lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.16462.html
   My bibliography  Save this paper

Binary Response Forecasting under a Factor-Augmented Framework

Author

Listed:
  • Tingting Cheng
  • Jiachen Cong
  • Fei Liu
  • Xuanbin Yang
Abstract
In this paper, we propose a novel factor-augmented forecasting regression model with a binary response variable. We develop a maximum likelihood estimation method for the regression parameters and establish the asymptotic properties of the resulting estimators. Monte Carlo simulation results show that the proposed estimation method performs very well in finite samples. Finally, we demonstrate the usefulness of the proposed model through an application to U.S. recession forecasting. The proposed model consistently outperforms conventional Probit regression across both in-sample and out-of-sample exercises, by effectively utilizing high-dimensional information through latent factors.

Suggested Citation

  • Tingting Cheng & Jiachen Cong & Fei Liu & Xuanbin Yang, 2025. "Binary Response Forecasting under a Factor-Augmented Framework," Papers 2507.16462, arXiv.org.
  • Handle: RePEc:arx:papers:2507.16462
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.16462
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.16462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг