lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p291-d1320209.html
   My bibliography  Save this article

Research on the Route Choice Behavior of Urban Freight Vehicles Based on GPS Data

Author

Listed:
  • Lili Zheng

    (School of Transportation, Jilin University, No. 5988 Renmin Street, Changchun 130022, China)

  • Tian Gao

    (Automotive Engineering Research Institute, BYD Automobile Industry Co., Ltd., No. 3009 BYD Road, Shenzhen 518118, China)

  • Lin Meng

    (Jilin Provincial Transportation Administration, No. 2518 Jie-fang Road, Changchun 130021, China)

  • Tongqiang Ding

    (School of Transportation, Jilin University, No. 5988 Renmin Street, Changchun 130022, China)

  • Wenhao Chen

    (School of Transportation, Jilin University, No. 5988 Renmin Street, Changchun 130022, China)

Abstract
In order to provide urban freight vehicles with navigation routes that better align with their travel preferences, it is necessary to analyze the patterns and characteristics of their route choices. This paper focuses on freight vehicles traveling within the city and examines their route selection behavior. Through an analysis of the GPS data collected from freight truck journeys in Changchun, China, this study outlines the characteristics of freight vehicle travel within the city. Variables that may influence their route selection behavior are defined as feature factors. The study employs the DBSCAN algorithm to identify the hotspots in origin–destination pairs for freight truck travel in Changchun. It also utilizes Breadth First Search Link Elimination to generate a set of route choices and constructs route selection behavior models based on Multinomial Logit and Path Size Logit. Based on the research findings, during navigation within the city road network, these vehicles exhibit a preference for side roads, a tendency to favor right turns at intersections, and a propensity to choose routes with lower duplication compared to alternative options. The study’s conclusions offer theoretical support for guiding urban freight vehicle routes and planning and managing freight traffic within the city.

Suggested Citation

  • Lili Zheng & Tian Gao & Lin Meng & Tongqiang Ding & Wenhao Chen, 2024. "Research on the Route Choice Behavior of Urban Freight Vehicles Based on GPS Data," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:291-:d:1320209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Theo Arentze & Tao Feng & Harry Timmermans & Jops Robroeks, 2012. "Context-dependent influence of road attributes and pricing policies on route choice behavior of truck drivers: results of a conjoint choice experiment," Transportation, Springer, vol. 39(6), pages 1173-1188, November.
    2. Frejinger, E. & Bierlaire, M. & Ben-Akiva, M., 2009. "Sampling of alternatives for route choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 984-994, December.
    3. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    4. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    5. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    6. Hess, Stephane & Quddus, Mohammed & Rieser-Schüssler, Nadine & Daly, Andrew, 2015. "Developing advanced route choice models for heavy goods vehicles using GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 29-44.
    7. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    8. Utpal Vasavada, 1988. "Kmenta, Jan. Elements of Econometrics, 2nd ed. New York: Macmillan Publishing Co., 1986, xii + 786 pp., $26.50," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 70(1), pages 210-211.
    9. Shlomo Bekhor & Moshe Ben-Akiva & M. Ramming, 2006. "Evaluation of choice set generation algorithms for route choice models," Annals of Operations Research, Springer, vol. 144(1), pages 235-247, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamzeh Alizadeh & Bilal Farooq & Catherine Morency & Nicolas Saunier, 2018. "On the role of bridges as anchor points in route choice modeling," Transportation, Springer, vol. 45(5), pages 1181-1206, September.
    2. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    3. Lemp, Jason D. & Kockelman, Kara M., 2012. "Strategic sampling for large choice sets in estimation and application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 602-613.
    4. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    5. Eran Ben-Elia & Ido Erev & Yoram Shiftan, 2008. "The combined effect of information and experience on drivers’ route-choice behavior," Transportation, Springer, vol. 35(2), pages 165-177, March.
    6. Mai, Tien & Bastin, Fabian & Frejinger, Emma, 2017. "On the similarities between random regret minimization and mother logit: The case of recursive route choice models," Journal of choice modelling, Elsevier, vol. 23(C), pages 21-33.
    7. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    8. Biondi, Beatrice & Cornelsen, Laura & Mazzocchi, Mario & Smith, Richard, 2020. "Between preferences and references: Asymmetric price elasticities and the simulation of fiscal policies," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 108-128.
    9. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    10. Na Zhang & Zijia Wang & Feng Chen & Jingni Song & Jianpo Wang & Yu Li, 2020. "Low-Carbon Impact of Urban Rail Transit Based on Passenger Demand Forecast in Baoji," Energies, MDPI, vol. 13(4), pages 1-18, February.
    11. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    12. Xie, Erhao, 2021. "Empirical properties and identification of adaptive learning models in behavioral game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 798-821.
    13. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    14. Li, Baibing & Hensher, David A., 2017. "Risky weighting in discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 1-21.
    15. Evanthia Kazagli & Michel Bierlaire & Matthieu de Lapparent, 2020. "Operational route choice methodologies for practical applications," Transportation, Springer, vol. 47(1), pages 43-74, February.
    16. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    17. Flötteröd, Gunnar & Bierlaire, Michel, 2013. "Metropolis–Hastings sampling of paths," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 53-66.
    18. David A. Hensher, 2006. "How do respondents process stated choice experiments? Attribute consideration under varying information load," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 861-878, September.
    19. Bhat, Chandra & Lockwood, Allison, 2004. "On distinguishing between physically active and physically passive episodes and between travel and activity episodes: an analysis of weekend recreational participation in the San Francisco Bay area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(8), pages 573-592, October.
    20. Chenfeng Xiong & Lei Zhang, 2017. "Dynamic travel mode searching and switching analysis considering hidden model preference and behavioral decision processes," Transportation, Springer, vol. 44(3), pages 511-532, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:291-:d:1320209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг