efforts -0.31 per cent; scale-mix efficiency change +0.13 per cent and technical efficiency +0.05 per cent.

Suggested Citation

  • Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
  • Handle: RePEc:oup:erevae:v:47:y:2020:i:3:p:1276-1301.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/erae/jbz046
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    2. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    3. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    5. Hughes, Neal & Lawson, Kenton & Davidson, Alistair & Jackson, Tom & Sheng, Yu, 2011. "Productivity pathways: climate-adjusted production frontiers for the Australian broadacre cropping industry," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100563, Australian Agricultural and Resource Economics Society.
    6. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    7. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, July.
    8. Njuki, Eric & Bravo-Ureta, Boris E., 2016. "Alternative Policies to Address Emissions in U.S. Dairy Farming," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 31(4), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Skevas, Ioannis & Skevas, Theodoros, 2021. "A generalized true random-effects model with spatially autocorrelated persistent and transient inefficiency," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1131-1142.
    2. Chen, Bowen & Dennis, Elliott J. & Featherstone, Allen, 2022. "Weather Impacts the Agricultural Production Efficiency of Wheat: The Emerging Role of Precipitation Shocks," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(3), September.
    3. Hutchins, Jared P. & Gong, Yating & Du, Xiaodong, 2021. "The Role of Animal Breeding in Productivity Growth: Evidence from Wisconsin Dairy Farms," 2021 Annual Meeting, August 1-3, Austin, Texas 313882, Agricultural and Applied Economics Association.
    4. Paolo Nota & Daniele Curzi & Oliver Ken Haase & Alessandro Olper, 2024. "The impact of heat waves on food industry productivity: Firm‐level evidence from Italy," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(3), pages 914-930, September.
    5. Peter von zur Muehlen, 2022. "Prices and Taxes in a Ramsey Climate Policy Model under Heterogeneous Beliefs and Ambiguity," Economies, MDPI, vol. 10(10), pages 1-56, October.
    6. Jared Hutchins & Yating Gong & Xiaodong Du, 2024. "The role of animal breeding in productivity growth: Evidence from Wisconsin dairy farms," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 286-305, January.
    7. Antonio Peyrache & Maria C. A. Silva, 2021. "Multi-Level Parallel Production Networks," CEPA Working Papers Series WP052021, School of Economics, University of Queensland, Australia.
    8. repec:ags:aaea22:335579 is not listed on IDEAS
    9. Theodoros Skevas & Ioannis Skevas & Victor E. Cabrera, 2021. "Examining the Relationship between Social Inefficiency and Financial Performance. Evidence from Wisconsin Dairy Farms," Sustainability, MDPI, vol. 13(7), pages 1-14, March.
    10. Sun, Yunpeng & Razzaq, Asif & Kizys, Renatas & Bao, Qun, 2022. "High-speed rail and urban green productivity: The mediating role of climatic conditions in China," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    11. Bravo-Ureta, Boris E. & Njuki, Eric & Palacios, Ana Claudia & Salazar, Lina, 2022. "Agricultural Productivity in El Salvador: A Preliminary Analysis," IDB Publications (Working Papers) 11984, Inter-American Development Bank.
    12. Koiry, Subrata & Huang, Wei, 2023. "Do ecological protection approaches affect total factor productivity change of cropland production in Sweden?," Ecological Economics, Elsevier, vol. 209(C).
    13. Chancellor, Will & Hughes, Neal & Zhao, Shiji & Soh, Wei Ying & Valle, Haydn & Boult, Christopher, 2021. "Controlling for the effects of climate on total factor productivity: A case study of Australian farms," Food Policy, Elsevier, vol. 102(C).
    14. Doris Läpple & Colin A. Carter & Cathal Buckley, 2022. "EU milk quota abolition, dairy expansion, and greenhouse gas emissions," Agricultural Economics, International Association of Agricultural Economists, vol. 53(1), pages 125-142, January.
    15. C. J. O’Donnell, 2021. "Estimating the Effects of Weather and Climate Change on Agricultural Productivity," CEPA Working Papers Series WP032021, School of Economics, University of Queensland, Australia.
    16. Haseeb Ahmed & Lena-Mari Tamminen & Ulf Emanuelson, 2022. "Temperature, productivity, and heat tolerance: Evidence from Swedish dairy production," Climatic Change, Springer, vol. 175(1), pages 1-18, November.
    17. Zetian Yu & Hao Liu & Hua Peng & Qiantong Xia & Xiaoxia Dong, 2023. "Production Efficiency of Raw Milk and Its Determinants: Application of Combining Data Envelopment Analysis and Stochastic Frontier Analysis," Agriculture, MDPI, vol. 13(2), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Falco & Franco Donzelli & Alessandro Olper, 2018. "Climate Change, Agriculture and Migration: A Survey," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    2. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    3. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    4. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    5. Rigas, Nikos & Kounetas, Konstantinos, 2021. "The Role of temperature, Precipitation and CO2 emissions on Countries’ Economic Growth and Productivity," MPRA Paper 104727, University Library of Munich, Germany.
    6. Surender Kumar & Madhu Khanna, 2019. "Temperature and production efficiency growth: empirical evidence," Climatic Change, Springer, vol. 156(1), pages 209-229, September.
    7. Bassino, Jean-Pascal & Lagoarde-Segot, Thomas & Woitek, Ulrich, 2020. "The irreversible welfare cost of climate anomalies. Evidence from Japan (1872-1917)," Discussion Paper Series 704, Institute of Economic Research, Hitotsubashi University.
    8. Bassino, Jean-Pascal & Lagoarde-Segot, Thomas & Woitek, Ulrich, 2022. "Prenatal climate shocks and adult height in developing countries. Evidence from Japan (1872–1917)," Economics & Human Biology, Elsevier, vol. 45(C).
    9. Chen, Xiaoguang & Yang, Lu, 2019. "Temperature and industrial output: Firm-level evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 257-274.
    10. Kaixing Huang & Qianqian Hong, 2024. "The impact of global warming on obesity," Journal of Population Economics, Springer;European Society for Population Economics, vol. 37(3), pages 1-32, September.
    11. Duan, Hongbo & Yuan, Deyu & Cai, Zongwu & Wang, Shouyang, 2022. "Valuing the impact of climate change on China’s economic growth," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 155-174.
    12. Li Chen & Bin Jiang & Chuan Wang, 2023. "Climate change and urban total factor productivity: evidence from capital cities and municipalities in China," Empirical Economics, Springer, vol. 65(1), pages 401-441, July.
    13. Lehr, Jakob & Rehdanz, Katrin, 2024. "The effect of temperature on energy related CO2 emissions and economic performance in German industry," Energy Economics, Elsevier, vol. 138(C).
    14. Jaqueline Oliveira & Bruno Palialol & Paula Pereda, 2021. "Do temperature shocks affect non-agriculture wages in Brazil? Evidence from individual-level panel data," Working Papers, Department of Economics 2021_13, University of São Paulo (FEA-USP).
    15. Huang, Kaixing & Zhao, Hong & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2020. "The impact of climate change on the labor allocation: Empirical evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    16. Ma Jiliang Jiliang & Jean-Francois Maystadt, 2016. "Weather shocks, maize yields and adaptation in rural China," Working Papers 104825642, Lancaster University Management School, Economics Department.
    17. Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).
    18. Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021. "The GDP-Temperature relationship: Implications for climate change damages," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    19. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    20. Olper, Alessandro & Maugeri, Maurizio & Manara, Veronica & Raimondi, Valentina, 2021. "Weather, climate and economic outcomes: Evidence from Italy," Ecological Economics, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:erevae:v:47:y:2020:i:3:p:1276-1301.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг