Pré-Publication, Document De Travail Année : 2025
Chemistry-based vectors map the chemical space of natural biomes from untargeted mass spectrometry data
1 Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany] (Universitätshauptgebäude, Fürstengraben 1, 07743 Jena - Allemagne)
"> Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany]
2 Université Paris-Saclay (Bâtiment Bréguet, 3 Rue Joliot Curie 2e ét, 91190 Gif-sur-Yvette - France)
"> Université Paris-Saclay
3 UR PROSE - Procédés biotechnologiques au service de l'environnement (1 rue Pierre-Gilles de Gennes CS 10030 92761 Antony Cedex - France)
"> UR PROSE - Procédés biotechnologiques au service de l'environnement
4 WUR - Wageningen University and Research [Wageningen] (Droevendaalsesteeg 4, 6708 PB Wageningen - Pays-Bas)
"> WUR - Wageningen University and Research [Wageningen]
5 Department of Biochemistry, University of Johannesburg (Afrique du Sud) "> Department of Biochemistry, University of Johannesburg
6 Universiteit Utrecht / Utrecht University [Utrecht] (Heidelberglaan 8, 3584 CS Utrecht - Pays-Bas) "> Universiteit Utrecht / Utrecht University [Utrecht]

Résumé

Untargeted metabolomics can comprehensively map the chemical space of a biome, but is limited by low annotation rates (<10%). We used chemistry-based vectors, consisting of molecular fingerprints or chemical compound classes, predicted from mass spectrometry data, to characterize compounds and samples. These chemical characteristics vectors (CCVs) estimate the fraction of compounds with specific chemical properties in a sample. Unlike the aligned MS1 data with intensity information, CCVs incorporate actual chemical properties of compounds, offering deeper insights into sample comparisons. Thus, we identified key compound classes differentiating biomes, such as ethers which are enriched in environmental biomes, while steroids enriched in animal host-related biomes. In biomes with greater variability, CCVs revealed key clustering compound classes, such as organonitrogen compounds in animal distal gut and lipids in animal secretions. CCVs thus enhance the interpretation of untargeted metabolomic data, providing a quantifiable and generalizable understanding of the chemical space of natural biomes.

Fichier principal
Vignette du fichier
2025.01.22.634253v1.full.pdf (1.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04915064 , version 1 (27-01-2025)

Licence

Identifiants

Citer

Pilleriin Peets, Aristeidis Litos, Kai Duehrkop, Daniel Rios Garza, Justin J.J. van der Hooft, et al.. Chemistry-based vectors map the chemical space of natural biomes from untargeted mass spectrometry data. 2025. ⟨hal-04915064⟩
82 Consultations
53 Téléchargements

Altmetric

Partager

  • More