lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v239y2014i1p214-226.html
   My bibliography  Save this article

A branch and bound based heuristic for makespan minimization of washing operations in hospital sterilization services

Author

Listed:
  • Ozturk, Onur
  • Begen, Mehmet A.
  • Zaric, Gregory S.
Abstract
In this paper, we address the problem of parallel batching of jobs on identical machines to minimize makespan. The problem is motivated from the washing step of hospital sterilization services where jobs have different sizes, different release dates and equal processing times. Machines can process more than one job at the same time as long as the total size of jobs in a batch does not exceed the machine capacity. We present a branch and bound based heuristic method and compare it to a linear model and two other heuristics from the literature. Computational experiments show that our method can find high quality solutions within short computation time.

Suggested Citation

  • Ozturk, Onur & Begen, Mehmet A. & Zaric, Gregory S., 2014. "A branch and bound based heuristic for makespan minimization of washing operations in hospital sterilization services," European Journal of Operational Research, Elsevier, vol. 239(1), pages 214-226.
  • Handle: RePEc:eee:ejores:v:239:y:2014:i:1:p:214-226
    DOI: 10.1016/j.ejor.2014.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714004214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Maria Di Mascolo & Alexia Gouin, 2013. "A generic simulation model to assess the performance of sterilization services in health establishments," Health Care Management Science, Springer, vol. 16(1), pages 45-61, March.
    2. Philippe Baptiste, 2000. "Batching identical jobs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(3), pages 355-367, December.
    3. Malapert, Arnaud & Guéret, Christelle & Rousseau, Louis-Martin, 2012. "A constraint programming approach for a batch processing problem with non-identical job sizes," European Journal of Operational Research, Elsevier, vol. 221(3), pages 533-545.
    4. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Fan & Davari, Morteza & Wei, Wenchao & Hermans, Ben & Leus, Roel, 2022. "Scheduling a single parallel-batching machine with non-identical job sizes and incompatible job families," European Journal of Operational Research, Elsevier, vol. 303(2), pages 602-615.
    2. Adam Diamant & Joseph Milner & Fayez Quereshy & Bo Xu, 2018. "Inventory management of reusable surgical supplies," Health Care Management Science, Springer, vol. 21(3), pages 439-459, September.
    3. Steffen Rickers & Florian Sahling, 2024. "Integrated procurement and reprocessing planning for reusable medical devices with a limited shelf life," Health Care Management Science, Springer, vol. 27(2), pages 168-187, June.
    4. Volland, Jonas & Fügener, Andreas & Schoenfelder, Jan & Brunner, Jens O., 2017. "Material logistics in hospitals: A literature review," Omega, Elsevier, vol. 69(C), pages 82-101.
    5. Ozturk, Onur, 2020. "A truncated column generation algorithm for the parallel batch scheduling problem to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 286(2), pages 432-443.
    6. Zhang, Han & Li, Kai & Jia, Zhao-hong & Chu, Chengbin, 2023. "Minimizing total completion time on non-identical parallel batch machines with arbitrary release times using ant colony optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1024-1046.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    2. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    3. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    4. Danny Hermelin & Matthias Mnich & Simon Omlor, 2024. "Serial batching to minimize the weighted number of tardy jobs," Journal of Scheduling, Springer, vol. 27(6), pages 545-556, December.
    5. Onur Ozturk, 2020. "A bi-criteria optimization model for medical device sterilization," Annals of Operations Research, Springer, vol. 293(2), pages 809-831, October.
    6. Zhang, Hongbin & Yang, Yu & Wu, Feng, 2024. "Scheduling a set of jobs with convex piecewise linear cost functions on a single-batch-processing machine," Omega, Elsevier, vol. 122(C).
    7. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    8. Chakhlevitch, Konstantin & Glass, Celia A. & Kellerer, Hans, 2011. "Batch machine production with perishability time windows and limited batch size," European Journal of Operational Research, Elsevier, vol. 210(1), pages 39-47, April.
    9. Jun-Qiang Wang & Guo-Qiang Fan & Zhixin Liu, 2020. "Mixed batch scheduling on identical machines," Journal of Scheduling, Springer, vol. 23(4), pages 487-496, August.
    10. Yuan, J.J. & Lin, Y.X. & Cheng, T.C.E. & Ng, C.T., 2007. "Single machine serial-batching scheduling problem with a common batch size to minimize total weighted completion time," International Journal of Production Economics, Elsevier, vol. 105(2), pages 402-406, February.
    11. Marinelli, Fabrizio & Pizzuti, Andrea & Wu, Wei & Yagiura, Mutsunori, 2025. "One-dimensional bin packing with pattern-dependent processing time," European Journal of Operational Research, Elsevier, vol. 322(3), pages 770-782.
    12. Passchyn, Ward & Coene, Sofie & Briskorn, Dirk & Hurink, Johann L. & Spieksma, Frits C.R. & Vanden Berghe, Greet, 2016. "The lockmaster’s problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 432-441.
    13. Ridouard, Frédéric & Richard, Pascal & Martineau, Patrick, 2008. "On-line scheduling on a batch processing machine with unbounded batch size to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1327-1342, September.
    14. A. Beynaghi & F. Moztarzadeh & A. Shahmardan & R. Alizadeh & J. Salimi & M. Mozafari, 2019. "Makespan minimization for batching work and rework process on a single facility with an aging effect: a hybrid meta-heuristic algorithm for sustainable production management," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 33-45, January.
    15. Li, Xueping & Zhang, Kaike, 2018. "Single batch processing machine scheduling with two-dimensional bin packing constraints," International Journal of Production Economics, Elsevier, vol. 196(C), pages 113-121.
    16. Jason Pan & Chi-Shiang Su, 2015. "Two parallel machines problem with job delivery coordination and availability constraint," Annals of Operations Research, Springer, vol. 235(1), pages 653-664, December.
    17. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    18. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    19. Biber Nurit & Mor Baruch & Schlissel Yitzhak & Shapira Dana, 2023. "Lot scheduling involving completion time problems on identical parallel machines," Operational Research, Springer, vol. 23(1), pages 1-29, March.
    20. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:239:y:2014:i:1:p:214-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг