lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v91y2012i1p36-42.html
   My bibliography  Save this article

Vegetable processing wastes addition to improve swine manure anaerobic digestion: Evaluation in terms of methane yield and SEM characterization

Author

Listed:
  • Molinuevo-Salces, Beatriz
  • González-Fernández, Cristina
  • Gómez, Xiomar
  • García-González, María Cruz
  • Morán, Antonio
Abstract
The effect of adding vegetable waste as a co-substrate in the anaerobic digestion of swine manure was investigated. The study was carried out at laboratory scale using semi-continuous stirred tank reactors working at 37°C. Organic loading rates (OLRs) of 0.4 and 0.6g VSL−1d−1 were evaluated, corresponding to hydraulic retention times (HRTs) of 25 and 15d, respectively. The addition of vegetable wastes (50% dw/dw) resulted in an improvement of 3 and 1.4-fold in methane yields at HRTs of 25 and 15d, respectively. Changes on microbial morphotypes were studied by Scanning Electron Microscopy (SEM). Samples analyzed were sludge used as inoculum and digestate obtained from swine manure anaerobic reactors. SEM pictures demonstrated that lignocellulosic material was not completely degraded. Additionally, microbial composition was found to change to cocci and rods morphotypes after 120d of anaerobic digestion.

Suggested Citation

  • Molinuevo-Salces, Beatriz & González-Fernández, Cristina & Gómez, Xiomar & García-González, María Cruz & Morán, Antonio, 2012. "Vegetable processing wastes addition to improve swine manure anaerobic digestion: Evaluation in terms of methane yield and SEM characterization," Applied Energy, Elsevier, vol. 91(1), pages 36-42.
  • Handle: RePEc:eee:appene:v:91:y:2012:i:1:p:36-42
    DOI: 10.1016/j.apenergy.2011.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911005812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alvarez, René & Lidén, Gunnar, 2008. "Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste," Renewable Energy, Elsevier, vol. 33(4), pages 726-734.
    2. Ogejo, J.A. & Li, L., 2010. "Enhancing biomethane production from flush dairy manure with turkey processing wastewater," Applied Energy, Elsevier, vol. 87(10), pages 3171-3177, October.
    3. Zupančič, G.D. & Roš, M., 2003. "Heat and energy requirements in thermophilic anaerobic sludge digestion," Renewable Energy, Elsevier, vol. 28(14), pages 2255-2267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Sen & Liu, Ziduo, 2014. "Pilot-scale biodegradation of swine manure via Chrysomya megacephala (Fabricius) for biodiesel production," Applied Energy, Elsevier, vol. 113(C), pages 385-391.
    2. Jurado, Esperanza & Skiadas, Ioannis V. & Gavala, Hariklia N., 2013. "Enhanced methane productivity from manure fibers by aqueous ammonia soaking pretreatment," Applied Energy, Elsevier, vol. 109(C), pages 104-111.
    3. Mariana Murillo-Roos & Lorena Uribe-Lorío & Paola Fuentes-Schweizer & Daniela Vidaurre-Barahona & Laura Brenes-Guillén & Ivannia Jiménez & Tatiana Arguedas & Wei Liao & Lidieth Uribe, 2022. "Biogas Production and Microbial Communities of Mesophilic and Thermophilic Anaerobic Co-Digestion of Animal Manures and Food Wastes in Costa Rica," Energies, MDPI, vol. 15(9), pages 1-16, April.
    4. Silvestre, G. & Illa, J. & Fernández, B. & Bonmatí, A., 2014. "Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties," Applied Energy, Elsevier, vol. 117(C), pages 87-94.
    5. Shen, Xiuli & Huang, Guangqun & Yang, Zengling & Han, Lujia, 2015. "Compositional characteristics and energy potential of Chinese animal manure by type and as a whole," Applied Energy, Elsevier, vol. 160(C), pages 108-119.
    6. Takata, Miki & Fukushima, Kazuyo & Kawai, Minako & Nagao, Norio & Niwa, Chiaki & Yoshida, Teruaki & Toda, Tatsuki, 2013. "The choice of biological waste treatment method for urban areas in Japan—An environmental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 557-567.
    7. Ormaechea, P. & Castrillón, L. & Suárez-Peña, B. & Megido, L. & Fernández-Nava, Y. & Negral, L. & Marañón, E. & Rodríguez-Iglesias, J., 2018. "Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM," Renewable Energy, Elsevier, vol. 126(C), pages 897-904.
    8. Peng, Xiaowei & Nges, Ivo Achu & Liu, Jing, 2016. "Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes," Renewable Energy, Elsevier, vol. 85(C), pages 12-18.
    9. Zhang, Wanqin & Wei, Quanyuan & Wu, Shubiao & Qi, Dandan & Li, Wei & Zuo, Zhuang & Dong, Renjie, 2014. "Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions," Applied Energy, Elsevier, vol. 128(C), pages 175-183.
    10. Zuo, Zhuang & Wu, Shubiao & Qi, Xiangyang & Dong, Renjie, 2015. "Performance enhancement of leaf vegetable waste in two-stage anaerobic systems under high organic loading rate: Role of recirculation and hydraulic retention time," Applied Energy, Elsevier, vol. 147(C), pages 279-286.
    11. Ni, Ping & Lyu, Tao & Sun, Hao & Dong, Renjie & Wu, Shubiao, 2017. "Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization," Energy, Elsevier, vol. 141(C), pages 1695-1704.
    12. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    13. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    14. Tao, Bing & Zhang, Yue & Heaven, Sonia & Banks, Charles J., 2020. "Predicting pH rise as a control measure for integration of CO2 biomethanisation with anaerobic digestion," Applied Energy, Elsevier, vol. 277(C).
    15. Li, Kun & Liu, Ronghou & Cui, Shaofeng & Yu, Qiong & Ma, Ruijie, 2018. "Anaerobic co-digestion of animal manures with corn stover or apple pulp for enhanced biogas production," Renewable Energy, Elsevier, vol. 118(C), pages 335-342.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso Albalate-Ramírez & Mónica María Alcalá-Rodríguez & Luis Ramiro Miramontes-Martínez & Alejandro Padilla-Rivera & Alejandro Estrada-Baltazar & Brenda Nelly López-Hernández & Pasiano Rivas-García, 2022. "Energy Production from Cattle Manure within a Life Cycle Assessment Framework: Statistical Optimization of Co-Digestion, Pretreatment, and Thermal Conditions," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    2. Zareei, Samira, 2018. "Project scheduling for constructing biogas plant using critical path method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 756-759.
    3. Anriansyah Renggaman & Hong Lim Choi & Sartika Indah Amalia Sudiarto & Andi Febrisiantosa & Dong Hyoen Ahn & Yong Wook Choung & Arumuganainar Suresh, 2021. "Biochemical Methane Potential of Swine Slaughter Waste, Swine Slurry, and Its Codigestion Effect," Energies, MDPI, vol. 14(21), pages 1-14, October.
    4. Omar, M.N. & Samak, A.A. & Keshek, M.H. & Elsisi, S.F., 2020. "Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy," Renewable Energy, Elsevier, vol. 159(C), pages 920-928.
    5. Douglas Eldo Pereira de Oliveira & Amanda Carvalho Miranda & Milton Vieira Junior & José Carlos Curvelo Santana & Elias Basile Tambourgi & Francesco Facchini & Raffaello Iavagnilio & Luiz Fernando Rod, 2024. "Economic and Environmental Feasibility of Cogeneration from Food Waste: A Case Study in São Paulo City," Sustainability, MDPI, vol. 16(7), pages 1-17, April.
    6. Chen, Jingjing & Hai, Zhong & Lu, Xiaohua & Wang, Changsong & Ji, Xiaoyan, 2020. "Heat-transfer enhancement for corn straw slurry from biogas plants by twisted hexagonal tubes," Applied Energy, Elsevier, vol. 262(C).
    7. Shen, Xiuli & Huang, Guangqun & Yang, Zengling & Han, Lujia, 2015. "Compositional characteristics and energy potential of Chinese animal manure by type and as a whole," Applied Energy, Elsevier, vol. 160(C), pages 108-119.
    8. Matthew Franchetti, 2016. "Development of a Novel Food Waste Collection Kiosk and Waste-to-Energy Business Model," Resources, MDPI, vol. 5(3), pages 1-15, August.
    9. Jake A. K. Elliott & Andrew S. Ball, 2021. "Selection of Industrial Trade Waste Resource Recovery Technologies—A Systematic Review," Resources, MDPI, vol. 10(4), pages 1-22, March.
    10. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    11. González-Fernández, Cristina & Molinuevo-Salces, Beatriz & García-González, Maria Cruz, 2011. "Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology," Applied Energy, Elsevier, vol. 88(10), pages 3448-3453.
    12. Ruffino, Barbara & Cerutti, Alberto & Campo, Giuseppe & Scibilia, Gerardo & Lorenzi, Eugenio & Zanetti, Mariachiara, 2020. "Thermophilic vs. mesophilic anaerobic digestion of waste activated sludge: Modelling and energy balance for its applicability at a full scale WWTP," Renewable Energy, Elsevier, vol. 156(C), pages 235-248.
    13. Bundhoo, Zumar M.A., 2018. "Renewable energy exploitation in the small island developing state of Mauritius: Current practice and future potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2029-2038.
    14. Nixon, J.D., 2016. "Designing and optimising anaerobic digestion systems: A multi-objective non-linear goal programming approach," Energy, Elsevier, vol. 114(C), pages 814-822.
    15. Chiu, Su-Fang & Chiu, Juei-Yu & Kuo, Wen-Chien, 2013. "Biological stoichiometric analysis of nutrition and ammonia toxicity in thermophilic anaerobic co-digestion of organic substrates under different organic loading rates," Renewable Energy, Elsevier, vol. 57(C), pages 323-329.
    16. Gulhane, Madhuri & Pandit, Prabhakar & Khardenavis, Anshuman & Singh, Dharmesh & Purohit, Hemant, 2017. "Study of microbial community plasticity for anaerobic digestion of vegetable waste in Anaerobic Baffled Reactor," Renewable Energy, Elsevier, vol. 101(C), pages 59-66.
    17. Cuixia Yun & Changrong Yan & Yinghao Xue & Zhiyu Xu & Tuo Jin & Qin Liu, 2021. "Effects of Exogenous Microbial Agents on Soil Nutrient and Microbial Community Composition in Greenhouse-Derived Vegetable Straw Composts," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    18. Hossain, Md. Sanowar & Das, Barun K. & Das, Arnob & Roy, Tamal Krishna, 2024. "Investigating the techno-economic and environmental feasibility of biogas-based power generation potential using food waste in Bangladesh," Renewable Energy, Elsevier, vol. 232(C).
    19. Chen, Jingjing & Risberg, Mikael & Westerlund, Lars & Jansson, Urban & Lu, Xiaohua & Wang, Changsong & Ji, Xiaoyan, 2020. "A high efficient heat exchanger with twisted geometries for biogas process with manure slurry," Applied Energy, Elsevier, vol. 279(C).
    20. Abdulkhani, Ali & Alizadeh, Peyman & Hedjazi, Sahab & Hamzeh, Yahya, 2017. "Potential of Soya as a raw material for a whole crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1269-1280.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:91:y:2012:i:1:p:36-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг