lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v229y2013i1p179-189.html
   My bibliography  Save this article

Measurement and optimization of robust stability of multiclass queueing networks: Applications in dynamic supply chains

Author

Listed:
  • Schönlein, Michael
  • Makuschewitz, Thomas
  • Wirth, Fabian
  • Scholz-Reiter, Bernd
Abstract
Multiclass queueing networks are an essential tool for modeling and analyzing complex supply chains. Roughly speaking, stability of these networks implies that the total number of customers/jobs in the network remains bounded over time. In this context robustness characterizes the ability of a multiclass queueing network to remain stable, if the expected values of the interarrival and service times distributions are subject to uncertain shifts. A powerful starting point for the stability analysis of multiclass queueing networks is the associated fluid network. Based on the fluid network analysis we present a measure to quantify the robustness, which is indicated by a single number. This number will be called the stability radius. It represents the magnitude of the smallest shift of the expected value of the interarrival and/or service times distributions so that the associated fluid network looses the property of stability. The stability radius is a worst case measure and is a conceptual adaptation from the dynamical systems literature. Moreover, we provide a characterization of the shifts that destabilize the network. Based on these results, we formulate a mathematical program that minimizes the required network capacity, while ensuring a desired level of robustness towards shifts of the expected values of the interarrival times distributions. This approach provides a new view on long-term robust production capacity allocation in supply chains. The capabilities of our method are demonstrated using a real world supply chain.

Suggested Citation

  • Schönlein, Michael & Makuschewitz, Thomas & Wirth, Fabian & Scholz-Reiter, Bernd, 2013. "Measurement and optimization of robust stability of multiclass queueing networks: Applications in dynamic supply chains," European Journal of Operational Research, Elsevier, vol. 229(1), pages 179-189.
  • Handle: RePEc:eee:ejores:v:229:y:2013:i:1:p:179-189
    DOI: 10.1016/j.ejor.2013.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713001203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & David Gamarnik & Alexander Anatoliy Rikun, 2011. "Performance Analysis of Queueing Networks via Robust Optimization," Operations Research, INFORMS, vol. 59(2), pages 455-466, April.
    2. J. G. Dai & J. H. Vande Vate, 2000. "The Stability of Two-Station Multitype Fluid Networks," Operations Research, INFORMS, vol. 48(5), pages 721-744, October.
    3. Roy, Bernard, 2010. "Robustness in operational research and decision aiding: A multi-faceted issue," European Journal of Operational Research, Elsevier, vol. 200(3), pages 629-638, February.
    4. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    5. Dawei Bai & Tamra Carpenter & John Mulvey, 1997. "Making a Case for Robust Optimization Models," Management Science, INFORMS, vol. 43(7), pages 895-907, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aijun Liu & John Fowler & Michele Pfund, 2016. "Dynamic co-ordinated scheduling in the supply chain considering flexible routes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 322-335, January.
    2. Xiaoli Zhang & Qing Wang & Binglong Zhao & Jiafu Su, 2024. "Exploring the Vulnerability of Supply Chain Networks from the Perspective of Network Collaborative Relationships," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 11041-11062, September.
    3. Sagawa, Juliana Keiko & Nagano, Marcelo Seido & Speranza Neto, Mauro, 2017. "A closed-loop model of a multi-station and multi-product manufacturing system using bond graphs and hybrid controllers," European Journal of Operational Research, Elsevier, vol. 258(2), pages 677-691.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Andrew N.K. & Goes, Paulo B. & Gupta, Alok & Marsden, James R., 2006. "Heuristics for selecting robust database structures with dynamic query patterns," European Journal of Operational Research, Elsevier, vol. 168(1), pages 200-220, January.
    2. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    3. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    4. Gössinger, Ralf & Kalkowski, Sonja, 2015. "Robust order promising with anticipated customer response," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 529-542.
    5. Kalaı¨, Rim & Lamboray, Claude & Vanderpooten, Daniel, 2012. "Lexicographic α-robustness: An alternative to min–max criteria," European Journal of Operational Research, Elsevier, vol. 220(3), pages 722-728.
    6. Chen, Andrew N.K., 2006. "Robust optimization for performance tuning of modern database systems," European Journal of Operational Research, Elsevier, vol. 171(2), pages 412-429, June.
    7. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Design of a sales plan in a hybrid contractual and non-contractual context in a setting of limited capacity: A robust approach," International Journal of Production Economics, Elsevier, vol. 260(C).
    8. Mavrotas, George & Pechak, Olena & Siskos, Eleftherios & Doukas, Haris & Psarras, John, 2015. "Robustness analysis in Multi-Objective Mathematical Programming using Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 240(1), pages 193-201.
    9. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    10. Piao, M.J. & Li, Y.P. & Huang, G.H. & Nie, S., 2015. "Risk analysis for Shanghai's electric power system under multiple uncertainties," Energy, Elsevier, vol. 87(C), pages 104-119.
    11. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    12. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    13. Randall, M. & Montgomery, J. & Lewis, A., 2022. "Robust temporal optimisation for a crop planning problem under climate change uncertainty," Operations Research Perspectives, Elsevier, vol. 9(C).
    14. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    15. Li, Y.P. & Huang, G.H. & Nie, X.H. & Nie, S.L., 2008. "A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems," European Journal of Operational Research, Elsevier, vol. 189(2), pages 399-420, September.
    16. Jihee Han & KwangSup Shin, 2016. "Evaluation mechanism for structural robustness of supply chain considering disruption propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 135-151, January.
    17. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    18. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    19. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    20. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:229:y:2013:i:1:p:179-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг