lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0304807.html
   My bibliography  Save this article

Perceptions and detection of AI use in manuscript preparation for academic journals

Author

Listed:
  • Nir Chemaya
  • Daniel Martin
Abstract
The rapid advances in Generative AI tools have produced both excitement and worry about how AI will impact academic writing. However, little is known about what norms are emerging around AI use in manuscript preparation or how these norms might be enforced. We address both gaps in the literature by conducting a survey of 271 academics about whether it is necessary to report ChatGPT use in manuscript preparation and by running GPT-modified abstracts from 2,716 published papers through a leading AI detection software to see if these detectors can detect different AI uses in manuscript preparation. We find that most academics do not think that using ChatGPT to fix grammar needs to be reported, but detection software did not always draw this distinction, as abstracts for which GPT was used to fix grammar were often flagged as having a high chance of being written by AI. We also find disagreements among academics on whether more substantial use of ChatGPT to rewrite text needs to be reported, and these differences were related to perceptions of ethics, academic role, and English language background. Finally, we found little difference in their perceptions about reporting ChatGPT and research assistant help, but significant differences in reporting perceptions between these sources of assistance and paid proofreading and other AI assistant tools (Grammarly and Word). Our results suggest that there might be challenges in getting authors to report AI use in manuscript preparation because (i) there is not uniform agreement about what uses of AI should be reported and (ii) journals might have trouble enforcing nuanced reporting requirements using AI detection tools.

Suggested Citation

  • Nir Chemaya & Daniel Martin, 2024. "Perceptions and detection of AI use in manuscript preparation for academic journals," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-16, July.
  • Handle: RePEc:plo:pone00:0304807
    DOI: 10.1371/journal.pone.0304807
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304807
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0304807&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0304807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bjorkegren, Dan & Blumenstock, Joshua & Knight, Samsun, 2022. "(Machine) Learning What Policies Value," CEPR Discussion Papers 17364, C.E.P.R. Discussion Papers.
    2. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1, July.
    3. Harjit Singh & Avneet Singh, 2023. "ChatGPT: Systematic Review, Applications, and Agenda for Multidisciplinary Research," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(2), pages 193-212, April.
    4. Drew Fudenberg & Annie Liang, 2019. "Predicting and Understanding Initial Play," American Economic Review, American Economic Association, vol. 109(12), pages 4112-4141, December.
    5. Anja Lambrecht & Catherine Tucker, 2019. "Algorithmic Bias? An Empirical Study of Apparent Gender-Based Discrimination in the Display of STEM Career Ads," Management Science, INFORMS, vol. 65(7), pages 2966-2981, July.
    6. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," NBER Working Papers 31122, National Bureau of Economic Research, Inc.
    7. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    8. Chen-Fu Chien & Stéphane Dauzère-Pérès & Woonghee Tim Huh & Young Jae Jang & James R. Morrison, 2020. "Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and case studies," International Journal of Production Research, Taylor & Francis Journals, vol. 58(9), pages 2730-2731, May.
    9. Gary Charness & Brian Jabarian & John List, 2023. "Generation Next: Experimentation with AI," Artefactual Field Experiments 00777, The Field Experiments Website.
    10. David Dranove & Ginger Zhe Jin, 2010. "Quality Disclosure and Certification: Theory and Practice," Journal of Economic Literature, American Economic Association, vol. 48(4), pages 935-963, December.
    11. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    12. Ginger Zhe Jin & Michael Luca & Daniel Martin, 2021. "Is No News (Perceived As) Bad News? An Experimental Investigation of Information Disclosure," American Economic Journal: Microeconomics, American Economic Association, vol. 13(2), pages 141-173, May.
    13. Anton Korinek, 2023. "Language Models and Cognitive Automation for Economic Research," NBER Working Papers 30957, National Bureau of Economic Research, Inc.
    14. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," Papers 2301.07543, arXiv.org.
    15. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kayvan Kousha, 2024. "How is ChatGPT acknowledged in academic publications?," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(12), pages 7959-7969, December.
    2. Li, Munan & Wang, Liang, 2025. "Leveraging patent classification based on deep learning: The case study on smart cities and industrial Internet of Things," Journal of Informetrics, Elsevier, vol. 19(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Chopra & Ingar Haaland, 2023. "Conducting qualitative interviews with AI," CEBI working paper series 23-06, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
    2. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    3. Yongtong Shao & Tao Xiong & Minghao Li & Dermot Hayes & Wendong Zhang & Wei Xie, 2021. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1082-1098, May.
    4. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    5. Akash Malhotra, 2021. "A hybrid econometric–machine learning approach for relative importance analysis: prioritizing food policy," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 549-581, September.
    6. Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
    7. Tatiana de Macedo Nogueira Lima, 2022. "Documento de Trabalho 03/2022 - Aprendizado de máquina e antitruste," Documentos de Trabalho 2022030, Conselho Administrativo de Defesa Econômica (Cade), Departamento de Estudos Econômicos.
    8. Andres, Antonio Rodriguez & Otero, Abraham & Amavilah, Voxi Heinrich, 2021. "Using Deep Learning Neural Networks to Predict the Knowledge Economy Index for Developing and Emerging Economies," MPRA Paper 109137, University Library of Munich, Germany.
    9. Feras A. Batarseh & Munisamy Gopinath & Anderson Monken & Zhengrong Gu, 2021. "Public Policymaking for International Agricultural Trade using Association Rules and Ensemble Machine Learning," Papers 2111.07508, arXiv.org.
    10. Ay, Jean-Sauveur & Le Gallo, Julie, 2021. "The Signaling Values of Nested Wine Names," Working Papers 321851, American Association of Wine Economists.
    11. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    12. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.
    13. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    14. Blankenship, Brian & Aklin, Michaël & Urpelainen, Johannes & Nandan, Vagisha, 2022. "Jobs for a just transition: Evidence on coal job preferences from India," Energy Policy, Elsevier, vol. 165(C).
    15. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    16. Askitas, Nikos, 2024. "A Hands-on Machine Learning Primer for Social Scientists: Math, Algorithms and Code," IZA Discussion Papers 17014, Institute of Labor Economics (IZA).
    17. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    18. Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024. "Predicting dropout from higher education: Evidence from Italy," Economic Modelling, Elsevier, vol. 130(C).
    19. Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
    20. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0304807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг