lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v323y2025i1p297-308.html
   My bibliography  Save this article

A machine learning approach for solution space reduction in aircraft disruption recovery

Author

Listed:
  • Rashedi, Navid
  • Sankey, Nolan
  • Vaze, Vikrant
  • Wei, Keji
Abstract
Aircraft recovery, a critical step in airline operations recovery, aims to minimize the cost of disrupted aircraft schedules. The exact methods for aircraft recovery are computationally expensive and operationally infeasible in practice. Heuristics and hybrid approaches offer faster solutions but have inconsistent solution quality, often leading to large losses. We propose a supervised machine learning approach to accelerate aircraft recovery by pruning the solution space of the optimization problem. It leverages similarities with previously solved problem instances through an offline model-training phase, identifies components of the optimal solutions for new problem instances in the online phase, and links them to the optimization model to rapidly generate high-quality solutions. Computational results, from multiple historical disruption instances for a large US airline, demonstrate that this approach significantly outperforms exact methods on computational runtime while producing similarly high-quality solutions. It also outperforms existing heuristics due to its ability to prune solution spaces in a more principled manner, leading to higher quality solutions in similarly short runtimes. For a runtime budget of two minutes, our approach provides a solution within 1.5% of the true optimal cost, resulting in an average daily saving of over $390,000 compared to all existing approaches. The main drivers of these improvements are explainable in terms of key airline operational metrics and are validated through extensive sensitivity and robustness tests.

Suggested Citation

  • Rashedi, Navid & Sankey, Nolan & Vaze, Vikrant & Wei, Keji, 2025. "A machine learning approach for solution space reduction in aircraft disruption recovery," European Journal of Operational Research, Elsevier, vol. 323(1), pages 297-308.
  • Handle: RePEc:eee:ejores:v:323:y:2025:i:1:p:297-308
    DOI: 10.1016/j.ejor.2024.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724008944
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Laurie A. Garrow & Virginie Lurkin & Lavanya Marla, 2022. "Airline OR Innovations Soar During COVID-19 Recovery," SN Operations Research Forum, Springer, vol. 3(1), pages 1-20, March.
    2. Ding, Yida & Wandelt, Sebastian & Wu, Guohua & Xu, Yifan & Sun, Xiaoqian, 2023. "Towards efficient airline disruption recovery with reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    3. Shangyao Yan & Chung-Gee Lin, 1997. "Airline Scheduling for the Temporary Closure of Airports," Transportation Science, INFORMS, vol. 31(1), pages 72-82, February.
    4. Sinclair, Karine & Cordeau, Jean-François & Laporte, Gilbert, 2014. "Improvements to a large neighborhood search heuristic for an integrated aircraft and passenger recovery problem," European Journal of Operational Research, Elsevier, vol. 233(1), pages 234-245.
    5. Luis Cadarso & Vikrant Vaze, 2023. "Passenger-Centric Integrated Airline Schedule and Aircraft Recovery," Transportation Science, INFORMS, vol. 57(3), pages 813-837, May.
    6. Teodorovic, Dusan & Guberinic, Slobodan, 1984. "Optimal dispatching strategy on an airline network after a schedule perturbation," European Journal of Operational Research, Elsevier, vol. 15(2), pages 178-182, February.
    7. Mouad Morabit & Guy Desaulniers & Andrea Lodi, 2021. "Machine-Learning–Based Column Selection for Column Generation," Transportation Science, INFORMS, vol. 55(4), pages 815-831, July.
    8. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    9. Wen, Xin & Ma, Hoi-Lam & Chung, Sai-Ho & Khan, Waqar Ahmed, 2020. "Robust airline crew scheduling with flight flying time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    10. Ahmad I. Z. Jarrah & Gang Yu & Nirup Krishnamurthy & Ananda Rakshit, 1993. "A Decision Support Framework for Airline Flight Cancellations and Delays," Transportation Science, INFORMS, vol. 27(3), pages 266-280, August.
    11. Adil Tahir & Frédéric Quesnel & Guy Desaulniers & Issmail El Hallaoui & Yassine Yaakoubi, 2021. "An Improved Integral Column Generation Algorithm Using Machine Learning for Aircrew Pairing," Transportation Science, INFORMS, vol. 55(6), pages 1411-1429, November.
    12. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    13. Liang, Zhe & Xiao, Fan & Qian, Xiongwen & Zhou, Lei & Jin, Xianfei & Lu, Xuehua & Karichery, Sureshan, 2018. "A column generation-based heuristic for aircraft recovery problem with airport capacity constraints and maintenance flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 113(C), pages 70-90.
    14. Dimitris Bertsimas & Bartolomeo Stellato, 2022. "Online Mixed-Integer Optimization in Milliseconds," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2229-2248, July.
    15. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    16. Lavanya Marla & Bo Vaaben & Cynthia Barnhart, 2017. "Integrated Disruption Management and Flight Planning to Trade Off Delays and Fuel Burn," Transportation Science, INFORMS, vol. 51(1), pages 88-111, February.
    17. Yuan Sun & Andreas Ernst & Xiaodong Li & Jake Weiner, 2021. "Generalization of machine learning for problem reduction: a case study on travelling salesman problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 607-633, September.
    18. Michael F. Argüello & Jonathan F. Bard & Gang Yu, 1997. "A Grasp for Aircraft Routing in Response to Groundings and Delays," Journal of Combinatorial Optimization, Springer, vol. 1(3), pages 211-228, October.
    19. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    20. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    21. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naz Yeti̇moğlu, Yücel & Selim Aktürk, M., 2021. "Aircraft and passenger recovery during an aircraft’s unexpected unavailability," Journal of Air Transport Management, Elsevier, vol. 91(C).
    2. Derui Wang & Yanfeng Wu & Jian-Qiang Hu & Miaomiao Liu & Peiwen Yu & Cheng Zhang & Yan Wu, 2019. "Flight Schedule Recovery: A Simulation-Based Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-19, December.
    3. Ding, Yida & Wandelt, Sebastian & Wu, Guohua & Xu, Yifan & Sun, Xiaoqian, 2023. "Towards efficient airline disruption recovery with reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    4. Huang, Zhouchun & Luo, Xiaodong & Jin, Xianfei & Karichery, Sureshan, 2022. "An iterative cost-driven copy generation approach for aircraft recovery problem," European Journal of Operational Research, Elsevier, vol. 301(1), pages 334-348.
    5. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    6. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    7. Wandelt, Sebastian & Signori, Andrea & Chang, Shuming & Wang, Shuang & Du, Zhuoming & Sun, Xiaoqian, 2025. "Unleashing the potential of operations research in air transport: A review of applications, methods, and challenges," Journal of Air Transport Management, Elsevier, vol. 124(C).
    8. Huang, Lei & Xiao, Fan & Zhou, Jing & Duan, Zhenya & Zhang, Hua & Liang, Zhe, 2023. "A machine learning based column-and-row generation approach for integrated air cargo recovery problem," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    9. Wang, Qi & Mao, Jianing & Wen, Xin & Wallace, Stein W. & Deveci, Muhammet, 2025. "Flight, aircraft, and crew integrated recovery policies for airlines - A deep reinforcement learning approach," Transport Policy, Elsevier, vol. 160(C), pages 245-258.
    10. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2017. "Flight Network-Based Approach for Integrated Airline Recovery with Cruise Speed Control," Transportation Science, INFORMS, vol. 51(4), pages 1259-1287, November.
    11. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    12. Uğur Arıkan & Sinan Gürel & M. Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    13. Vieira, Thiago & De La Vega, Jonathan & Tavares, Roberto & Munari, Pedro & Morabito, Reinaldo & Bastos, Yan & Ribas, Paulo César, 2021. "Exact and heuristic approaches to reschedule helicopter flights for personnel transportation in the oil industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    14. Stephen J. Maher, 2016. "Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation," Transportation Science, INFORMS, vol. 50(1), pages 216-239, February.
    15. Zhao, Ai & Bard, Jonathan F. & Bickel, J. Eric, 2023. "A two-stage approach to aircraft recovery under uncertainty," Journal of Air Transport Management, Elsevier, vol. 111(C).
    16. Wen, Xin & Sun, Xuting & Ma, Hoi-Lam & Sun, Yige, 2022. "A column generation approach for operational flight scheduling and aircraft maintenance routing," Journal of Air Transport Management, Elsevier, vol. 105(C).
    17. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    18. Thengvall, Benjamin G. & Yu, Gang & Bard, Jonathan F., 2001. "Multiple fleet aircraft schedule recovery following hub closures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 289-308, May.
    19. Wenkai Li & Mark Wallace, 2012. "Disruption Management for Commercial Aviation," Working Papers EMS_2012_18, Research Institute, International University of Japan.
    20. Kenan, Nabil & Jebali, Aida & Diabat, Ali, 2018. "The integrated aircraft routing problem with optional flights and delay considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 355-375.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:323:y:2025:i:1:p:297-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг