lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v9y2023i1d10.1186_s40854-023-00536-9.html
   My bibliography  Save this article

Whether and when did bitcoin sentiment matter for investors? Before and during the COVID-19 pandemic

Author

Listed:
  • Ahmet Faruk Aysan

    (Hamad Bin Khalifa University)

  • Erhan Muğaloğlu

    (Erciyes University)

  • Ali Yavuz Polat

    (Abdullah Gul University
    Gulf University for Science & Technology)

  • Hasan Tekin

    (Karabuk University)

Abstract
Using a wavelet coherence approach, this study investigates the relationship between Bitcoin return and Bitcoin-specific sentiment from January 1, 2016 to June 30, 2021, covering the COVID-19 pandemic period. The results reveal that before the pandemic, sentiment positively drove prices, especially for relatively higher frequencies (2–18 weeks). During the pandemic, the relationship was still positive, but interestingly, the lead-lag relationship disappeared. Employing partial wavelet tools, we factor out the number of COVID-19 cases and deaths and the Equity Market Volatility Infectious Disease Tracker index to observe the direct relationship between a change in sentiment and return. Our results robustly reveal that, before the pandemic, sentiment had a positive effect on return. Although positive coherence still existed during the pandemic, the lead-lag relationship disappeared again. Thus, the causal relationship that states that sentiment leads to return can only be integrated into short-term trading strategies (up to six weeks frequency).

Suggested Citation

  • Ahmet Faruk Aysan & Erhan Muğaloğlu & Ali Yavuz Polat & Hasan Tekin, 2023. "Whether and when did bitcoin sentiment matter for investors? Before and during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-24, December.
  • Handle: RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-023-00536-9
    DOI: 10.1186/s40854-023-00536-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-023-00536-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-023-00536-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aguiar-Conraria, Luis & Martins, Manuel M.F. & Soares, Maria Joana, 2018. "Estimating the Taylor rule in the time-frequency domain," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 122-137.
    2. Vacha, Lukas & Barunik, Jozef, 2012. "Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis," Energy Economics, Elsevier, vol. 34(1), pages 241-247.
    3. repec:zbw:bofrdp:2005_001 is not listed on IDEAS
    4. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    5. Bouri, Elie & Gabauer, David & Gupta, Rangan & Tiwari, Aviral Kumar, 2021. "Volatility connectedness of major cryptocurrencies: The role of investor happiness," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    6. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    7. Aloui, Chaker & Shahzad, Syed Jawad Hussain & Hkiri, Besma & Hela, Ben Hamida & Khan, Muhammad Asif, 2021. "On the investors' sentiments and the Islamic stock-bond interplay across investments' horizons," Pacific-Basin Finance Journal, Elsevier, vol. 65(C).
    8. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    9. Wen, Yi, 2002. "The business cycle effects of Christmas," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1289-1314, September.
    10. Rua, António & Nunes, Luís C., 2009. "International comovement of stock market returns: A wavelet analysis," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 632-639, September.
    11. Crowley, Patrick M., 2005. "An intuitive guide to wavelets for economists," Bank of Finland Research Discussion Papers 1/2005, Bank of Finland.
    12. Guégan, Dominique & Renault, Thomas, 2021. "Does investor sentiment on social media provide robust information for Bitcoin returns predictability?," Finance Research Letters, Elsevier, vol. 38(C).
    13. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Kyle J. Kost & Marco C. Sammon & Tasaneeya Viratyosin, 2020. "The Unprecedented Stock Market Impact of COVID-19," NBER Working Papers 26945, National Bureau of Economic Research, Inc.
    14. Steven J. Nooijen & Simon A. Broda, 2016. "Predicting Equity Markets with Digital Online Media Sentiment: Evidence from Markov-switching Models," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 17(4), pages 321-335, October.
    15. Zhengke Ye, Chunyan Hu, Linjie He, Guangda Ouyang, and Fenghua Wen, 2020. "The Dynamic Time-frequency Relationship between International Oil Prices and Investor Sentiment in China: A Wavelet Coherence Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5), pages 251-270.
    16. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    17. Brauneis, Alexander & Mestel, Roland & Riordan, Ryan & Theissen, Erik, 2021. "How to measure the liquidity of cryptocurrency markets?," Journal of Banking & Finance, Elsevier, vol. 124(C).
    18. Kim, Soon-Ho & Kim, Dongcheol, 2014. "Investor sentiment from internet message postings and the predictability of stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 708-729.
    19. Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.
    20. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    21. Sowmya Subramaniam & Madhumita Chakraborty, 2020. "Investor Attention and Cryptocurrency Returns: Evidence from Quantile Causality Approach," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 21(1), pages 103-115, January.
    22. Patrick Crowley, 2005. "An intuitive guide to wavelets for economists," Econometrics 0503017, University Library of Munich, Germany.
    23. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "Twitter’s daily happiness sentiment and international stock returns: Evidence from linear and nonlinear causality tests," Journal of Behavioral and Experimental Finance, Elsevier, vol. 18(C), pages 50-53.
    24. Patrick M. Crowley & David Hudgins, 2021. "Is the Taylor rule optimal? Evaluation using a wavelet-based control model," Applied Economics Letters, Taylor & Francis Journals, vol. 28(1), pages 54-60, January.
    25. Jessica Paule-Vianez & Camilo Prado-Román & Raúl Gómez-Martínez, 2020. "Economic policy uncertainty and Bitcoin. Is Bitcoin a safe-haven asset?," European Journal of Management and Business Economics, Emerald Group Publishing Limited, vol. 29(3), pages 347-363, March.
    26. Samitas, Aristeidis & Papathanasiou, Spyros & Koutsokostas, Drosos & Kampouris, Elias, 2022. "Are timber and water investments safe-havens? A volatility spillover approach and portfolio hedging strategies for investors," Finance Research Letters, Elsevier, vol. 47(PA).
    27. Zhengke Ye & Chunyan Hu & Linjie He & Guangda Ouyang & Fenghua Wen, 2020. "The Dynamic Time-frequency Relationship between International Oil Prices and Investor Sentiment in China: A Wavelet Coherence Analysis," The Energy Journal, , vol. 41(5), pages 251-270, September.
    28. Madaleno, Mara & Pinho, Carlos, 2014. "Wavelet dynamics for oil-stock world interactions," Energy Economics, Elsevier, vol. 45(C), pages 120-133.
    29. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    30. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    31. Gencay, Ramazan & Selcuk, Faruk & Whitcher, Brandon, 2005. "Multiscale systematic risk," Journal of International Money and Finance, Elsevier, vol. 24(1), pages 55-70, February.
    32. Shleifer, Andrei & Vishny, Robert W, 1997. "The Limits of Arbitrage," Journal of Finance, American Finance Association, vol. 52(1), pages 35-55, March.
    33. Yue-Jun Zhang & Shu-Hui Li, 2019. "The impact of investor sentiment on crude oil market risks: evidence from the wavelet approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1357-1371, August.
    34. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    35. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    36. Vytautas Karalevicius & Niels Degrande & Jochen De Weerdt, 2018. "Using sentiment analysis to predict interday Bitcoin price movements," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 19(1), pages 56-75, December.
    37. Merrill, Samuel & Grofman, Bernard & Brunell, Thomas L., 2008. "Cycles in American National Electoral Politics, 1854–2006: Statistical Evidence and an Explanatory Model," American Political Science Review, Cambridge University Press, vol. 102(1), pages 1-17, February.
    38. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    39. Oliver Entrop & Bart Frijns & Marco Seruset, 2020. "The determinants of price discovery on bitcoin markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(5), pages 816-837, May.
    40. Polyzos, Stathis & Samitas, Aristeidis & Kampouris, Ilias, 2021. "Economic stimulus through bank regulation: Government responses to the COVID-19 crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    41. Celeste, Valerio & Corbet, Shaen & Gurdgiev, Constantin, 2020. "Fractal dynamics and wavelet analysis: Deep volatility and return properties of Bitcoin, Ethereum and Ripple," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 310-324.
    42. Kim, Sangbae & In, Francis, 2007. "On the relationship between changes in stock prices and bond yields in the G7 countries: Wavelet analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(2), pages 167-179, April.
    43. Hoje Jo & Haehean Park & Hersh Shefrin, 2020. "Bitcoin and sentiment," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(12), pages 1861-1879, December.
    44. Khan, Muhammad Asif & Hernandez, Jose Arreola & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency relationship between household investors’ sentiment index and US industry stock returns," Finance Research Letters, Elsevier, vol. 36(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid Moradi-Kamali & Mohammad-Hossein Rajabi-Ghozlou & Mahdi Ghazavi & Ali Soltani & Amirreza Sattarzadeh & Reza Entezari-Maleki, 2025. "Market-Derived Financial Sentiment Analysis: Context-Aware Language Models for Crypto Forecasting," Papers 2502.14897, arXiv.org, revised Mar 2025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilgili, Faik & Mugaloglu, Erhan & Koçak, Emrah, 2018. "The impact of oil prices on CO2 emissions in China: A Wavelet coherence approach," MPRA Paper 90170, University Library of Munich, Germany.
    2. Bouteska, Ahmed & Mefteh-Wali, Salma & Dang, Trung, 2022. "Predictive power of investor sentiment for Bitcoin returns: Evidence from COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    3. Bilgili, Faik & Kuşkaya, Sevda & Toğuç, Nurhan & Muğaloğlu, Erhan & Koçak, Emrah & Bulut, Ümit & Bağlıtaş, H. Hilal, 2019. "A revisited renewable consumption-growth nexus: A continuous wavelet approach through disaggregated data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 1-19.
    4. Osman, Myriam Ben & Urom, Christian & Guesmi, Khaled & Benkraiem, Ramzi, 2024. "Economic sentiment and the cryptocurrency market in the post-COVID-19 era," International Review of Financial Analysis, Elsevier, vol. 91(C).
    5. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
    6. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    7. Hasan, Md. Tanvir, 2022. "The sum of all SCARES COVID-19 sentiment and asset return," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 332-346.
    8. Yousaf, Imran & Bejaoui, Azza & Ali, Shoaib & Li, Yanshuang, 2024. "Demystifying the dynamic relationship between news sentiment index and ESG stocks: Evidence from time-frequency wavelet analysis," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    9. Li, Sufang & Xu, Qiufan & Lv, Yixue & Yuan, Di, 2022. "Public attention, oil and gold markets during the COVID-19: Evidence from time-frequency analysis," Resources Policy, Elsevier, vol. 78(C).
    10. Ung, Sze Nie & Gebka, Bartosz & Anderson, Robert D.J., 2023. "Is sentiment the solution to the risk–return puzzle? A (cautionary) note," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    11. Yuan Li & Yu Zhang, 2021. "Investor Sentiment, Idiosyncratic Risk, and Stock Price Premium: Evidence From Chinese Cross-Listed Companies," SAGE Open, , vol. 11(2), pages 21582440211, June.
    12. Wenjie Ding & Khelifa Mazouz & Qingwei Wang, 2019. "Investor sentiment and the cross-section of stock returns: new theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 493-525, August.
    13. Mahmoudi, Nader & Docherty, Paul & Melia, Adrian, 2022. "Firm-level investor sentiment and corporate announcement returns," Journal of Banking & Finance, Elsevier, vol. 144(C).
    14. Eierle, Brigitte & Klamer, Sebastian & Muck, Matthias, 2022. "Does it really pay off for investors to consider information from social media?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    15. Mokni, Khaled & Bouteska, Ahmed & Nakhli, Mohamed Sahbi, 2022. "Investor sentiment and Bitcoin relationship: A quantile-based analysis," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    16. Huynh, Toan Luu Duc & Foglia, Matteo & Nasir, Muhammad Ali & Angelini, Eliana, 2021. "Feverish sentiment and global equity markets during the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 1088-1108.
    17. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Bonsu, Christiana Osei & Karikari, Nana Kwasi & Hammoudeh, Shawkat, 2022. "The effects of public sentiments and feelings on stock market behavior: Evidence from Australia," Journal of Economic Behavior & Organization, Elsevier, vol. 193(C), pages 443-472.
    18. Chue, Timothy K. & Gul, Ferdinand A. & Mian, G. Mujtaba, 2019. "Aggregate investor sentiment and stock return synchronicity," Journal of Banking & Finance, Elsevier, vol. 108(C).
    19. Yongqiang Meng & Dehua Shen & Xiong Xiong & Jorgen Vitting Andersen, 2020. "A Socio-Finance Model: The Case of Bitcoin," Documents de travail du Centre d'Economie de la Sorbonne 20031, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    20. Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).

    More about this item

    Keywords

    Bitcoin; Return; COVID-19; Sentiment; TRMI;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-023-00536-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг