4 WUR - Wageningen University and Research [Wageningen] (Droevendaalsesteeg 4, 6708 PB Wageningen - Pays-Bas)
4 WUR - Wageningen University and Research [Wageningen] (Droevendaalsesteeg 4, 6708 PB Wageningen - Pays-Bas)
5 Department of Biochemistry, University of Johannesburg (Afrique du Sud) "> Department of Biochemistry, University of Johannesburg
6 Universiteit Utrecht / Utrecht University [Utrecht] (Heidelberglaan 8, 3584 CS Utrecht - Pays-Bas) "> Universiteit Utrecht / Utrecht University [Utrecht]
Résumé
Untargeted metabolomics can comprehensively map the chemical space of a biome, but is limited by low annotation rates (<10%). We used chemistry-based vectors, consisting of molecular fingerprints or chemical compound classes, predicted from mass spectrometry data, to characterize compounds and samples. These chemical characteristics vectors (CCVs) estimate the fraction of compounds with specific chemical properties in a sample. Unlike the aligned MS1 data with intensity information, CCVs incorporate actual chemical properties of compounds, offering deeper insights into sample comparisons. Thus, we identified key compound classes differentiating biomes, such as ethers which are enriched in environmental biomes, while steroids enriched in animal host-related biomes. In biomes with greater variability, CCVs revealed key clustering compound classes, such as organonitrogen compounds in animal distal gut and lipids in animal secretions. CCVs thus enhance the interpretation of untargeted metabolomic data, providing a quantifiable and generalizable understanding of the chemical space of natural biomes.
Domaines
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
licence |
daniel rios garza : Connectez-vous pour contacter le contributeur
https://hal.science/hal-04915064
Soumis le : lundi 27 janvier 2025-17:11:20
Dernière modification le : jeudi 6 février 2025-03:13:00
Dates et versions
Licence
- HAL Id : hal-04915064 , version 1
- BIORXIV : 2025.01.22.634253
- DOI : 10.1101/2025.01.22.634253