lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i3p775-788.html
   My bibliography  Save this article

Tolerance-based Branch and Bound algorithms for the ATSP

Author

Listed:
  • Turkensteen, Marcel
  • Ghosh, Diptesh
  • Goldengorin, Boris
  • Sierksma, Gerard
Abstract
The selection of entries to be included/excluded in Branch and Bound algorithms is usually done on the basis of cost values. We consider the class of Depth First Search algorithms, and we propose to use upper tolerances to guide the search for optimal solutions. In spite of the fact that it needs time to calculate tolerances, our computational experiments for Asymmetric Traveling Salesman Problems show that in most situations tolerance-based algorithms outperform cost-based algorithms. The solution time reductions are mainly caused by the fact that the branching process becomes much more effective, so that optimal solutions are found in an earlier stage of the branching process. The use of tolerances also reveals why the widely used choice for branching on a smallest cycle in assignment solutions is on average the most effective one. Moreover, it turns out that tolerance-based DFS algorithms are better in solving difficult instances than the Best First Search algorithm from Carpaneto et al. [Carpaneto, G., Dell'Amico, M., Toth, P., 1995. Exact solution of large-scale asymmetric traveling salesman problems. ACM Transactions on Mathematical Software 21 (4), 394-409].

Suggested Citation

  • Turkensteen, Marcel & Ghosh, Diptesh & Goldengorin, Boris & Sierksma, Gerard, 2008. "Tolerance-based Branch and Bound algorithms for the ATSP," European Journal of Operational Research, Elsevier, vol. 189(3), pages 775-788, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:775-788
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)01184-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Giorgio Carpaneto & Paolo Toth, 1980. "Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem," Management Science, INFORMS, vol. 26(7), pages 736-743, July.
    2. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    3. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    4. Gessner, Guy & Malhotra, Naresh K. & Kamakura, Wagner A. & Zmijewski, Mark E., 1988. "Estimating models with binary dependent variables: Some theoretical and empirical observations," Journal of Business Research, Elsevier, vol. 16(1), pages 49-65, January.
    5. Lin, Chi-Jen & Wen, Ue-Pyng, 2003. "Sensitivity analysis of the optimal assignment," European Journal of Operational Research, Elsevier, vol. 149(1), pages 35-46, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vyacheslav V. Chistyakov & Panos M. Pardalos, 2015. "Stability Analysis in Discrete Optimization Involving Generalized Addition Operations," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 585-616, November.
    2. Castro de Andrade, Rafael, 2016. "New formulations for the elementary shortest-path problem visiting a given set of nodes," European Journal of Operational Research, Elsevier, vol. 254(3), pages 755-768.
    3. Almoustafa, Samira & Hanafi, Said & Mladenović, Nenad, 2013. "New exact method for large asymmetric distance-constrained vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 226(3), pages 386-394.
    4. Jamal Ouenniche & Prasanna K. Ramaswamy & Michel Gendreau, 2017. "A dual local search framework for combinatorial optimization problems with TSP application," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1377-1398, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Turkensteen & Dmitry Malyshev & Boris Goldengorin & Panos M. Pardalos, 2017. "The reduction of computation times of upper and lower tolerances for selected combinatorial optimization problems," Journal of Global Optimization, Springer, vol. 68(3), pages 601-622, July.
    2. G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
    3. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    4. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    5. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    6. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    7. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    8. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    10. A van Giessen & K G M Moons & G A de Wit & W M M Verschuren & J M A Boer & H Koffijberg, 2015. "Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    11. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    12. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    13. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    14. Elvira Pelle & Roberta Pappadà, 2021. "A clustering procedure for mixed-type data to explore ego network typologies: an application to elderly people living alone in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1507-1533, December.
    15. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    16. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.
    17. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    18. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    20. Marek Obrębalski & Marek Walesiak, 2015. "Functional structure of Polish regions in the period 2004-2013 – measurement via HHI Index, Florence’s coefficient of localization and cluster analysis," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(2), pages 223-242, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:775-788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг