lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hhs/oruesi/2022_002.html
   My bibliography  Save this paper

Trend Inflation in Sweden

Author

Listed:
Abstract
In this paper, we estimate trend inflation in Sweden using an unobserved components stochastic volatility model. Using data from 1995Q4 to 2021Q4 and Bayesian estimation methods, we find that trend inflation has been well-anchored during the period – although in general at a level below the inflation target – and it does not appear to have been affected much by the recent high inflation numbers.

Suggested Citation

  • Österholm, Pär & Poon, Aubrey, 2022. "Trend Inflation in Sweden," Working Papers 2022:2, Örebro University, School of Business.
  • Handle: RePEc:hhs:oruesi:2022_002
    as

    Download full text from publisher

    File URL: https://www.oru.se/globalassets/oru-sv/institutioner/hh/workingpapers/workingpapers2022/wp-2-2022.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Juan Angel Garcia & Aubrey Poon, 2022. "Inflation trends in Asia: implications for central banks [Are Phillips curves useful for forecasting inflation?]," Oxford Economic Papers, Oxford University Press, vol. 74(3), pages 671-700.
    2. Joshua C.C. Chan & Todd E. Clark & Gary Koop, 2018. "A New Model of Inflation, Trend Inflation, and Long‐Run Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(1), pages 5-53, February.
    3. Meredith Beechey & Pär Österholm, 2012. "The Rise and Fall of U.S. Inflation Persistence," International Journal of Central Banking, International Journal of Central Banking, vol. 8(3), pages 55-86, September.
    4. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    5. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    6. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
    7. Clark, Todd E. & Doh, Taeyoung, 2014. "Evaluating alternative models of trend inflation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 426-448.
    8. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    9. James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    10. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beechey, Meredith & Österholm, Pär & Poon, Aubrey, 2023. "Estimating the US trend short-term interest rate," Finance Research Letters, Elsevier, vol. 55(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behera, Harendra Kumar & Patra, Michael Debabrata, 2022. "Measuring trend inflation in India," Journal of Asian Economics, Elsevier, vol. 80(C).
    2. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    3. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    4. Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
    5. Lukmanova, Elizaveta & Rabitsch, Katrin, 2023. "Evidence on monetary transmission and the role of imperfect information: Interest rate versus inflation target shocks," European Economic Review, Elsevier, vol. 158(C).
    6. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    7. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    8. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    9. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    10. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    11. Bańbura, Marta & Leiva-León, Danilo & Menz, Jan-Oliver, 2021. "Do inflation expectations improve model-based inflation forecasts?," Discussion Papers 48/2021, Deutsche Bundesbank.
    12. Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
    13. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    14. Martínez-García Enrique, 2018. "Modeling time-variation over the business cycle (1960–2017): an international perspective," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-25, December.
    15. Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021. "Stochastic model specification in Markov switching vector error correction models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
    16. Fu, Bowen & Mendieta-Munoz, Ivan, 2025. "Trend inflation and structural shocks," EconStor Preprints 308793, ZBW - Leibniz Information Centre for Economics.
    17. Florian Huber & Daniel Kaufmann, 2020. "Trend Fundamentals and Exchange Rate Dynamics," Economica, London School of Economics and Political Science, vol. 87(348), pages 1016-1036, October.
    18. Juan Angel Garcia & Aubrey Poon, 2022. "Inflation trends in Asia: implications for central banks [Are Phillips curves useful for forecasting inflation?]," Oxford Economic Papers, Oxford University Press, vol. 74(3), pages 671-700.
    19. Benjamin K. Johannsen & Elmar Mertens, 2021. "A Time‐Series Model of Interest Rates with the Effective Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
    20. John O’Trakoun, 2023. "An alternative measure of core inflation: the Trimmed Persistence PCE price index," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 58(4), pages 205-223, October.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:oruesi:2022_002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ieoruse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг