lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ags/cfcp15/344354.html
   My bibliography  Save this paper

Navigating the Measurement Frontier: New Insights into Small Farm Realities

Author

Listed:
  • Michelson, Hope
Abstract
Measurement is not only a way of describing complex realities; it can also transform them by influencing policies and interventions. We are privileged to live in a thrilling era of measurement innovation: new and better methods to deploy, and new ways of adapting familiar and proven apparatus to new problems and contexts. This paper explores how new measurement strategies are providing fresh insights into the circumstances of small-farm household worldwide and describes challenges that these techniques have yet to overcome. Because the small farm sector plays a crucial role in global food security, global value chains and rural livelihoods, understanding its conditions and dynamics is a persistent focus of policymakers and researchers. I discuss how satellite-based assessments of crop yields, tree cover, temperature, and rainfall, laboratory measures of soil and agricultural input quality, GPS-based plot area calculations, labor activity trackers, and high- frequency household surveys conducted via cellular phones are providing improved understanding of fundamental dimensions of small farms and agrarian households. I identify important gaps in what is currently measured, discuss challenges related to implementing and interpreting new measures, and argue that new measurement strategies can be combined effectively with continued sustained investment for traditional “analog measures” – the household and farm surveys that remain fundamental for data collection in low-income countries.

Suggested Citation

  • Michelson, Hope, 2024. "Navigating the Measurement Frontier: New Insights into Small Farm Realities," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344354, International Association of Agricultural Economists (IAAE).
  • Handle: RePEc:ags:cfcp15:344354
    DOI: 10.22004/ag.econ.344354
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/344354/files/Michelson%20ICAE2024.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.344354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    2. Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang, Hai-Anh H. & Serajuddin, Umar, 2020. "Tracking the sustainable development goals: Emerging measurement challenges and further reflections," World Development, Elsevier, vol. 127(C).
    2. Dang, Hai-Anh H. & Verme, Paolo, 2019. "Estimating Poverty for Refugee Populations: Can Cross-Survey Imputation Methods Substitute for Data Scarcity?," GLO Discussion Paper Series 429, Global Labor Organization (GLO).
    3. Hai‐Anh H. Dang & Talip Kilic & Kseniya Abanokova & Calogero Carletto, 2025. "Poverty Imputation in Contexts Without Consumption Data: A Revisit With Further Refinements," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 71(1), February.
    4. Hai-Anh H. Dang & Peter F. Lanjouw, 2023. "Regression-based imputation for poverty measurement in data-scarce settings," Chapters, in: Jacques Silber (ed.), Research Handbook on Measuring Poverty and Deprivation, chapter 13, pages 141-150, Edward Elgar Publishing.
    5. Ibrahima Sarr & Hai-Anh H. Dang & Carlos Santiago Guzman Gutierrez & Theresa Beltramo & Paolo Verme, 2025. "Using Cross-Survey Imputation to Estimate Poverty for Venezuelan Refugees in Colombia," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 177(1), pages 207-251, March.
    6. Astrid Mathiassen & Bjørn K. Getz Wold, 2021. "Predicting poverty trends by survey-to-survey imputation: the challenge of comparability," Oxford Economic Papers, Oxford University Press, vol. 73(3), pages 1153-1174.
    7. Theresa Beltramo & Hai-Anh Dang & Ibrahima Sarr & Paolo Verme, 2024. "Estimating poverty among refugee populations: a cross-survey imputation exercise for Chad," Oxford Development Studies, Taylor & Francis Journals, vol. 52(1), pages 94-113, January.
    8. Dang, Hai-Anh H & Kilic, Talip & Hlasny, Vladimir & Abanokova, Kseniya & Carletto, Calogero, 2024. "Using Survey-to-Survey Imputation to Fill Poverty Data Gaps at a Low Cost: Evidence from a Randomized Survey Experiment," IZA Discussion Papers 16792, Institute of Labor Economics (IZA).
    9. Daniel Gerszon Mahler & Elizabeth Foster & Christoph Lakner & Zander Prinsloo & Rostand Tchouakam Mbouendeu & Samuel K. Tetteh-Baah, 2025. "Constructing Comparable Global Poverty Trends," Global Poverty Monitoring Technical Note Series 45, The World Bank.
    10. Hai‐Anh H. Dang, 2021. "To impute or not to impute, and how? A review of poverty‐estimation methods in the absence of consumption data," Development Policy Review, Overseas Development Institute, vol. 39(6), pages 1008-1030, November.
    11. Dang,Hai-Anh H., 2018. "To impute or not to impute ? a review of alternative poverty estimation methods in the context of unavailable consumption data," Policy Research Working Paper Series 8403, The World Bank.
    12. Hai-Anh H. Dang, 2019. "To impute or not to impute, and how? A review of alternative poverty estimation methods in the context of unavailable consumption data," Working Papers 507, ECINEQ, Society for the Study of Economic Inequality.
    13. Salvucci, Vincenzo & Tarp, Finn, 2024. "Crises, prices, and poverty – An analysis based on the Mozambican household budget surveys 1996/97–2019/20," Food Policy, Elsevier, vol. 125(C).
    14. Hai-Anh H. Dang & Paolo Verme, 2023. "Estimating poverty for refugees in data-scarce contexts: an application of cross-survey imputation," Journal of Population Economics, Springer;European Society for Population Economics, vol. 36(2), pages 653-679, April.
    15. Dang, Hai-Anh H & Lanjouw, Peter F., 2021. "Data Scarcity and Poverty Measurement," IZA Discussion Papers 14631, Institute of Labor Economics (IZA).
    16. Dang, Hai-Anh H & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," IZA Discussion Papers 14997, Institute of Labor Economics (IZA).
    17. Dang,Hai-Anh H. & Lanjouw,Peter F., 2020. "Welfare Dynamics in India over a Quarter Century : Poverty, Vulnerability, and Mobility during 1987-2012," Policy Research Working Paper Series 9231, The World Bank.
    18. Zaira Najam & John Gibson, 2021. "Does within-country poverty convergence depend on spatial spillovers and the type of poverty measure? Evidence from Pakistan," Working Papers in Economics 21/07, University of Waikato.
    19. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    20. Tchuisseu Seuyong, Feraud & Edochie, Ifeanyi Nzegwu & Newhouse, David & Silwal,Ani Rudra, 2024. "Who did Covid-19 hurt the most in Sub-Saharan Africa ?," Policy Research Working Paper Series 10726, The World Bank.

    More about this item

    Keywords

    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:cfcp15:344354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://iaae-agecon.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг