import{s as vr,o as Ur,n as yo}from"../chunks/scheduler.8c3d61f6.js";import{S as Zr,i as jr,g as a,s as i,r as p,A as Ir,h as l,f as n,c as s,j as v,u as c,x as d,k as b,y as r,a as o,v as m,d as f,t as u,w as g}from"../chunks/index.da70eac4.js";import{T as Wa}from"../chunks/Tip.1d9b8c37.js";import{D as j}from"../chunks/Docstring.c021b19a.js";import{C as I}from"../chunks/CodeBlock.a9c4becf.js";import{E as Va}from"../chunks/ExampleCodeBlock.56b4589c.js";import{H as w,E as Cr}from"../chunks/getInferenceSnippets.725ed3d4.js";function Gr(A){let h,T="AnimateDiff tends to work better with finetuned Stable Diffusion models. If you plan on using a scheduler that can clip samples, make sure to disable it by setting clip_sample=False
in the scheduler as this can also have an adverse effect on generated samples. Additionally, the AnimateDiff checkpoints can be sensitive to the beta schedule of the scheduler. We recommend setting this to linear
.";return{c(){h=a("p"),h.innerHTML=T},l(y){h=l(y,"P",{"data-svelte-h":!0}),d(h)!=="svelte-vnv4xn"&&(h.innerHTML=T)},m(y,M){o(y,h,M)},p:yo,d(y){y&&n(h)}}}function Wr(A){let h,T="FreeInit is not really free - the improved quality comes at the cost of extra computation. It requires sampling a few extra times depending on the num_iters
parameter that is set when enabling it. Setting the use_fast_sampling
parameter to True
can improve the overall performance (at the cost of lower quality compared to when use_fast_sampling=False
but still better results than vanilla video generation models).";return{c(){h=a("p"),h.innerHTML=T},l(y){h=l(y,"P",{"data-svelte-h":!0}),d(h)!=="svelte-xxwpr5"&&(h.innerHTML=T)},m(y,M){o(y,h,M)},p:yo,d(y){y&&n(h)}}}function Vr(A){let h,T='Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.';return{c(){h=a("p"),h.innerHTML=T},l(y){h=l(y,"P",{"data-svelte-h":!0}),d(h)!=="svelte-1qn15hi"&&(h.innerHTML=T)},m(y,M){o(y,h,M)},p:yo,d(y){y&&n(h)}}}function xr(A){let h,T="Examples:",y,M,J;return M=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwTW90aW9uQWRhcHRlciUyQyUyMEFuaW1hdGVEaWZmUGlwZWxpbmUlMkMlMjBERElNU2NoZWR1bGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMEElMEFhZGFwdGVyJTIwJTNEJTIwTW90aW9uQWRhcHRlci5mcm9tX3ByZXRyYWluZWQoJTIyZ3VveXd3JTJGYW5pbWF0ZWRpZmYtbW90aW9uLWFkYXB0ZXItdjEtNS0yJTIyKSUwQXBpcGUlMjAlM0QlMjBBbmltYXRlRGlmZlBpcGVsaW5lLmZyb21fcHJldHJhaW5lZCglMjJmcmFua2pvc2h1YSUyRnRvb255b3VfYmV0YTYlMjIlMkMlMjBtb3Rpb25fYWRhcHRlciUzRGFkYXB0ZXIpJTBBcGlwZS5zY2hlZHVsZXIlMjAlM0QlMjBERElNU2NoZWR1bGVyKGJldGFfc2NoZWR1bGUlM0QlMjJsaW5lYXIlMjIlMkMlMjBzdGVwc19vZmZzZXQlM0QxJTJDJTIwY2xpcF9zYW1wbGUlM0RGYWxzZSklMEFvdXRwdXQlMjAlM0QlMjBwaXBlKHByb21wdCUzRCUyMkElMjBjb3JnaSUyMHdhbGtpbmclMjBpbiUyMHRoZSUyMHBhcmslMjIpJTBBZnJhbWVzJTIwJTNEJTIwb3V0cHV0LmZyYW1lcyU1QjAlNUQlMEFleHBvcnRfdG9fZ2lmKGZyYW1lcyUyQyUyMCUyMmFuaW1hdGlvbi5naWYlMjIp",highlighted:`import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter)
pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False)
output = pipe(prompt="A corgi walking in the park")
frames = output.frames[0]
export_to_gif(frames, "animation.gif")`,wrap:!1}}),{c(){h=a("p"),h.textContent=T,y=i(),p(M.$$.fragment)},l(_){h=l(_,"P",{"data-svelte-h":!0}),d(h)!=="svelte-kvfsh7"&&(h.textContent=T),y=s(_),c(M.$$.fragment,_)},m(_,Z){o(_,h,Z),o(_,y,Z),m(M,_,Z),J=!0},p:yo,i(_){J||(f(M.$$.fragment,_),J=!0)},o(_){u(M.$$.fragment,_),J=!1},d(_){_&&(n(h),n(y)),g(M,_)}}}function kr(A){let h,T="Examples:",y,M,J;return M=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZTcGFyc2VDb250cm9sTmV0UGlwZWxpbmUlMEFmcm9tJTIwZGlmZnVzZXJzLm1vZGVscyUyMGltcG9ydCUyMEF1dG9lbmNvZGVyS0wlMkMlMjBNb3Rpb25BZGFwdGVyJTJDJTIwU3BhcnNlQ29udHJvbE5ldE1vZGVsJTBBZnJvbSUyMGRpZmZ1c2Vycy5zY2hlZHVsZXJzJTIwaW1wb3J0JTIwRFBNU29sdmVyTXVsdGlzdGVwU2NoZWR1bGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMkMlMjBsb2FkX2ltYWdlJTBBJTBBbW9kZWxfaWQlMjAlM0QlMjAlMjJTRzE2MTIyMiUyRlJlYWxpc3RpY19WaXNpb25fVjUuMV9ub1ZBRSUyMiUwQW1vdGlvbl9hZGFwdGVyX2lkJTIwJTNEJTIwJTIyZ3VveXd3JTJGYW5pbWF0ZWRpZmYtbW90aW9uLWFkYXB0ZXItdjEtNS0zJTIyJTBBY29udHJvbG5ldF9pZCUyMCUzRCUyMCUyMmd1b3l3dyUyRmFuaW1hdGVkaWZmLXNwYXJzZWN0cmwtc2NyaWJibGUlMjIlMEFsb3JhX2FkYXB0ZXJfaWQlMjAlM0QlMjAlMjJndW95d3clMkZhbmltYXRlZGlmZi1tb3Rpb24tbG9yYS12MS01LTMlMjIlMEF2YWVfaWQlMjAlM0QlMjAlMjJzdGFiaWxpdHlhaSUyRnNkLXZhZS1mdC1tc2UlMjIlMEFkZXZpY2UlMjAlM0QlMjAlMjJjdWRhJTIyJTBBJTBBbW90aW9uX2FkYXB0ZXIlMjAlM0QlMjBNb3Rpb25BZGFwdGVyLmZyb21fcHJldHJhaW5lZChtb3Rpb25fYWRhcHRlcl9pZCUyQyUyMHRvcmNoX2R0eXBlJTNEdG9yY2guZmxvYXQxNikudG8oZGV2aWNlKSUwQWNvbnRyb2xuZXQlMjAlM0QlMjBTcGFyc2VDb250cm9sTmV0TW9kZWwuZnJvbV9wcmV0cmFpbmVkKGNvbnRyb2xuZXRfaWQlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpLnRvKGRldmljZSklMEF2YWUlMjAlM0QlMjBBdXRvZW5jb2RlcktMLmZyb21fcHJldHJhaW5lZCh2YWVfaWQlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpLnRvKGRldmljZSklMEFzY2hlZHVsZXIlMjAlM0QlMjBEUE1Tb2x2ZXJNdWx0aXN0ZXBTY2hlZHVsZXIuZnJvbV9wcmV0cmFpbmVkKCUwQSUyMCUyMCUyMCUyMG1vZGVsX2lkJTJDJTBBJTIwJTIwJTIwJTIwc3ViZm9sZGVyJTNEJTIyc2NoZWR1bGVyJTIyJTJDJTBBJTIwJTIwJTIwJTIwYmV0YV9zY2hlZHVsZSUzRCUyMmxpbmVhciUyMiUyQyUwQSUyMCUyMCUyMCUyMGFsZ29yaXRobV90eXBlJTNEJTIyZHBtc29sdmVyJTJCJTJCJTIyJTJDJTBBJTIwJTIwJTIwJTIwdXNlX2thcnJhc19zaWdtYXMlM0RUcnVlJTJDJTBBKSUwQXBpcGUlMjAlM0QlMjBBbmltYXRlRGlmZlNwYXJzZUNvbnRyb2xOZXRQaXBlbGluZS5mcm9tX3ByZXRyYWluZWQoJTBBJTIwJTIwJTIwJTIwbW9kZWxfaWQlMkMlMEElMjAlMjAlMjAlMjBtb3Rpb25fYWRhcHRlciUzRG1vdGlvbl9hZGFwdGVyJTJDJTBBJTIwJTIwJTIwJTIwY29udHJvbG5ldCUzRGNvbnRyb2xuZXQlMkMlMEElMjAlMjAlMjAlMjB2YWUlM0R2YWUlMkMlMEElMjAlMjAlMjAlMjBzY2hlZHVsZXIlM0RzY2hlZHVsZXIlMkMlMEElMjAlMjAlMjAlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYlMkMlMEEpLnRvKGRldmljZSklMEFwaXBlLmxvYWRfbG9yYV93ZWlnaHRzKGxvcmFfYWRhcHRlcl9pZCUyQyUyMGFkYXB0ZXJfbmFtZSUzRCUyMm1vdGlvbl9sb3JhJTIyKSUwQXBpcGUuZnVzZV9sb3JhKGxvcmFfc2NhbGUlM0QxLjApJTBBJTBBcHJvbXB0JTIwJTNEJTIwJTIyYW4lMjBhZXJpYWwlMjB2aWV3JTIwb2YlMjBhJTIwY3liZXJwdW5rJTIwY2l0eSUyQyUyMG5pZ2h0JTIwdGltZSUyQyUyMG5lb24lMjBsaWdodHMlMkMlMjBtYXN0ZXJwaWVjZSUyQyUyMGhpZ2glMjBxdWFsaXR5JTIyJTBBbmVnYXRpdmVfcHJvbXB0JTIwJTNEJTIwJTIybG93JTIwcXVhbGl0eSUyQyUyMHdvcnN0JTIwcXVhbGl0eSUyQyUyMGxldHRlcmJveGVkJTIyJTBBJTBBaW1hZ2VfZmlsZXMlMjAlM0QlMjAlNUIlMEElMjAlMjAlMjAlMjAlMjJodHRwcyUzQSUyRiUyRmh1Z2dpbmdmYWNlLmNvJTJGZGF0YXNldHMlMkZodWdnaW5nZmFjZSUyRmRvY3VtZW50YXRpb24taW1hZ2VzJTJGcmVzb2x2ZSUyRm1haW4lMkZkaWZmdXNlcnMlMkZhbmltYXRlZGlmZi1zY3JpYmJsZS0xLnBuZyUyMiUyQyUwQSUyMCUyMCUyMCUyMCUyMmh0dHBzJTNBJTJGJTJGaHVnZ2luZ2ZhY2UuY28lMkZkYXRhc2V0cyUyRmh1Z2dpbmdmYWNlJTJGZG9jdW1lbnRhdGlvbi1pbWFnZXMlMkZyZXNvbHZlJTJGbWFpbiUyRmRpZmZ1c2VycyUyRmFuaW1hdGVkaWZmLXNjcmliYmxlLTIucG5nJTIyJTJDJTBBJTIwJTIwJTIwJTIwJTIyaHR0cHMlM0ElMkYlMkZodWdnaW5nZmFjZS5jbyUyRmRhdGFzZXRzJTJGaHVnZ2luZ2ZhY2UlMkZkb2N1bWVudGF0aW9uLWltYWdlcyUyRnJlc29sdmUlMkZtYWluJTJGZGlmZnVzZXJzJTJGYW5pbWF0ZWRpZmYtc2NyaWJibGUtMy5wbmclMjIlMkMlMEElNUQlMEFjb25kaXRpb25fZnJhbWVfaW5kaWNlcyUyMCUzRCUyMCU1QjAlMkMlMjA4JTJDJTIwMTUlNUQlMEFjb25kaXRpb25pbmdfZnJhbWVzJTIwJTNEJTIwJTVCbG9hZF9pbWFnZShpbWdfZmlsZSklMjBmb3IlMjBpbWdfZmlsZSUyMGluJTIwaW1hZ2VfZmlsZXMlNUQlMEElMEF2aWRlbyUyMCUzRCUyMHBpcGUoJTBBJTIwJTIwJTIwJTIwcHJvbXB0JTNEcHJvbXB0JTJDJTBBJTIwJTIwJTIwJTIwbmVnYXRpdmVfcHJvbXB0JTNEbmVnYXRpdmVfcHJvbXB0JTJDJTBBJTIwJTIwJTIwJTIwbnVtX2luZmVyZW5jZV9zdGVwcyUzRDI1JTJDJTBBJTIwJTIwJTIwJTIwY29uZGl0aW9uaW5nX2ZyYW1lcyUzRGNvbmRpdGlvbmluZ19mcmFtZXMlMkMlMEElMjAlMjAlMjAlMjBjb250cm9sbmV0X2NvbmRpdGlvbmluZ19zY2FsZSUzRDEuMCUyQyUwQSUyMCUyMCUyMCUyMGNvbnRyb2xuZXRfZnJhbWVfaW5kaWNlcyUzRGNvbmRpdGlvbl9mcmFtZV9pbmRpY2VzJTJDJTBBJTIwJTIwJTIwJTIwZ2VuZXJhdG9yJTNEdG9yY2guR2VuZXJhdG9yKCkubWFudWFsX3NlZWQoMTMzNyklMkMlMEEpLmZyYW1lcyU1QjAlNUQlMEFleHBvcnRfdG9fZ2lmKHZpZGVvJTJDJTIwJTIyb3V0cHV0LmdpZiUyMik=",highlighted:`import torch
from diffusers import AnimateDiffSparseControlNetPipeline
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif, load_image
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
controlnet_id = "guoyww/animatediff-sparsectrl-scribble"
lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
vae_id = "stabilityai/sd-vae-ft-mse"
device = "cuda"
motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)
controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
scheduler = DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
beta_schedule="linear",
algorithm_type="dpmsolver++",
use_karras_sigmas=True,
)
pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
model_id,
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
scheduler=scheduler,
torch_dtype=torch.float16,
).to(device)
pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
pipe.fuse_lora(lora_scale=1.0)
prompt = "an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"
negative_prompt = "low quality, worst quality, letterboxed"
image_files = [
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png",
]
condition_frame_indices = [0, 8, 15]
conditioning_frames = [load_image(img_file) for img_file in image_files]
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
conditioning_frames=conditioning_frames,
controlnet_conditioning_scale=1.0,
controlnet_frame_indices=condition_frame_indices,
generator=torch.Generator().manual_seed(1337),
).frames[0]
export_to_gif(video, "output.gif")`,wrap:!1}}),{c(){h=a("p"),h.textContent=T,y=i(),p(M.$$.fragment)},l(_){h=l(_,"P",{"data-svelte-h":!0}),d(h)!=="svelte-kvfsh7"&&(h.textContent=T),y=s(_),c(M.$$.fragment,_)},m(_,Z){o(_,h,Z),o(_,y,Z),m(M,_,Z),J=!0},p:yo,i(_){J||(f(M.$$.fragment,_),J=!0)},o(_){u(M.$$.fragment,_),J=!1},d(_){_&&(n(h),n(y)),g(M,_)}}}function Br(A){let h,T="Examples:",y,M,J;return M=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzLm1vZGVscyUyMGltcG9ydCUyME1vdGlvbkFkYXB0ZXIlMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZTRFhMUGlwZWxpbmUlMkMlMjBERElNU2NoZWR1bGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMEElMEFhZGFwdGVyJTIwJTNEJTIwTW90aW9uQWRhcHRlci5mcm9tX3ByZXRyYWluZWQoJTBBJTIwJTIwJTIwJTIwJTIyYS1yLXItby13JTJGYW5pbWF0ZWRpZmYtbW90aW9uLWFkYXB0ZXItc2R4bC1iZXRhJTIyJTJDJTIwdG9yY2hfZHR5cGUlM0R0b3JjaC5mbG9hdDE2JTBBKSUwQSUwQW1vZGVsX2lkJTIwJTNEJTIwJTIyc3RhYmlsaXR5YWklMkZzdGFibGUtZGlmZnVzaW9uLXhsLWJhc2UtMS4wJTIyJTBBc2NoZWR1bGVyJTIwJTNEJTIwRERJTVNjaGVkdWxlci5mcm9tX3ByZXRyYWluZWQoJTBBJTIwJTIwJTIwJTIwbW9kZWxfaWQlMkMlMEElMjAlMjAlMjAlMjBzdWJmb2xkZXIlM0QlMjJzY2hlZHVsZXIlMjIlMkMlMEElMjAlMjAlMjAlMjBjbGlwX3NhbXBsZSUzREZhbHNlJTJDJTBBJTIwJTIwJTIwJTIwdGltZXN0ZXBfc3BhY2luZyUzRCUyMmxpbnNwYWNlJTIyJTJDJTBBJTIwJTIwJTIwJTIwYmV0YV9zY2hlZHVsZSUzRCUyMmxpbmVhciUyMiUyQyUwQSUyMCUyMCUyMCUyMHN0ZXBzX29mZnNldCUzRDElMkMlMEEpJTBBcGlwZSUyMCUzRCUyMEFuaW1hdGVEaWZmU0RYTFBpcGVsaW5lLmZyb21fcHJldHJhaW5lZCglMEElMjAlMjAlMjAlMjBtb2RlbF9pZCUyQyUwQSUyMCUyMCUyMCUyMG1vdGlvbl9hZGFwdGVyJTNEYWRhcHRlciUyQyUwQSUyMCUyMCUyMCUyMHNjaGVkdWxlciUzRHNjaGVkdWxlciUyQyUwQSUyMCUyMCUyMCUyMHRvcmNoX2R0eXBlJTNEdG9yY2guZmxvYXQxNiUyQyUwQSUyMCUyMCUyMCUyMHZhcmlhbnQlM0QlMjJmcDE2JTIyJTJDJTBBKS50byglMjJjdWRhJTIyKSUwQSUwQSUyMyUyMGVuYWJsZSUyMG1lbW9yeSUyMHNhdmluZ3MlMEFwaXBlLmVuYWJsZV92YWVfc2xpY2luZygpJTBBcGlwZS5lbmFibGVfdmFlX3RpbGluZygpJTBBJTBBb3V0cHV0JTIwJTNEJTIwcGlwZSglMEElMjAlMjAlMjAlMjBwcm9tcHQlM0QlMjJhJTIwcGFuZGElMjBzdXJmaW5nJTIwaW4lMjB0aGUlMjBvY2VhbiUyQyUyMHJlYWxpc3RpYyUyQyUyMGhpZ2glMjBxdWFsaXR5JTIyJTJDJTBBJTIwJTIwJTIwJTIwbmVnYXRpdmVfcHJvbXB0JTNEJTIybG93JTIwcXVhbGl0eSUyQyUyMHdvcnN0JTIwcXVhbGl0eSUyMiUyQyUwQSUyMCUyMCUyMCUyMG51bV9pbmZlcmVuY2Vfc3RlcHMlM0QyMCUyQyUwQSUyMCUyMCUyMCUyMGd1aWRhbmNlX3NjYWxlJTNEOCUyQyUwQSUyMCUyMCUyMCUyMHdpZHRoJTNEMTAyNCUyQyUwQSUyMCUyMCUyMCUyMGhlaWdodCUzRDEwMjQlMkMlMEElMjAlMjAlMjAlMjBudW1fZnJhbWVzJTNEMTYlMkMlMEEpJTBBJTBBZnJhbWVzJTIwJTNEJTIwb3V0cHV0LmZyYW1lcyU1QjAlNUQlMEFleHBvcnRfdG9fZ2lmKGZyYW1lcyUyQyUyMCUyMmFuaW1hdGlvbi5naWYlMjIp",highlighted:`import torch
from diffusers.models import MotionAdapter
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained(
"a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16
)
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe = AnimateDiffSDXLPipeline.from_pretrained(
model_id,
motion_adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
output = pipe(
prompt="a panda surfing in the ocean, realistic, high quality",
negative_prompt="low quality, worst quality",
num_inference_steps=20,
guidance_scale=8,
width=1024,
height=1024,
num_frames=16,
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")`,wrap:!1}}),{c(){h=a("p"),h.textContent=T,y=i(),p(M.$$.fragment)},l(_){h=l(_,"P",{"data-svelte-h":!0}),d(h)!=="svelte-kvfsh7"&&(h.textContent=T),y=s(_),c(M.$$.fragment,_)},m(_,Z){o(_,h,Z),o(_,y,Z),m(M,_,Z),J=!0},p:yo,i(_){J||(f(M.$$.fragment,_),J=!0)},o(_){u(M.$$.fragment,_),J=!1},d(_){_&&(n(h),n(y)),g(M,_)}}}function Nr(A){let h,T,y,M,J,_,Z,xa='',bo,fe,wo,ue,ka='AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning by Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai.',To,ge,Ba="The abstract of the paper is the following:",Jo,he,Na='With the advance of text-to-image models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. Subsequently, there is a great demand for image animation techniques to further combine generated static images with motion dynamics. In this report, we propose a practical framework to animate most of the existing personalized text-to-image models once and for all, saving efforts in model-specific tuning. At the core of the proposed framework is to insert a newly initialized motion modeling module into the frozen text-to-image model and train it on video clips to distill reasonable motion priors. Once trained, by simply injecting this motion modeling module, all personalized versions derived from the same base T2I readily become text-driven models that produce diverse and personalized animated images. We conduct our evaluation on several public representative personalized text-to-image models across anime pictures and realistic photographs, and demonstrate that our proposed framework helps these models generate temporally smooth animation clips while preserving the domain and diversity of their outputs. Code and pre-trained weights will be publicly available at this https URL.',vo,_e,Uo,ye,Aa='
Pipeline Tasks Demo
guoyww/animatediff-motion-adapter-v1-5-2
checkpoint. These LoRAs are responsible for adding specific types of motion to the animations.",yi,rt,Mi,dt,fl=`prompt_interpolation_callback
parameter when enabling FreeNoise.",$i,Dt,Vl="Full example:",qi,Rt,Ki,Xt,Oi,St,xl="Since FreeNoise processes multiple frames together, there are parts in the modeling where the memory required exceeds that available on normal consumer GPUs. The main memory bottlenecks that we identified are spatial and temporal attention blocks, upsampling and downsampling blocks, resnet blocks and feed-forward layers. Since most of these blocks operate effectively only on the channel/embedding dimension, one can perform chunked inference across the batch dimensions. The batch dimension in AnimateDiff are either spatial ([B x F, H x W, C]
) or temporal (B x H x W, F, C
) in nature (note that it may seem counter-intuitive, but the batch dimension here are correct, because spatial blocks process across the B x F
dimension while the temporal blocks process across the B x H x W
dimension). We introduce a SplitInferenceModule
that makes it easier to chunk across any dimension and perform inference. This saves a lot of memory but comes at the cost of requiring more time for inference.",es,Lt,ts,Yt,kl="The call to pipe.enable_free_noise_split_inference
method accepts two parameters: spatial_split_size
(defaults to 256
) and temporal_split_size
(defaults to 16
). These can be configured based on how much VRAM you have available. A lower split size results in lower memory usage but slower inference, whereas a larger split size results in faster inference at the cost of more memory.",ns,Et,os,Qt,Bl="diffusers>=0.30.0
supports loading the AnimateDiff checkpoints into the MotionAdapter
in their original format via from_single_file
",is,Pt,ss,Ft,as,C,Ht,js,vn,Nl="Pipeline for text-to-video generation.",Is,Un,Al=`This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).`,Cs,Zn,Dl="The pipeline also inherits the following loading methods:",Gs,jn,Rl='.ckpt
filesnum_frames.
It can also be a NumPy array or Torch tensor of shape
(batch_size, num_frames, channels, height, width)
`,Ms,wn,bs,Mo,ws;return J=new w({props:{title:"Text-to-Video Generation with AnimateDiff",local:"text-to-video-generation-with-animatediff",headingTag:"h1"}}),fe=new w({props:{title:"Overview",local:"overview",headingTag:"h2"}}),_e=new w({props:{title:"Available Pipelines",local:"available-pipelines",headingTag:"h2"}}),Me=new w({props:{title:"Available checkpoints",local:"available-checkpoints",headingTag:"h2"}}),we=new w({props:{title:"Usage example",local:"usage-example",headingTag:"h2"}}),Te=new w({props:{title:"AnimateDiffPipeline",local:"animatediffpipeline",headingTag:"h3"}}),Ue=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZQaXBlbGluZSUyQyUyMERESU1TY2hlZHVsZXIlMkMlMjBNb3Rpb25BZGFwdGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMEElMEElMjMlMjBMb2FkJTIwdGhlJTIwbW90aW9uJTIwYWRhcHRlciUwQWFkYXB0ZXIlMjAlM0QlMjBNb3Rpb25BZGFwdGVyLmZyb21fcHJldHJhaW5lZCglMjJndW95d3clMkZhbmltYXRlZGlmZi1tb3Rpb24tYWRhcHRlci12MS01LTIlMjIlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpJTBBJTIzJTIwbG9hZCUyMFNEJTIwMS41JTIwYmFzZWQlMjBmaW5ldHVuZWQlMjBtb2RlbCUwQW1vZGVsX2lkJTIwJTNEJTIwJTIyU0cxNjEyMjIlMkZSZWFsaXN0aWNfVmlzaW9uX1Y1LjFfbm9WQUUlMjIlMEFwaXBlJTIwJTNEJTIwQW5pbWF0ZURpZmZQaXBlbGluZS5mcm9tX3ByZXRyYWluZWQobW9kZWxfaWQlMkMlMjBtb3Rpb25fYWRhcHRlciUzRGFkYXB0ZXIlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpJTBBc2NoZWR1bGVyJTIwJTNEJTIwRERJTVNjaGVkdWxlci5mcm9tX3ByZXRyYWluZWQoJTBBJTIwJTIwJTIwJTIwbW9kZWxfaWQlMkMlMEElMjAlMjAlMjAlMjBzdWJmb2xkZXIlM0QlMjJzY2hlZHVsZXIlMjIlMkMlMEElMjAlMjAlMjAlMjBjbGlwX3NhbXBsZSUzREZhbHNlJTJDJTBBJTIwJTIwJTIwJTIwdGltZXN0ZXBfc3BhY2luZyUzRCUyMmxpbnNwYWNlJTIyJTJDJTBBJTIwJTIwJTIwJTIwYmV0YV9zY2hlZHVsZSUzRCUyMmxpbmVhciUyMiUyQyUwQSUyMCUyMCUyMCUyMHN0ZXBzX29mZnNldCUzRDElMkMlMEEpJTBBcGlwZS5zY2hlZHVsZXIlMjAlM0QlMjBzY2hlZHVsZXIlMEElMEElMjMlMjBlbmFibGUlMjBtZW1vcnklMjBzYXZpbmdzJTBBcGlwZS5lbmFibGVfdmFlX3NsaWNpbmcoKSUwQXBpcGUuZW5hYmxlX21vZGVsX2NwdV9vZmZsb2FkKCklMEElMEFvdXRwdXQlMjAlM0QlMjBwaXBlKCUwQSUyMCUyMCUyMCUyMHByb21wdCUzRCglMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjJtYXN0ZXJwaWVjZSUyQyUyMGJlc3RxdWFsaXR5JTJDJTIwaGlnaGx5ZGV0YWlsZWQlMkMlMjB1bHRyYWRldGFpbGVkJTJDJTIwc3Vuc2V0JTJDJTIwJTIyJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIyb3JhbmdlJTIwc2t5JTJDJTIwd2FybSUyMGxpZ2h0aW5nJTJDJTIwZmlzaGluZyUyMGJvYXRzJTJDJTIwb2NlYW4lMjB3YXZlcyUyMHNlYWd1bGxzJTJDJTIwJTIyJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIycmlwcGxpbmclMjB3YXRlciUyQyUyMHdoYXJmJTJDJTIwc2lsaG91ZXR0ZSUyQyUyMHNlcmVuZSUyMGF0bW9zcGhlcmUlMkMlMjBkdXNrJTJDJTIwZXZlbmluZyUyMGdsb3clMkMlMjAlMjIlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjJnb2xkZW4lMjBob3VyJTJDJTIwY29hc3RhbCUyMGxhbmRzY2FwZSUyQyUyMHNlYXNpZGUlMjBzY2VuZXJ5JTIyJTBBJTIwJTIwJTIwJTIwKSUyQyUwQSUyMCUyMCUyMCUyMG5lZ2F0aXZlX3Byb21wdCUzRCUyMmJhZCUyMHF1YWxpdHklMkMlMjB3b3JzZSUyMHF1YWxpdHklMjIlMkMlMEElMjAlMjAlMjAlMjBudW1fZnJhbWVzJTNEMTYlMkMlMEElMjAlMjAlMjAlMjBndWlkYW5jZV9zY2FsZSUzRDcuNSUyQyUwQSUyMCUyMCUyMCUyMG51bV9pbmZlcmVuY2Vfc3RlcHMlM0QyNSUyQyUwQSUyMCUyMCUyMCUyMGdlbmVyYXRvciUzRHRvcmNoLkdlbmVyYXRvciglMjJjcHUlMjIpLm1hbnVhbF9zZWVkKDQyKSUyQyUwQSklMEFmcmFtZXMlMjAlM0QlMjBvdXRwdXQuZnJhbWVzJTVCMCU1RCUwQWV4cG9ydF90b19naWYoZnJhbWVzJTJDJTIwJTIyYW5pbWF0aW9uLmdpZiUyMik=",highlighted:`import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")`,wrap:!1}}),$=new Wa({props:{$$slots:{default:[Gr]},$$scope:{ctx:A}}}),Ie=new w({props:{title:"AnimateDiffControlNetPipeline",local:"animatediffcontrolnetpipeline",headingTag:"h3"}}),Ge=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZDb250cm9sTmV0UGlwZWxpbmUlMkMlMjBBdXRvZW5jb2RlcktMJTJDJTIwQ29udHJvbE5ldE1vZGVsJTJDJTIwTW90aW9uQWRhcHRlciUyQyUyMExDTVNjaGVkdWxlciUwQWZyb20lMjBkaWZmdXNlcnMudXRpbHMlMjBpbXBvcnQlMjBleHBvcnRfdG9fZ2lmJTJDJTIwbG9hZF92aWRlbyUwQSUwQSUyMyUyMEFkZGl0aW9uYWxseSUyQyUyMHlvdSUyMHdpbGwlMjBuZWVkJTIwYSUyMHByZXByb2Nlc3MlMjB2aWRlb3MlMjBiZWZvcmUlMjB0aGV5JTIwY2FuJTIwYmUlMjB1c2VkJTIwd2l0aCUyMHRoZSUyMENvbnRyb2xOZXQlMEElMjMlMjBIRiUyMG1haW50YWlucyUyMGp1c3QlMjB0aGUlMjByaWdodCUyMHBhY2thZ2UlMjBmb3IlMjBpdCUzQSUyMCU2MHBpcCUyMGluc3RhbGwlMjBjb250cm9sbmV0X2F1eCU2MCUwQWZyb20lMjBjb250cm9sbmV0X2F1eC5wcm9jZXNzb3IlMjBpbXBvcnQlMjBab2VEZXRlY3RvciUwQSUwQSUyMyUyMERvd25sb2FkJTIwY29udHJvbG5ldHMlMjBmcm9tJTIwaHR0cHMlM0ElMkYlMkZodWdnaW5nZmFjZS5jbyUyRmxsbHlhc3ZpZWwlMkZDb250cm9sTmV0LXYxLTElMjB0byUyMHVzZSUyMC5mcm9tX3NpbmdsZV9maWxlJTBBJTIzJTIwRG93bmxvYWQlMjBEaWZmdXNlcnMtZm9ybWF0JTIwY29udHJvbG5ldHMlMkMlMjBzdWNoJTIwYXMlMjBodHRwcyUzQSUyRiUyRmh1Z2dpbmdmYWNlLmNvJTJGbGxseWFzdmllbCUyRnNkLWNvbnRyb2xuZXQtZGVwdGglMkMlMjB0byUyMHVzZSUyMC5mcm9tX3ByZXRyYWluZWQoKSUwQWNvbnRyb2xuZXQlMjAlM0QlMjBDb250cm9sTmV0TW9kZWwuZnJvbV9zaW5nbGVfZmlsZSglMjJjb250cm9sX3YxMWYxcF9zZDE1X2RlcHRoLnB0aCUyMiUyQyUyMHRvcmNoX2R0eXBlJTNEdG9yY2guZmxvYXQxNiklMEElMEElMjMlMjBXZSUyMHVzZSUyMEFuaW1hdGVMQ00lMjBmb3IlMjB0aGlzJTIwZXhhbXBsZSUyMGJ1dCUyMG9uZSUyMGNhbiUyMHVzZSUyMHRoZSUyMG9yaWdpbmFsJTIwbW90aW9uJTIwYWRhcHRlcnMlMjBhcyUyMHdlbGwlMjAoZm9yJTIwZXhhbXBsZSUyQyUyMGh0dHBzJTNBJTJGJTJGaHVnZ2luZ2ZhY2UuY28lMkZndW95d3clMkZhbmltYXRlZGlmZi1tb3Rpb24tYWRhcHRlci12MS01LTMpJTBBbW90aW9uX2FkYXB0ZXIlMjAlM0QlMjBNb3Rpb25BZGFwdGVyLmZyb21fcHJldHJhaW5lZCglMjJ3YW5nZnV5dW4lMkZBbmltYXRlTENNJTIyKSUwQSUwQXZhZSUyMCUzRCUyMEF1dG9lbmNvZGVyS0wuZnJvbV9wcmV0cmFpbmVkKCUyMnN0YWJpbGl0eWFpJTJGc2QtdmFlLWZ0LW1zZSUyMiUyQyUyMHRvcmNoX2R0eXBlJTNEdG9yY2guZmxvYXQxNiklMEFwaXBlJTNBJTIwQW5pbWF0ZURpZmZDb250cm9sTmV0UGlwZWxpbmUlMjAlM0QlMjBBbmltYXRlRGlmZkNvbnRyb2xOZXRQaXBlbGluZS5mcm9tX3ByZXRyYWluZWQoJTBBJTIwJTIwJTIwJTIwJTIyU0cxNjEyMjIlMkZSZWFsaXN0aWNfVmlzaW9uX1Y1LjFfbm9WQUUlMjIlMkMlMEElMjAlMjAlMjAlMjBtb3Rpb25fYWRhcHRlciUzRG1vdGlvbl9hZGFwdGVyJTJDJTBBJTIwJTIwJTIwJTIwY29udHJvbG5ldCUzRGNvbnRyb2xuZXQlMkMlMEElMjAlMjAlMjAlMjB2YWUlM0R2YWUlMkMlMEEpLnRvKGRldmljZSUzRCUyMmN1ZGElMjIlMkMlMjBkdHlwZSUzRHRvcmNoLmZsb2F0MTYpJTBBcGlwZS5zY2hlZHVsZXIlMjAlM0QlMjBMQ01TY2hlZHVsZXIuZnJvbV9jb25maWcocGlwZS5zY2hlZHVsZXIuY29uZmlnJTJDJTIwYmV0YV9zY2hlZHVsZSUzRCUyMmxpbmVhciUyMiklMEFwaXBlLmxvYWRfbG9yYV93ZWlnaHRzKCUyMndhbmdmdXl1biUyRkFuaW1hdGVMQ00lMjIlMkMlMjB3ZWlnaHRfbmFtZSUzRCUyMkFuaW1hdGVMQ01fc2QxNV90MnZfbG9yYS5zYWZldGVuc29ycyUyMiUyQyUyMGFkYXB0ZXJfbmFtZSUzRCUyMmxjbS1sb3JhJTIyKSUwQXBpcGUuc2V0X2FkYXB0ZXJzKCU1QiUyMmxjbS1sb3JhJTIyJTVEJTJDJTIwJTVCMC44JTVEKSUwQSUwQWRlcHRoX2RldGVjdG9yJTIwJTNEJTIwWm9lRGV0ZWN0b3IuZnJvbV9wcmV0cmFpbmVkKCUyMmxsbHlhc3ZpZWwlMkZBbm5vdGF0b3JzJTIyKS50byglMjJjdWRhJTIyKSUwQXZpZGVvJTIwJTNEJTIwbG9hZF92aWRlbyglMjJodHRwcyUzQSUyRiUyRmh1Z2dpbmdmYWNlLmNvJTJGZGF0YXNldHMlMkZodWdnaW5nZmFjZSUyRmRvY3VtZW50YXRpb24taW1hZ2VzJTJGcmVzb2x2ZSUyRm1haW4lMkZkaWZmdXNlcnMlMkZhbmltYXRlZGlmZi12aWQydmlkLWlucHV0LTEuZ2lmJTIyKSUwQWNvbmRpdGlvbmluZ19mcmFtZXMlMjAlM0QlMjAlNUIlNUQlMEElMEF3aXRoJTIwcGlwZS5wcm9ncmVzc19iYXIodG90YWwlM0RsZW4odmlkZW8pKSUyMGFzJTIwcHJvZ3Jlc3NfYmFyJTNBJTBBJTIwJTIwJTIwJTIwZm9yJTIwZnJhbWUlMjBpbiUyMHZpZGVvJTNBJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwY29uZGl0aW9uaW5nX2ZyYW1lcy5hcHBlbmQoZGVwdGhfZGV0ZWN0b3IoZnJhbWUpKSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMHByb2dyZXNzX2Jhci51cGRhdGUoKSUwQSUwQXByb21wdCUyMCUzRCUyMCUyMmElMjBwYW5kYSUyQyUyMHBsYXlpbmclMjBhJTIwZ3VpdGFyJTJDJTIwc2l0dGluZyUyMGluJTIwYSUyMHBpbmslMjBib2F0JTJDJTIwaW4lMjB0aGUlMjBvY2VhbiUyQyUyMG1vdW50YWlucyUyMGluJTIwYmFja2dyb3VuZCUyQyUyMHJlYWxpc3RpYyUyQyUyMGhpZ2glMjBxdWFsaXR5JTIyJTBBbmVnYXRpdmVfcHJvbXB0JTIwJTNEJTIwJTIyYmFkJTIwcXVhbGl0eSUyQyUyMHdvcnN0JTIwcXVhbGl0eSUyMiUwQSUwQXZpZGVvJTIwJTNEJTIwcGlwZSglMEElMjAlMjAlMjAlMjBwcm9tcHQlM0Rwcm9tcHQlMkMlMEElMjAlMjAlMjAlMjBuZWdhdGl2ZV9wcm9tcHQlM0RuZWdhdGl2ZV9wcm9tcHQlMkMlMEElMjAlMjAlMjAlMjBudW1fZnJhbWVzJTNEbGVuKHZpZGVvKSUyQyUwQSUyMCUyMCUyMCUyMG51bV9pbmZlcmVuY2Vfc3RlcHMlM0QxMCUyQyUwQSUyMCUyMCUyMCUyMGd1aWRhbmNlX3NjYWxlJTNEMi4wJTJDJTBBJTIwJTIwJTIwJTIwY29uZGl0aW9uaW5nX2ZyYW1lcyUzRGNvbmRpdGlvbmluZ19mcmFtZXMlMkMlMEElMjAlMjAlMjAlMjBnZW5lcmF0b3IlM0R0b3JjaC5HZW5lcmF0b3IoKS5tYW51YWxfc2VlZCg0MiklMkMlMEEpLmZyYW1lcyU1QjAlNUQlMEElMEFleHBvcnRfdG9fZ2lmKHZpZGVvJTJDJTIwJTIyYW5pbWF0ZWRpZmZfY29udHJvbG5ldC5naWYlMjIlMkMlMjBmcHMlM0Q4KQ==",highlighted:`import torch
from diffusers import AnimateDiffControlNetPipeline, AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler
from diffusers.utils import export_to_gif, load_video
# Additionally, you will need a preprocess videos before they can be used with the ControlNet
# HF maintains just the right package for it: \`pip install controlnet_aux\`
from controlnet_aux.processor import ZoeDetector
# Download controlnets from https://huggingface.co/lllyasviel/ControlNet-v1-1 to use .from_single_file
# Download Diffusers-format controlnets, such as https://huggingface.co/lllyasviel/sd-controlnet-depth, to use .from_pretrained()
controlnet = ControlNetModel.from_single_file("control_v11f1p_sd15_depth.pth", torch_dtype=torch.float16)
# We use AnimateLCM for this example but one can use the original motion adapters as well (for example, https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3)
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
pipe: AnimateDiffControlNetPipeline = AnimateDiffControlNetPipeline.from_pretrained(
"SG161222/Realistic_Vision_V5.1_noVAE",
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
).to(device="cuda", dtype=torch.float16)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora")
pipe.set_adapters(["lcm-lora"], [0.8])
depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif")
conditioning_frames = []
with pipe.progress_bar(total=len(video)) as progress_bar:
for frame in video:
conditioning_frames.append(depth_detector(frame))
progress_bar.update()
prompt = "a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality"
negative_prompt = "bad quality, worst quality"
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=len(video),
num_inference_steps=10,
guidance_scale=2.0,
conditioning_frames=conditioning_frames,
generator=torch.Generator().manual_seed(42),
).frames[0]
export_to_gif(video, "animatediff_controlnet.gif", fps=8)`,wrap:!1}}),Ve=new w({props:{title:"AnimateDiffSparseControlNetPipeline",local:"animatediffsparsecontrolnetpipeline",headingTag:"h3"}}),De=new w({props:{title:"Using SparseCtrl Scribble",local:"using-sparsectrl-scribble",headingTag:"h4"}}),Re=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEElMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZTcGFyc2VDb250cm9sTmV0UGlwZWxpbmUlMEFmcm9tJTIwZGlmZnVzZXJzLm1vZGVscyUyMGltcG9ydCUyMEF1dG9lbmNvZGVyS0wlMkMlMjBNb3Rpb25BZGFwdGVyJTJDJTIwU3BhcnNlQ29udHJvbE5ldE1vZGVsJTBBZnJvbSUyMGRpZmZ1c2Vycy5zY2hlZHVsZXJzJTIwaW1wb3J0JTIwRFBNU29sdmVyTXVsdGlzdGVwU2NoZWR1bGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMkMlMjBsb2FkX2ltYWdlJTBBJTBBJTBBbW9kZWxfaWQlMjAlM0QlMjAlMjJTRzE2MTIyMiUyRlJlYWxpc3RpY19WaXNpb25fVjUuMV9ub1ZBRSUyMiUwQW1vdGlvbl9hZGFwdGVyX2lkJTIwJTNEJTIwJTIyZ3VveXd3JTJGYW5pbWF0ZWRpZmYtbW90aW9uLWFkYXB0ZXItdjEtNS0zJTIyJTBBY29udHJvbG5ldF9pZCUyMCUzRCUyMCUyMmd1b3l3dyUyRmFuaW1hdGVkaWZmLXNwYXJzZWN0cmwtc2NyaWJibGUlMjIlMEFsb3JhX2FkYXB0ZXJfaWQlMjAlM0QlMjAlMjJndW95d3clMkZhbmltYXRlZGlmZi1tb3Rpb24tbG9yYS12MS01LTMlMjIlMEF2YWVfaWQlMjAlM0QlMjAlMjJzdGFiaWxpdHlhaSUyRnNkLXZhZS1mdC1tc2UlMjIlMEFkZXZpY2UlMjAlM0QlMjAlMjJjdWRhJTIyJTBBJTBBbW90aW9uX2FkYXB0ZXIlMjAlM0QlMjBNb3Rpb25BZGFwdGVyLmZyb21fcHJldHJhaW5lZChtb3Rpb25fYWRhcHRlcl9pZCUyQyUyMHRvcmNoX2R0eXBlJTNEdG9yY2guZmxvYXQxNikudG8oZGV2aWNlKSUwQWNvbnRyb2xuZXQlMjAlM0QlMjBTcGFyc2VDb250cm9sTmV0TW9kZWwuZnJvbV9wcmV0cmFpbmVkKGNvbnRyb2xuZXRfaWQlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpLnRvKGRldmljZSklMEF2YWUlMjAlM0QlMjBBdXRvZW5jb2RlcktMLmZyb21fcHJldHJhaW5lZCh2YWVfaWQlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpLnRvKGRldmljZSklMEFzY2hlZHVsZXIlMjAlM0QlMjBEUE1Tb2x2ZXJNdWx0aXN0ZXBTY2hlZHVsZXIuZnJvbV9wcmV0cmFpbmVkKCUwQSUyMCUyMCUyMCUyMG1vZGVsX2lkJTJDJTBBJTIwJTIwJTIwJTIwc3ViZm9sZGVyJTNEJTIyc2NoZWR1bGVyJTIyJTJDJTBBJTIwJTIwJTIwJTIwYmV0YV9zY2hlZHVsZSUzRCUyMmxpbmVhciUyMiUyQyUwQSUyMCUyMCUyMCUyMGFsZ29yaXRobV90eXBlJTNEJTIyZHBtc29sdmVyJTJCJTJCJTIyJTJDJTBBJTIwJTIwJTIwJTIwdXNlX2thcnJhc19zaWdtYXMlM0RUcnVlJTJDJTBBKSUwQXBpcGUlMjAlM0QlMjBBbmltYXRlRGlmZlNwYXJzZUNvbnRyb2xOZXRQaXBlbGluZS5mcm9tX3ByZXRyYWluZWQoJTBBJTIwJTIwJTIwJTIwbW9kZWxfaWQlMkMlMEElMjAlMjAlMjAlMjBtb3Rpb25fYWRhcHRlciUzRG1vdGlvbl9hZGFwdGVyJTJDJTBBJTIwJTIwJTIwJTIwY29udHJvbG5ldCUzRGNvbnRyb2xuZXQlMkMlMEElMjAlMjAlMjAlMjB2YWUlM0R2YWUlMkMlMEElMjAlMjAlMjAlMjBzY2hlZHVsZXIlM0RzY2hlZHVsZXIlMkMlMEElMjAlMjAlMjAlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYlMkMlMEEpLnRvKGRldmljZSklMEFwaXBlLmxvYWRfbG9yYV93ZWlnaHRzKGxvcmFfYWRhcHRlcl9pZCUyQyUyMGFkYXB0ZXJfbmFtZSUzRCUyMm1vdGlvbl9sb3JhJTIyKSUwQXBpcGUuZnVzZV9sb3JhKGxvcmFfc2NhbGUlM0QxLjApJTBBJTBBcHJvbXB0JTIwJTNEJTIwJTIyYW4lMjBhZXJpYWwlMjB2aWV3JTIwb2YlMjBhJTIwY3liZXJwdW5rJTIwY2l0eSUyQyUyMG5pZ2h0JTIwdGltZSUyQyUyMG5lb24lMjBsaWdodHMlMkMlMjBtYXN0ZXJwaWVjZSUyQyUyMGhpZ2glMjBxdWFsaXR5JTIyJTBBbmVnYXRpdmVfcHJvbXB0JTIwJTNEJTIwJTIybG93JTIwcXVhbGl0eSUyQyUyMHdvcnN0JTIwcXVhbGl0eSUyQyUyMGxldHRlcmJveGVkJTIyJTBBJTBBaW1hZ2VfZmlsZXMlMjAlM0QlMjAlNUIlMEElMjAlMjAlMjAlMjAlMjJodHRwcyUzQSUyRiUyRmh1Z2dpbmdmYWNlLmNvJTJGZGF0YXNldHMlMkZodWdnaW5nZmFjZSUyRmRvY3VtZW50YXRpb24taW1hZ2VzJTJGcmVzb2x2ZSUyRm1haW4lMkZkaWZmdXNlcnMlMkZhbmltYXRlZGlmZi1zY3JpYmJsZS0xLnBuZyUyMiUyQyUwQSUyMCUyMCUyMCUyMCUyMmh0dHBzJTNBJTJGJTJGaHVnZ2luZ2ZhY2UuY28lMkZkYXRhc2V0cyUyRmh1Z2dpbmdmYWNlJTJGZG9jdW1lbnRhdGlvbi1pbWFnZXMlMkZyZXNvbHZlJTJGbWFpbiUyRmRpZmZ1c2VycyUyRmFuaW1hdGVkaWZmLXNjcmliYmxlLTIucG5nJTIyJTJDJTBBJTIwJTIwJTIwJTIwJTIyaHR0cHMlM0ElMkYlMkZodWdnaW5nZmFjZS5jbyUyRmRhdGFzZXRzJTJGaHVnZ2luZ2ZhY2UlMkZkb2N1bWVudGF0aW9uLWltYWdlcyUyRnJlc29sdmUlMkZtYWluJTJGZGlmZnVzZXJzJTJGYW5pbWF0ZWRpZmYtc2NyaWJibGUtMy5wbmclMjIlMEElNUQlMEFjb25kaXRpb25fZnJhbWVfaW5kaWNlcyUyMCUzRCUyMCU1QjAlMkMlMjA4JTJDJTIwMTUlNUQlMEFjb25kaXRpb25pbmdfZnJhbWVzJTIwJTNEJTIwJTVCbG9hZF9pbWFnZShpbWdfZmlsZSklMjBmb3IlMjBpbWdfZmlsZSUyMGluJTIwaW1hZ2VfZmlsZXMlNUQlMEElMEF2aWRlbyUyMCUzRCUyMHBpcGUoJTBBJTIwJTIwJTIwJTIwcHJvbXB0JTNEcHJvbXB0JTJDJTBBJTIwJTIwJTIwJTIwbmVnYXRpdmVfcHJvbXB0JTNEbmVnYXRpdmVfcHJvbXB0JTJDJTBBJTIwJTIwJTIwJTIwbnVtX2luZmVyZW5jZV9zdGVwcyUzRDI1JTJDJTBBJTIwJTIwJTIwJTIwY29uZGl0aW9uaW5nX2ZyYW1lcyUzRGNvbmRpdGlvbmluZ19mcmFtZXMlMkMlMEElMjAlMjAlMjAlMjBjb250cm9sbmV0X2NvbmRpdGlvbmluZ19zY2FsZSUzRDEuMCUyQyUwQSUyMCUyMCUyMCUyMGNvbnRyb2xuZXRfZnJhbWVfaW5kaWNlcyUzRGNvbmRpdGlvbl9mcmFtZV9pbmRpY2VzJTJDJTBBJTIwJTIwJTIwJTIwZ2VuZXJhdG9yJTNEdG9yY2guR2VuZXJhdG9yKCkubWFudWFsX3NlZWQoMTMzNyklMkMlMEEpLmZyYW1lcyU1QjAlNUQlMEFleHBvcnRfdG9fZ2lmKHZpZGVvJTJDJTIwJTIyb3V0cHV0LmdpZiUyMik=",highlighted:`import torch
from diffusers import AnimateDiffSparseControlNetPipeline
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif, load_image
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
controlnet_id = "guoyww/animatediff-sparsectrl-scribble"
lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
vae_id = "stabilityai/sd-vae-ft-mse"
device = "cuda"
motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)
controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
scheduler = DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
beta_schedule="linear",
algorithm_type="dpmsolver++",
use_karras_sigmas=True,
)
pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
model_id,
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
scheduler=scheduler,
torch_dtype=torch.float16,
).to(device)
pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
pipe.fuse_lora(lora_scale=1.0)
prompt = "an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"
negative_prompt = "low quality, worst quality, letterboxed"
image_files = [
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png"
]
condition_frame_indices = [0, 8, 15]
conditioning_frames = [load_image(img_file) for img_file in image_files]
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
conditioning_frames=conditioning_frames,
controlnet_conditioning_scale=1.0,
controlnet_frame_indices=condition_frame_indices,
generator=torch.Generator().manual_seed(1337),
).frames[0]
export_to_gif(video, "output.gif")`,wrap:!1}}),Le=new w({props:{title:"Using SparseCtrl RGB",local:"using-sparsectrl-rgb",headingTag:"h4"}}),Ye=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEElMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZTcGFyc2VDb250cm9sTmV0UGlwZWxpbmUlMEFmcm9tJTIwZGlmZnVzZXJzLm1vZGVscyUyMGltcG9ydCUyMEF1dG9lbmNvZGVyS0wlMkMlMjBNb3Rpb25BZGFwdGVyJTJDJTIwU3BhcnNlQ29udHJvbE5ldE1vZGVsJTBBZnJvbSUyMGRpZmZ1c2Vycy5zY2hlZHVsZXJzJTIwaW1wb3J0JTIwRFBNU29sdmVyTXVsdGlzdGVwU2NoZWR1bGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMkMlMjBsb2FkX2ltYWdlJTBBJTBBJTBBbW9kZWxfaWQlMjAlM0QlMjAlMjJTRzE2MTIyMiUyRlJlYWxpc3RpY19WaXNpb25fVjUuMV9ub1ZBRSUyMiUwQW1vdGlvbl9hZGFwdGVyX2lkJTIwJTNEJTIwJTIyZ3VveXd3JTJGYW5pbWF0ZWRpZmYtbW90aW9uLWFkYXB0ZXItdjEtNS0zJTIyJTBBY29udHJvbG5ldF9pZCUyMCUzRCUyMCUyMmd1b3l3dyUyRmFuaW1hdGVkaWZmLXNwYXJzZWN0cmwtcmdiJTIyJTBBbG9yYV9hZGFwdGVyX2lkJTIwJTNEJTIwJTIyZ3VveXd3JTJGYW5pbWF0ZWRpZmYtbW90aW9uLWxvcmEtdjEtNS0zJTIyJTBBdmFlX2lkJTIwJTNEJTIwJTIyc3RhYmlsaXR5YWklMkZzZC12YWUtZnQtbXNlJTIyJTBBZGV2aWNlJTIwJTNEJTIwJTIyY3VkYSUyMiUwQSUwQW1vdGlvbl9hZGFwdGVyJTIwJTNEJTIwTW90aW9uQWRhcHRlci5mcm9tX3ByZXRyYWluZWQobW90aW9uX2FkYXB0ZXJfaWQlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpLnRvKGRldmljZSklMEFjb250cm9sbmV0JTIwJTNEJTIwU3BhcnNlQ29udHJvbE5ldE1vZGVsLmZyb21fcHJldHJhaW5lZChjb250cm9sbmV0X2lkJTJDJTIwdG9yY2hfZHR5cGUlM0R0b3JjaC5mbG9hdDE2KS50byhkZXZpY2UpJTBBdmFlJTIwJTNEJTIwQXV0b2VuY29kZXJLTC5mcm9tX3ByZXRyYWluZWQodmFlX2lkJTJDJTIwdG9yY2hfZHR5cGUlM0R0b3JjaC5mbG9hdDE2KS50byhkZXZpY2UpJTBBc2NoZWR1bGVyJTIwJTNEJTIwRFBNU29sdmVyTXVsdGlzdGVwU2NoZWR1bGVyLmZyb21fcHJldHJhaW5lZCglMEElMjAlMjAlMjAlMjBtb2RlbF9pZCUyQyUwQSUyMCUyMCUyMCUyMHN1YmZvbGRlciUzRCUyMnNjaGVkdWxlciUyMiUyQyUwQSUyMCUyMCUyMCUyMGJldGFfc2NoZWR1bGUlM0QlMjJsaW5lYXIlMjIlMkMlMEElMjAlMjAlMjAlMjBhbGdvcml0aG1fdHlwZSUzRCUyMmRwbXNvbHZlciUyQiUyQiUyMiUyQyUwQSUyMCUyMCUyMCUyMHVzZV9rYXJyYXNfc2lnbWFzJTNEVHJ1ZSUyQyUwQSklMEFwaXBlJTIwJTNEJTIwQW5pbWF0ZURpZmZTcGFyc2VDb250cm9sTmV0UGlwZWxpbmUuZnJvbV9wcmV0cmFpbmVkKCUwQSUyMCUyMCUyMCUyMG1vZGVsX2lkJTJDJTBBJTIwJTIwJTIwJTIwbW90aW9uX2FkYXB0ZXIlM0Rtb3Rpb25fYWRhcHRlciUyQyUwQSUyMCUyMCUyMCUyMGNvbnRyb2xuZXQlM0Rjb250cm9sbmV0JTJDJTBBJTIwJTIwJTIwJTIwdmFlJTNEdmFlJTJDJTBBJTIwJTIwJTIwJTIwc2NoZWR1bGVyJTNEc2NoZWR1bGVyJTJDJTBBJTIwJTIwJTIwJTIwdG9yY2hfZHR5cGUlM0R0b3JjaC5mbG9hdDE2JTJDJTBBKS50byhkZXZpY2UpJTBBcGlwZS5sb2FkX2xvcmFfd2VpZ2h0cyhsb3JhX2FkYXB0ZXJfaWQlMkMlMjBhZGFwdGVyX25hbWUlM0QlMjJtb3Rpb25fbG9yYSUyMiklMEElMEFpbWFnZSUyMCUzRCUyMGxvYWRfaW1hZ2UoJTIyaHR0cHMlM0ElMkYlMkZodWdnaW5nZmFjZS5jbyUyRmRhdGFzZXRzJTJGaHVnZ2luZ2ZhY2UlMkZkb2N1bWVudGF0aW9uLWltYWdlcyUyRnJlc29sdmUlMkZtYWluJTJGZGlmZnVzZXJzJTJGYW5pbWF0ZWRpZmYtZmlyZXdvcmsucG5nJTIyKSUwQSUwQXZpZGVvJTIwJTNEJTIwcGlwZSglMEElMjAlMjAlMjAlMjBwcm9tcHQlM0QlMjJjbG9zZXVwJTIwZmFjZSUyMHBob3RvJTIwb2YlMjBtYW4lMjBpbiUyMGJsYWNrJTIwY2xvdGhlcyUyQyUyMG5pZ2h0JTIwY2l0eSUyMHN0cmVldCUyQyUyMGJva2VoJTJDJTIwZmlyZXdvcmtzJTIwaW4lMjBiYWNrZ3JvdW5kJTIyJTJDJTBBJTIwJTIwJTIwJTIwbmVnYXRpdmVfcHJvbXB0JTNEJTIybG93JTIwcXVhbGl0eSUyQyUyMHdvcnN0JTIwcXVhbGl0eSUyMiUyQyUwQSUyMCUyMCUyMCUyMG51bV9pbmZlcmVuY2Vfc3RlcHMlM0QyNSUyQyUwQSUyMCUyMCUyMCUyMGNvbmRpdGlvbmluZ19mcmFtZXMlM0RpbWFnZSUyQyUwQSUyMCUyMCUyMCUyMGNvbnRyb2xuZXRfZnJhbWVfaW5kaWNlcyUzRCU1QjAlNUQlMkMlMEElMjAlMjAlMjAlMjBjb250cm9sbmV0X2NvbmRpdGlvbmluZ19zY2FsZSUzRDEuMCUyQyUwQSUyMCUyMCUyMCUyMGdlbmVyYXRvciUzRHRvcmNoLkdlbmVyYXRvcigpLm1hbnVhbF9zZWVkKDQyKSUyQyUwQSkuZnJhbWVzJTVCMCU1RCUwQWV4cG9ydF90b19naWYodmlkZW8lMkMlMjAlMjJvdXRwdXQuZ2lmJTIyKQ==",highlighted:`import torch
from diffusers import AnimateDiffSparseControlNetPipeline
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif, load_image
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
controlnet_id = "guoyww/animatediff-sparsectrl-rgb"
lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
vae_id = "stabilityai/sd-vae-ft-mse"
device = "cuda"
motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)
controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
scheduler = DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
beta_schedule="linear",
algorithm_type="dpmsolver++",
use_karras_sigmas=True,
)
pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
model_id,
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
scheduler=scheduler,
torch_dtype=torch.float16,
).to(device)
pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-firework.png")
video = pipe(
prompt="closeup face photo of man in black clothes, night city street, bokeh, fireworks in background",
negative_prompt="low quality, worst quality",
num_inference_steps=25,
conditioning_frames=image,
controlnet_frame_indices=[0],
controlnet_conditioning_scale=1.0,
generator=torch.Generator().manual_seed(42),
).frames[0]
export_to_gif(video, "output.gif")`,wrap:!1}}),Pe=new w({props:{title:"AnimateDiffSDXLPipeline",local:"animatediffsdxlpipeline",headingTag:"h3"}}),He=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzLm1vZGVscyUyMGltcG9ydCUyME1vdGlvbkFkYXB0ZXIlMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZTRFhMUGlwZWxpbmUlMkMlMjBERElNU2NoZWR1bGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMEElMEFhZGFwdGVyJTIwJTNEJTIwTW90aW9uQWRhcHRlci5mcm9tX3ByZXRyYWluZWQoJTIyZ3VveXd3JTJGYW5pbWF0ZWRpZmYtbW90aW9uLWFkYXB0ZXItc2R4bC1iZXRhJTIyJTJDJTIwdG9yY2hfZHR5cGUlM0R0b3JjaC5mbG9hdDE2KSUwQSUwQW1vZGVsX2lkJTIwJTNEJTIwJTIyc3RhYmlsaXR5YWklMkZzdGFibGUtZGlmZnVzaW9uLXhsLWJhc2UtMS4wJTIyJTBBc2NoZWR1bGVyJTIwJTNEJTIwRERJTVNjaGVkdWxlci5mcm9tX3ByZXRyYWluZWQoJTBBJTIwJTIwJTIwJTIwbW9kZWxfaWQlMkMlMEElMjAlMjAlMjAlMjBzdWJmb2xkZXIlM0QlMjJzY2hlZHVsZXIlMjIlMkMlMEElMjAlMjAlMjAlMjBjbGlwX3NhbXBsZSUzREZhbHNlJTJDJTBBJTIwJTIwJTIwJTIwdGltZXN0ZXBfc3BhY2luZyUzRCUyMmxpbnNwYWNlJTIyJTJDJTBBJTIwJTIwJTIwJTIwYmV0YV9zY2hlZHVsZSUzRCUyMmxpbmVhciUyMiUyQyUwQSUyMCUyMCUyMCUyMHN0ZXBzX29mZnNldCUzRDElMkMlMEEpJTBBcGlwZSUyMCUzRCUyMEFuaW1hdGVEaWZmU0RYTFBpcGVsaW5lLmZyb21fcHJldHJhaW5lZCglMEElMjAlMjAlMjAlMjBtb2RlbF9pZCUyQyUwQSUyMCUyMCUyMCUyMG1vdGlvbl9hZGFwdGVyJTNEYWRhcHRlciUyQyUwQSUyMCUyMCUyMCUyMHNjaGVkdWxlciUzRHNjaGVkdWxlciUyQyUwQSUyMCUyMCUyMCUyMHRvcmNoX2R0eXBlJTNEdG9yY2guZmxvYXQxNiUyQyUwQSUyMCUyMCUyMCUyMHZhcmlhbnQlM0QlMjJmcDE2JTIyJTJDJTBBKS50byglMjJjdWRhJTIyKSUwQSUwQSUyMyUyMGVuYWJsZSUyMG1lbW9yeSUyMHNhdmluZ3MlMEFwaXBlLmVuYWJsZV92YWVfc2xpY2luZygpJTBBcGlwZS5lbmFibGVfdmFlX3RpbGluZygpJTBBJTBBb3V0cHV0JTIwJTNEJTIwcGlwZSglMEElMjAlMjAlMjAlMjBwcm9tcHQlM0QlMjJhJTIwcGFuZGElMjBzdXJmaW5nJTIwaW4lMjB0aGUlMjBvY2VhbiUyQyUyMHJlYWxpc3RpYyUyQyUyMGhpZ2glMjBxdWFsaXR5JTIyJTJDJTBBJTIwJTIwJTIwJTIwbmVnYXRpdmVfcHJvbXB0JTNEJTIybG93JTIwcXVhbGl0eSUyQyUyMHdvcnN0JTIwcXVhbGl0eSUyMiUyQyUwQSUyMCUyMCUyMCUyMG51bV9pbmZlcmVuY2Vfc3RlcHMlM0QyMCUyQyUwQSUyMCUyMCUyMCUyMGd1aWRhbmNlX3NjYWxlJTNEOCUyQyUwQSUyMCUyMCUyMCUyMHdpZHRoJTNEMTAyNCUyQyUwQSUyMCUyMCUyMCUyMGhlaWdodCUzRDEwMjQlMkMlMEElMjAlMjAlMjAlMjBudW1fZnJhbWVzJTNEMTYlMkMlMEEpJTBBJTBBZnJhbWVzJTIwJTNEJTIwb3V0cHV0LmZyYW1lcyU1QjAlNUQlMEFleHBvcnRfdG9fZ2lmKGZyYW1lcyUyQyUyMCUyMmFuaW1hdGlvbi5naWYlMjIp",highlighted:`import torch
from diffusers.models import MotionAdapter
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16)
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe = AnimateDiffSDXLPipeline.from_pretrained(
model_id,
motion_adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
output = pipe(
prompt="a panda surfing in the ocean, realistic, high quality",
negative_prompt="low quality, worst quality",
num_inference_steps=20,
guidance_scale=8,
width=1024,
height=1024,
num_frames=16,
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")`,wrap:!1}}),ze=new w({props:{title:"AnimateDiffVideoToVideoPipeline",local:"animatediffvideotovideopipeline",headingTag:"h3"}}),qe=new I({props:{code:"aW1wb3J0JTIwaW1hZ2VpbyUwQWltcG9ydCUyMHJlcXVlc3RzJTBBaW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZWaWRlb1RvVmlkZW9QaXBlbGluZSUyQyUyMERESU1TY2hlZHVsZXIlMkMlMjBNb3Rpb25BZGFwdGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMEFmcm9tJTIwaW8lMjBpbXBvcnQlMjBCeXRlc0lPJTBBZnJvbSUyMFBJTCUyMGltcG9ydCUyMEltYWdlJTBBJTBBJTIzJTIwTG9hZCUyMHRoZSUyMG1vdGlvbiUyMGFkYXB0ZXIlMEFhZGFwdGVyJTIwJTNEJTIwTW90aW9uQWRhcHRlci5mcm9tX3ByZXRyYWluZWQoJTIyZ3VveXd3JTJGYW5pbWF0ZWRpZmYtbW90aW9uLWFkYXB0ZXItdjEtNS0yJTIyJTJDJTIwdG9yY2hfZHR5cGUlM0R0b3JjaC5mbG9hdDE2KSUwQSUyMyUyMGxvYWQlMjBTRCUyMDEuNSUyMGJhc2VkJTIwZmluZXR1bmVkJTIwbW9kZWwlMEFtb2RlbF9pZCUyMCUzRCUyMCUyMlNHMTYxMjIyJTJGUmVhbGlzdGljX1Zpc2lvbl9WNS4xX25vVkFFJTIyJTBBcGlwZSUyMCUzRCUyMEFuaW1hdGVEaWZmVmlkZW9Ub1ZpZGVvUGlwZWxpbmUuZnJvbV9wcmV0cmFpbmVkKG1vZGVsX2lkJTJDJTIwbW90aW9uX2FkYXB0ZXIlM0RhZGFwdGVyJTJDJTIwdG9yY2hfZHR5cGUlM0R0b3JjaC5mbG9hdDE2KSUwQXNjaGVkdWxlciUyMCUzRCUyMERESU1TY2hlZHVsZXIuZnJvbV9wcmV0cmFpbmVkKCUwQSUyMCUyMCUyMCUyMG1vZGVsX2lkJTJDJTBBJTIwJTIwJTIwJTIwc3ViZm9sZGVyJTNEJTIyc2NoZWR1bGVyJTIyJTJDJTBBJTIwJTIwJTIwJTIwY2xpcF9zYW1wbGUlM0RGYWxzZSUyQyUwQSUyMCUyMCUyMCUyMHRpbWVzdGVwX3NwYWNpbmclM0QlMjJsaW5zcGFjZSUyMiUyQyUwQSUyMCUyMCUyMCUyMGJldGFfc2NoZWR1bGUlM0QlMjJsaW5lYXIlMjIlMkMlMEElMjAlMjAlMjAlMjBzdGVwc19vZmZzZXQlM0QxJTJDJTBBKSUwQXBpcGUuc2NoZWR1bGVyJTIwJTNEJTIwc2NoZWR1bGVyJTBBJTBBJTIzJTIwZW5hYmxlJTIwbWVtb3J5JTIwc2F2aW5ncyUwQXBpcGUuZW5hYmxlX3ZhZV9zbGljaW5nKCklMEFwaXBlLmVuYWJsZV9tb2RlbF9jcHVfb2ZmbG9hZCgpJTBBJTBBJTIzJTIwaGVscGVyJTIwZnVuY3Rpb24lMjB0byUyMGxvYWQlMjB2aWRlb3MlMEFkZWYlMjBsb2FkX3ZpZGVvKGZpbGVfcGF0aCUzQSUyMHN0ciklM0ElMEElMjAlMjAlMjAlMjBpbWFnZXMlMjAlM0QlMjAlNUIlNUQlMEElMEElMjAlMjAlMjAlMjBpZiUyMGZpbGVfcGF0aC5zdGFydHN3aXRoKCgnaHR0cCUzQSUyRiUyRiclMkMlMjAnaHR0cHMlM0ElMkYlMkYnKSklM0ElMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjMlMjBJZiUyMHRoZSUyMGZpbGVfcGF0aCUyMGlzJTIwYSUyMFVSTCUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMHJlc3BvbnNlJTIwJTNEJTIwcmVxdWVzdHMuZ2V0KGZpbGVfcGF0aCklMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjByZXNwb25zZS5yYWlzZV9mb3Jfc3RhdHVzKCklMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjBjb250ZW50JTIwJTNEJTIwQnl0ZXNJTyhyZXNwb25zZS5jb250ZW50KSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMHZpZCUyMCUzRCUyMGltYWdlaW8uZ2V0X3JlYWRlcihjb250ZW50KSUwQSUyMCUyMCUyMCUyMGVsc2UlM0ElMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjMlMjBBc3N1bWluZyUyMGl0J3MlMjBhJTIwbG9jYWwlMjBmaWxlJTIwcGF0aCUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMHZpZCUyMCUzRCUyMGltYWdlaW8uZ2V0X3JlYWRlcihmaWxlX3BhdGgpJTBBJTBBJTIwJTIwJTIwJTIwZm9yJTIwZnJhbWUlMjBpbiUyMHZpZCUzQSUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMHBpbF9pbWFnZSUyMCUzRCUyMEltYWdlLmZyb21hcnJheShmcmFtZSklMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjBpbWFnZXMuYXBwZW5kKHBpbF9pbWFnZSklMEElMEElMjAlMjAlMjAlMjByZXR1cm4lMjBpbWFnZXMlMEElMEF2aWRlbyUyMCUzRCUyMGxvYWRfdmlkZW8oJTIyaHR0cHMlM0ElMkYlMkZodWdnaW5nZmFjZS5jbyUyRmRhdGFzZXRzJTJGaHVnZ2luZ2ZhY2UlMkZkb2N1bWVudGF0aW9uLWltYWdlcyUyRnJlc29sdmUlMkZtYWluJTJGZGlmZnVzZXJzJTJGYW5pbWF0ZWRpZmYtdmlkMnZpZC1pbnB1dC0xLmdpZiUyMiklMEElMEFvdXRwdXQlMjAlM0QlMjBwaXBlKCUwQSUyMCUyMCUyMCUyMHZpZGVvJTIwJTNEJTIwdmlkZW8lMkMlMEElMjAlMjAlMjAlMjBwcm9tcHQlM0QlMjJwYW5kYSUyMHBsYXlpbmclMjBhJTIwZ3VpdGFyJTJDJTIwb24lMjBhJTIwYm9hdCUyQyUyMGluJTIwdGhlJTIwb2NlYW4lMkMlMjBoaWdoJTIwcXVhbGl0eSUyMiUyQyUwQSUyMCUyMCUyMCUyMG5lZ2F0aXZlX3Byb21wdCUzRCUyMmJhZCUyMHF1YWxpdHklMkMlMjB3b3JzZSUyMHF1YWxpdHklMjIlMkMlMEElMjAlMjAlMjAlMjBndWlkYW5jZV9zY2FsZSUzRDcuNSUyQyUwQSUyMCUyMCUyMCUyMG51bV9pbmZlcmVuY2Vfc3RlcHMlM0QyNSUyQyUwQSUyMCUyMCUyMCUyMHN0cmVuZ3RoJTNEMC41JTJDJTBBJTIwJTIwJTIwJTIwZ2VuZXJhdG9yJTNEdG9yY2guR2VuZXJhdG9yKCUyMmNwdSUyMikubWFudWFsX3NlZWQoNDIpJTJDJTBBKSUwQWZyYW1lcyUyMCUzRCUyMG91dHB1dC5mcmFtZXMlNUIwJTVEJTBBZXhwb3J0X3RvX2dpZihmcmFtZXMlMkMlMjAlMjJhbmltYXRpb24uZ2lmJTIyKQ==",highlighted:`import imageio
import requests
import torch
from diffusers import AnimateDiffVideoToVideoPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
from io import BytesIO
from PIL import Image
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
# helper function to load videos
def load_video(file_path: str):
images = []
if file_path.startswith(('http://', 'https://')):
# If the file_path is a URL
response = requests.get(file_path)
response.raise_for_status()
content = BytesIO(response.content)
vid = imageio.get_reader(content)
else:
# Assuming it's a local file path
vid = imageio.get_reader(file_path)
for frame in vid:
pil_image = Image.fromarray(frame)
images.append(pil_image)
return images
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif")
output = pipe(
video = video,
prompt="panda playing a guitar, on a boat, in the ocean, high quality",
negative_prompt="bad quality, worse quality",
guidance_scale=7.5,
num_inference_steps=25,
strength=0.5,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")`,wrap:!1}}),et=new w({props:{title:"AnimateDiffVideoToVideoControlNetPipeline",local:"animatediffvideotovideocontrolnetpipeline",headingTag:"h3"}}),ot=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwUElMJTIwaW1wb3J0JTIwSW1hZ2UlMEFmcm9tJTIwdHFkbS5hdXRvJTIwaW1wb3J0JTIwdHFkbSUwQSUwQWZyb20lMjBjb250cm9sbmV0X2F1eC5wcm9jZXNzb3IlMjBpbXBvcnQlMjBPcGVucG9zZURldGVjdG9yJTBBZnJvbSUyMGRpZmZ1c2VycyUyMGltcG9ydCUyMEFuaW1hdGVEaWZmVmlkZW9Ub1ZpZGVvQ29udHJvbE5ldFBpcGVsaW5lJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMkMlMjBsb2FkX3ZpZGVvJTBBZnJvbSUyMGRpZmZ1c2VycyUyMGltcG9ydCUyMEF1dG9lbmNvZGVyS0wlMkMlMjBDb250cm9sTmV0TW9kZWwlMkMlMjBNb3Rpb25BZGFwdGVyJTJDJTIwTENNU2NoZWR1bGVyJTBBJTBBJTIzJTIwTG9hZCUyMHRoZSUyMENvbnRyb2xOZXQlMEFjb250cm9sbmV0JTIwJTNEJTIwQ29udHJvbE5ldE1vZGVsLmZyb21fcHJldHJhaW5lZCglMjJsbGx5YXN2aWVsJTJGc2QtY29udHJvbG5ldC1vcGVucG9zZSUyMiUyQyUyMHRvcmNoX2R0eXBlJTNEdG9yY2guZmxvYXQxNiklMEElMjMlMjBMb2FkJTIwdGhlJTIwbW90aW9uJTIwYWRhcHRlciUwQW1vdGlvbl9hZGFwdGVyJTIwJTNEJTIwTW90aW9uQWRhcHRlci5mcm9tX3ByZXRyYWluZWQoJTIyd2FuZ2Z1eXVuJTJGQW5pbWF0ZUxDTSUyMiklMEElMjMlMjBMb2FkJTIwU0QlMjAxLjUlMjBiYXNlZCUyMGZpbmV0dW5lZCUyMG1vZGVsJTBBdmFlJTIwJTNEJTIwQXV0b2VuY29kZXJLTC5mcm9tX3ByZXRyYWluZWQoJTIyc3RhYmlsaXR5YWklMkZzZC12YWUtZnQtbXNlJTIyJTJDJTIwdG9yY2hfZHR5cGUlM0R0b3JjaC5mbG9hdDE2KSUwQXBpcGUlMjAlM0QlMjBBbmltYXRlRGlmZlZpZGVvVG9WaWRlb0NvbnRyb2xOZXRQaXBlbGluZS5mcm9tX3ByZXRyYWluZWQoJTBBJTIwJTIwJTIwJTIwJTIyU0cxNjEyMjIlMkZSZWFsaXN0aWNfVmlzaW9uX1Y1LjFfbm9WQUUlMjIlMkMlMEElMjAlMjAlMjAlMjBtb3Rpb25fYWRhcHRlciUzRG1vdGlvbl9hZGFwdGVyJTJDJTBBJTIwJTIwJTIwJTIwY29udHJvbG5ldCUzRGNvbnRyb2xuZXQlMkMlMEElMjAlMjAlMjAlMjB2YWUlM0R2YWUlMkMlMEEpLnRvKGRldmljZSUzRCUyMmN1ZGElMjIlMkMlMjBkdHlwZSUzRHRvcmNoLmZsb2F0MTYpJTBBJTBBJTIzJTIwRW5hYmxlJTIwTENNJTIwdG8lMjBzcGVlZCUyMHVwJTIwaW5mZXJlbmNlJTBBcGlwZS5zY2hlZHVsZXIlMjAlM0QlMjBMQ01TY2hlZHVsZXIuZnJvbV9jb25maWcocGlwZS5zY2hlZHVsZXIuY29uZmlnJTJDJTIwYmV0YV9zY2hlZHVsZSUzRCUyMmxpbmVhciUyMiklMEFwaXBlLmxvYWRfbG9yYV93ZWlnaHRzKCUyMndhbmdmdXl1biUyRkFuaW1hdGVMQ00lMjIlMkMlMjB3ZWlnaHRfbmFtZSUzRCUyMkFuaW1hdGVMQ01fc2QxNV90MnZfbG9yYS5zYWZldGVuc29ycyUyMiUyQyUyMGFkYXB0ZXJfbmFtZSUzRCUyMmxjbS1sb3JhJTIyKSUwQXBpcGUuc2V0X2FkYXB0ZXJzKCU1QiUyMmxjbS1sb3JhJTIyJTVEJTJDJTIwJTVCMC44JTVEKSUwQSUwQXZpZGVvJTIwJTNEJTIwbG9hZF92aWRlbyglMjJodHRwcyUzQSUyRiUyRmh1Z2dpbmdmYWNlLmNvJTJGZGF0YXNldHMlMkZodWdnaW5nZmFjZSUyRmRvY3VtZW50YXRpb24taW1hZ2VzJTJGcmVzb2x2ZSUyRm1haW4lMkZkaWZmdXNlcnMlMkZkYW5jZS5naWYlMjIpJTBBdmlkZW8lMjAlM0QlMjAlNUJmcmFtZS5jb252ZXJ0KCUyMlJHQiUyMiklMjBmb3IlMjBmcmFtZSUyMGluJTIwdmlkZW8lNUQlMEElMEFwcm9tcHQlMjAlM0QlMjAlMjJhc3Ryb25hdXQlMjBpbiUyMHNwYWNlJTJDJTIwZGFuY2luZyUyMiUwQW5lZ2F0aXZlX3Byb21wdCUyMCUzRCUyMCUyMmJhZCUyMHF1YWxpdHklMkMlMjB3b3JzdCUyMHF1YWxpdHklMkMlMjBqcGVnJTIwYXJ0aWZhY3RzJTJDJTIwdWdseSUyMiUwQSUwQSUyMyUyMENyZWF0ZSUyMGNvbnRyb2xuZXQlMjBwcmVwcm9jZXNzb3IlMEFvcGVuX3Bvc2UlMjAlM0QlMjBPcGVucG9zZURldGVjdG9yLmZyb21fcHJldHJhaW5lZCglMjJsbGx5YXN2aWVsJTJGQW5ub3RhdG9ycyUyMikudG8oJTIyY3VkYSUyMiklMEElMEElMjMlMjBQcmVwcm9jZXNzJTIwY29udHJvbG5ldCUyMGltYWdlcyUwQWNvbmRpdGlvbmluZ19mcmFtZXMlMjAlM0QlMjAlNUIlNUQlMEFmb3IlMjBmcmFtZSUyMGluJTIwdHFkbSh2aWRlbyklM0ElMEElMjAlMjAlMjAlMjBjb25kaXRpb25pbmdfZnJhbWVzLmFwcGVuZChvcGVuX3Bvc2UoZnJhbWUpKSUwQSUwQXN0cmVuZ3RoJTIwJTNEJTIwMC44JTBBd2l0aCUyMHRvcmNoLmluZmVyZW5jZV9tb2RlKCklM0ElMEElMjAlMjAlMjAlMjB2aWRlbyUyMCUzRCUyMHBpcGUoJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwdmlkZW8lM0R2aWRlbyUyQyUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMHByb21wdCUzRHByb21wdCUyQyUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMG5lZ2F0aXZlX3Byb21wdCUzRG5lZ2F0aXZlX3Byb21wdCUyQyUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMG51bV9pbmZlcmVuY2Vfc3RlcHMlM0QxMCUyQyUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMGd1aWRhbmNlX3NjYWxlJTNEMi4wJTJDJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwY29udHJvbG5ldF9jb25kaXRpb25pbmdfc2NhbGUlM0QwLjc1JTJDJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwY29uZGl0aW9uaW5nX2ZyYW1lcyUzRGNvbmRpdGlvbmluZ19mcmFtZXMlMkMlMEElMjAlMjAlMjAlMjAlMjAlMjAlMjAlMjBzdHJlbmd0aCUzRHN0cmVuZ3RoJTJDJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwZ2VuZXJhdG9yJTNEdG9yY2guR2VuZXJhdG9yKCkubWFudWFsX3NlZWQoNDIpJTJDJTBBJTIwJTIwJTIwJTIwKS5mcmFtZXMlNUIwJTVEJTBBJTBBdmlkZW8lMjAlM0QlMjAlNUJmcmFtZS5yZXNpemUoY29uZGl0aW9uaW5nX2ZyYW1lcyU1QjAlNUQuc2l6ZSklMjBmb3IlMjBmcmFtZSUyMGluJTIwdmlkZW8lNUQlMEFleHBvcnRfdG9fZ2lmKHZpZGVvJTJDJTIwZiUyMmFuaW1hdGVkaWZmX3ZpZDJ2aWRfY29udHJvbG5ldC5naWYlMjIlMkMlMjBmcHMlM0Q4KQ==",highlighted:`import torch
from PIL import Image
from tqdm.auto import tqdm
from controlnet_aux.processor import OpenposeDetector
from diffusers import AnimateDiffVideoToVideoControlNetPipeline
from diffusers.utils import export_to_gif, load_video
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler
# Load the ControlNet
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
# Load the motion adapter
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
# Load SD 1.5 based finetuned model
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
pipe = AnimateDiffVideoToVideoControlNetPipeline.from_pretrained(
"SG161222/Realistic_Vision_V5.1_noVAE",
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
).to(device="cuda", dtype=torch.float16)
# Enable LCM to speed up inference
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora")
pipe.set_adapters(["lcm-lora"], [0.8])
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/dance.gif")
video = [frame.convert("RGB") for frame in video]
prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
# Create controlnet preprocessor
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
# Preprocess controlnet images
conditioning_frames = []
for frame in tqdm(video):
conditioning_frames.append(open_pose(frame))
strength = 0.8
with torch.inference_mode():
video = pipe(
video=video,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=10,
guidance_scale=2.0,
controlnet_conditioning_scale=0.75,
conditioning_frames=conditioning_frames,
strength=strength,
generator=torch.Generator().manual_seed(42),
).frames[0]
video = [frame.resize(conditioning_frames[0].size) for frame in video]
export_to_gif(video, f"animatediff_vid2vid_controlnet.gif", fps=8)`,wrap:!1}}),at=new w({props:{title:"Using Motion LoRAs",local:"using-motion-loras",headingTag:"h2"}}),rt=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZQaXBlbGluZSUyQyUyMERESU1TY2hlZHVsZXIlMkMlMjBNb3Rpb25BZGFwdGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMEElMEElMjMlMjBMb2FkJTIwdGhlJTIwbW90aW9uJTIwYWRhcHRlciUwQWFkYXB0ZXIlMjAlM0QlMjBNb3Rpb25BZGFwdGVyLmZyb21fcHJldHJhaW5lZCglMjJndW95d3clMkZhbmltYXRlZGlmZi1tb3Rpb24tYWRhcHRlci12MS01LTIlMjIlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpJTBBJTIzJTIwbG9hZCUyMFNEJTIwMS41JTIwYmFzZWQlMjBmaW5ldHVuZWQlMjBtb2RlbCUwQW1vZGVsX2lkJTIwJTNEJTIwJTIyU0cxNjEyMjIlMkZSZWFsaXN0aWNfVmlzaW9uX1Y1LjFfbm9WQUUlMjIlMEFwaXBlJTIwJTNEJTIwQW5pbWF0ZURpZmZQaXBlbGluZS5mcm9tX3ByZXRyYWluZWQobW9kZWxfaWQlMkMlMjBtb3Rpb25fYWRhcHRlciUzRGFkYXB0ZXIlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpJTBBcGlwZS5sb2FkX2xvcmFfd2VpZ2h0cyglMEElMjAlMjAlMjAlMjAlMjJndW95d3clMkZhbmltYXRlZGlmZi1tb3Rpb24tbG9yYS16b29tLW91dCUyMiUyQyUyMGFkYXB0ZXJfbmFtZSUzRCUyMnpvb20tb3V0JTIyJTBBKSUwQSUwQXNjaGVkdWxlciUyMCUzRCUyMERESU1TY2hlZHVsZXIuZnJvbV9wcmV0cmFpbmVkKCUwQSUyMCUyMCUyMCUyMG1vZGVsX2lkJTJDJTBBJTIwJTIwJTIwJTIwc3ViZm9sZGVyJTNEJTIyc2NoZWR1bGVyJTIyJTJDJTBBJTIwJTIwJTIwJTIwY2xpcF9zYW1wbGUlM0RGYWxzZSUyQyUwQSUyMCUyMCUyMCUyMGJldGFfc2NoZWR1bGUlM0QlMjJsaW5lYXIlMjIlMkMlMEElMjAlMjAlMjAlMjB0aW1lc3RlcF9zcGFjaW5nJTNEJTIybGluc3BhY2UlMjIlMkMlMEElMjAlMjAlMjAlMjBzdGVwc19vZmZzZXQlM0QxJTJDJTBBKSUwQXBpcGUuc2NoZWR1bGVyJTIwJTNEJTIwc2NoZWR1bGVyJTBBJTBBJTIzJTIwZW5hYmxlJTIwbWVtb3J5JTIwc2F2aW5ncyUwQXBpcGUuZW5hYmxlX3ZhZV9zbGljaW5nKCklMEFwaXBlLmVuYWJsZV9tb2RlbF9jcHVfb2ZmbG9hZCgpJTBBJTBBb3V0cHV0JTIwJTNEJTIwcGlwZSglMEElMjAlMjAlMjAlMjBwcm9tcHQlM0QoJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIybWFzdGVycGllY2UlMkMlMjBiZXN0cXVhbGl0eSUyQyUyMGhpZ2hseWRldGFpbGVkJTJDJTIwdWx0cmFkZXRhaWxlZCUyQyUyMHN1bnNldCUyQyUyMCUyMiUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMm9yYW5nZSUyMHNreSUyQyUyMHdhcm0lMjBsaWdodGluZyUyQyUyMGZpc2hpbmclMjBib2F0cyUyQyUyMG9jZWFuJTIwd2F2ZXMlMjBzZWFndWxscyUyQyUyMCUyMiUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMnJpcHBsaW5nJTIwd2F0ZXIlMkMlMjB3aGFyZiUyQyUyMHNpbGhvdWV0dGUlMkMlMjBzZXJlbmUlMjBhdG1vc3BoZXJlJTJDJTIwZHVzayUyQyUyMGV2ZW5pbmclMjBnbG93JTJDJTIwJTIyJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIyZ29sZGVuJTIwaG91ciUyQyUyMGNvYXN0YWwlMjBsYW5kc2NhcGUlMkMlMjBzZWFzaWRlJTIwc2NlbmVyeSUyMiUwQSUyMCUyMCUyMCUyMCklMkMlMEElMjAlMjAlMjAlMjBuZWdhdGl2ZV9wcm9tcHQlM0QlMjJiYWQlMjBxdWFsaXR5JTJDJTIwd29yc2UlMjBxdWFsaXR5JTIyJTJDJTBBJTIwJTIwJTIwJTIwbnVtX2ZyYW1lcyUzRDE2JTJDJTBBJTIwJTIwJTIwJTIwZ3VpZGFuY2Vfc2NhbGUlM0Q3LjUlMkMlMEElMjAlMjAlMjAlMjBudW1faW5mZXJlbmNlX3N0ZXBzJTNEMjUlMkMlMEElMjAlMjAlMjAlMjBnZW5lcmF0b3IlM0R0b3JjaC5HZW5lcmF0b3IoJTIyY3B1JTIyKS5tYW51YWxfc2VlZCg0MiklMkMlMEEpJTBBZnJhbWVzJTIwJTNEJTIwb3V0cHV0LmZyYW1lcyU1QjAlNUQlMEFleHBvcnRfdG9fZ2lmKGZyYW1lcyUyQyUyMCUyMmFuaW1hdGlvbi5naWYlMjIp",highlighted:`import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
pipe.load_lora_weights(
"guoyww/animatediff-motion-lora-zoom-out", adapter_name="zoom-out"
)
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
beta_schedule="linear",
timestep_spacing="linspace",
steps_offset=1,
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")`,wrap:!1}}),pt=new w({props:{title:"Using Motion LoRAs with PEFT",local:"using-motion-loras-with-peft",headingTag:"h2"}}),ft=new I({props:{code:"cGlwJTIwaW5zdGFsbCUyMHBlZnQ=",highlighted:"pip install peft",wrap:!1}}),gt=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZQaXBlbGluZSUyQyUyMERESU1TY2hlZHVsZXIlMkMlMjBNb3Rpb25BZGFwdGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMEElMEElMjMlMjBMb2FkJTIwdGhlJTIwbW90aW9uJTIwYWRhcHRlciUwQWFkYXB0ZXIlMjAlM0QlMjBNb3Rpb25BZGFwdGVyLmZyb21fcHJldHJhaW5lZCglMjJndW95d3clMkZhbmltYXRlZGlmZi1tb3Rpb24tYWRhcHRlci12MS01LTIlMjIlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpJTBBJTIzJTIwbG9hZCUyMFNEJTIwMS41JTIwYmFzZWQlMjBmaW5ldHVuZWQlMjBtb2RlbCUwQW1vZGVsX2lkJTIwJTNEJTIwJTIyU0cxNjEyMjIlMkZSZWFsaXN0aWNfVmlzaW9uX1Y1LjFfbm9WQUUlMjIlMEFwaXBlJTIwJTNEJTIwQW5pbWF0ZURpZmZQaXBlbGluZS5mcm9tX3ByZXRyYWluZWQobW9kZWxfaWQlMkMlMjBtb3Rpb25fYWRhcHRlciUzRGFkYXB0ZXIlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpJTBBJTBBcGlwZS5sb2FkX2xvcmFfd2VpZ2h0cyglMEElMjAlMjAlMjAlMjAlMjJkaWZmdXNlcnMlMkZhbmltYXRlZGlmZi1tb3Rpb24tbG9yYS16b29tLW91dCUyMiUyQyUyMGFkYXB0ZXJfbmFtZSUzRCUyMnpvb20tb3V0JTIyJTJDJTBBKSUwQXBpcGUubG9hZF9sb3JhX3dlaWdodHMoJTBBJTIwJTIwJTIwJTIwJTIyZGlmZnVzZXJzJTJGYW5pbWF0ZWRpZmYtbW90aW9uLWxvcmEtcGFuLWxlZnQlMjIlMkMlMjBhZGFwdGVyX25hbWUlM0QlMjJwYW4tbGVmdCUyMiUyQyUwQSklMEFwaXBlLnNldF9hZGFwdGVycyglNUIlMjJ6b29tLW91dCUyMiUyQyUyMCUyMnBhbi1sZWZ0JTIyJTVEJTJDJTIwYWRhcHRlcl93ZWlnaHRzJTNEJTVCMS4wJTJDJTIwMS4wJTVEKSUwQSUwQXNjaGVkdWxlciUyMCUzRCUyMERESU1TY2hlZHVsZXIuZnJvbV9wcmV0cmFpbmVkKCUwQSUyMCUyMCUyMCUyMG1vZGVsX2lkJTJDJTBBJTIwJTIwJTIwJTIwc3ViZm9sZGVyJTNEJTIyc2NoZWR1bGVyJTIyJTJDJTBBJTIwJTIwJTIwJTIwY2xpcF9zYW1wbGUlM0RGYWxzZSUyQyUwQSUyMCUyMCUyMCUyMHRpbWVzdGVwX3NwYWNpbmclM0QlMjJsaW5zcGFjZSUyMiUyQyUwQSUyMCUyMCUyMCUyMGJldGFfc2NoZWR1bGUlM0QlMjJsaW5lYXIlMjIlMkMlMEElMjAlMjAlMjAlMjBzdGVwc19vZmZzZXQlM0QxJTJDJTBBKSUwQXBpcGUuc2NoZWR1bGVyJTIwJTNEJTIwc2NoZWR1bGVyJTBBJTBBJTIzJTIwZW5hYmxlJTIwbWVtb3J5JTIwc2F2aW5ncyUwQXBpcGUuZW5hYmxlX3ZhZV9zbGljaW5nKCklMEFwaXBlLmVuYWJsZV9tb2RlbF9jcHVfb2ZmbG9hZCgpJTBBJTBBb3V0cHV0JTIwJTNEJTIwcGlwZSglMEElMjAlMjAlMjAlMjBwcm9tcHQlM0QoJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIybWFzdGVycGllY2UlMkMlMjBiZXN0cXVhbGl0eSUyQyUyMGhpZ2hseWRldGFpbGVkJTJDJTIwdWx0cmFkZXRhaWxlZCUyQyUyMHN1bnNldCUyQyUyMCUyMiUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMm9yYW5nZSUyMHNreSUyQyUyMHdhcm0lMjBsaWdodGluZyUyQyUyMGZpc2hpbmclMjBib2F0cyUyQyUyMG9jZWFuJTIwd2F2ZXMlMjBzZWFndWxscyUyQyUyMCUyMiUwQSUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMnJpcHBsaW5nJTIwd2F0ZXIlMkMlMjB3aGFyZiUyQyUyMHNpbGhvdWV0dGUlMkMlMjBzZXJlbmUlMjBhdG1vc3BoZXJlJTJDJTIwZHVzayUyQyUyMGV2ZW5pbmclMjBnbG93JTJDJTIwJTIyJTBBJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIyZ29sZGVuJTIwaG91ciUyQyUyMGNvYXN0YWwlMjBsYW5kc2NhcGUlMkMlMjBzZWFzaWRlJTIwc2NlbmVyeSUyMiUwQSUyMCUyMCUyMCUyMCklMkMlMEElMjAlMjAlMjAlMjBuZWdhdGl2ZV9wcm9tcHQlM0QlMjJiYWQlMjBxdWFsaXR5JTJDJTIwd29yc2UlMjBxdWFsaXR5JTIyJTJDJTBBJTIwJTIwJTIwJTIwbnVtX2ZyYW1lcyUzRDE2JTJDJTBBJTIwJTIwJTIwJTIwZ3VpZGFuY2Vfc2NhbGUlM0Q3LjUlMkMlMEElMjAlMjAlMjAlMjBudW1faW5mZXJlbmNlX3N0ZXBzJTNEMjUlMkMlMEElMjAlMjAlMjAlMjBnZW5lcmF0b3IlM0R0b3JjaC5HZW5lcmF0b3IoJTIyY3B1JTIyKS5tYW51YWxfc2VlZCg0MiklMkMlMEEpJTBBZnJhbWVzJTIwJTNEJTIwb3V0cHV0LmZyYW1lcyU1QjAlNUQlMEFleHBvcnRfdG9fZ2lmKGZyYW1lcyUyQyUyMCUyMmFuaW1hdGlvbi5naWYlMjIp",highlighted:`import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
pipe.load_lora_weights(
"diffusers/animatediff-motion-lora-zoom-out", adapter_name="zoom-out",
)
pipe.load_lora_weights(
"diffusers/animatediff-motion-lora-pan-left", adapter_name="pan-left",
)
pipe.set_adapters(["zoom-out", "pan-left"], adapter_weights=[1.0, 1.0])
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")`,wrap:!1}}),_t=new w({props:{title:"Using FreeInit",local:"using-freeinit",headingTag:"h2"}}),wt=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwTW90aW9uQWRhcHRlciUyQyUyMEFuaW1hdGVEaWZmUGlwZWxpbmUlMkMlMjBERElNU2NoZWR1bGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b19naWYlMEElMEFhZGFwdGVyJTIwJTNEJTIwTW90aW9uQWRhcHRlci5mcm9tX3ByZXRyYWluZWQoJTIyZ3VveXd3JTJGYW5pbWF0ZWRpZmYtbW90aW9uLWFkYXB0ZXItdjEtNS0yJTIyKSUwQW1vZGVsX2lkJTIwJTNEJTIwJTIyU0cxNjEyMjIlMkZSZWFsaXN0aWNfVmlzaW9uX1Y1LjFfbm9WQUUlMjIlMEFwaXBlJTIwJTNEJTIwQW5pbWF0ZURpZmZQaXBlbGluZS5mcm9tX3ByZXRyYWluZWQobW9kZWxfaWQlMkMlMjBtb3Rpb25fYWRhcHRlciUzRGFkYXB0ZXIlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmZsb2F0MTYpLnRvKCUyMmN1ZGElMjIpJTBBcGlwZS5zY2hlZHVsZXIlMjAlM0QlMjBERElNU2NoZWR1bGVyLmZyb21fcHJldHJhaW5lZCglMEElMjAlMjAlMjAlMjBtb2RlbF9pZCUyQyUwQSUyMCUyMCUyMCUyMHN1YmZvbGRlciUzRCUyMnNjaGVkdWxlciUyMiUyQyUwQSUyMCUyMCUyMCUyMGJldGFfc2NoZWR1bGUlM0QlMjJsaW5lYXIlMjIlMkMlMEElMjAlMjAlMjAlMjBjbGlwX3NhbXBsZSUzREZhbHNlJTJDJTBBJTIwJTIwJTIwJTIwdGltZXN0ZXBfc3BhY2luZyUzRCUyMmxpbnNwYWNlJTIyJTJDJTBBJTIwJTIwJTIwJTIwc3RlcHNfb2Zmc2V0JTNEMSUwQSklMEElMEElMjMlMjBlbmFibGUlMjBtZW1vcnklMjBzYXZpbmdzJTBBcGlwZS5lbmFibGVfdmFlX3NsaWNpbmcoKSUwQXBpcGUuZW5hYmxlX3ZhZV90aWxpbmcoKSUwQSUwQSUyMyUyMGVuYWJsZSUyMEZyZWVJbml0JTBBJTIzJTIwUmVmZXIlMjB0byUyMHRoZSUyMGVuYWJsZV9mcmVlX2luaXQlMjBkb2N1bWVudGF0aW9uJTIwZm9yJTIwYSUyMGZ1bGwlMjBsaXN0JTIwb2YlMjBjb25maWd1cmFibGUlMjBwYXJhbWV0ZXJzJTBBcGlwZS5lbmFibGVfZnJlZV9pbml0KG1ldGhvZCUzRCUyMmJ1dHRlcndvcnRoJTIyJTJDJTIwdXNlX2Zhc3Rfc2FtcGxpbmclM0RUcnVlKSUwQSUwQSUyMyUyMHJ1biUyMGluZmVyZW5jZSUwQW91dHB1dCUyMCUzRCUyMHBpcGUoJTBBJTIwJTIwJTIwJTIwcHJvbXB0JTNEJTIyYSUyMHBhbmRhJTIwcGxheWluZyUyMGElMjBndWl0YXIlMkMlMjBvbiUyMGElMjBib2F0JTJDJTIwaW4lMjB0aGUlMjBvY2VhbiUyQyUyMGhpZ2glMjBxdWFsaXR5JTIyJTJDJTBBJTIwJTIwJTIwJTIwbmVnYXRpdmVfcHJvbXB0JTNEJTIyYmFkJTIwcXVhbGl0eSUyQyUyMHdvcnNlJTIwcXVhbGl0eSUyMiUyQyUwQSUyMCUyMCUyMCUyMG51bV9mcmFtZXMlM0QxNiUyQyUwQSUyMCUyMCUyMCUyMGd1aWRhbmNlX3NjYWxlJTNENy41JTJDJTBBJTIwJTIwJTIwJTIwbnVtX2luZmVyZW5jZV9zdGVwcyUzRDIwJTJDJTBBJTIwJTIwJTIwJTIwZ2VuZXJhdG9yJTNEdG9yY2guR2VuZXJhdG9yKCUyMmNwdSUyMikubWFudWFsX3NlZWQoNjY2KSUyQyUwQSklMEElMEElMjMlMjBkaXNhYmxlJTIwRnJlZUluaXQlMEFwaXBlLmRpc2FibGVfZnJlZV9pbml0KCklMEElMEFmcmFtZXMlMjAlM0QlMjBvdXRwdXQuZnJhbWVzJTVCMCU1RCUwQWV4cG9ydF90b19naWYoZnJhbWVzJTJDJTIwJTIyYW5pbWF0aW9uLmdpZiUyMik=",highlighted:`import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16).to("cuda")
pipe.scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
beta_schedule="linear",
clip_sample=False,
timestep_spacing="linspace",
steps_offset=1
)
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
# enable FreeInit
# Refer to the enable_free_init documentation for a full list of configurable parameters
pipe.enable_free_init(method="butterworth", use_fast_sampling=True)
# run inference
output = pipe(
prompt="a panda playing a guitar, on a boat, in the ocean, high quality",
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=20,
generator=torch.Generator("cpu").manual_seed(666),
)
# disable FreeInit
pipe.disable_free_init()
frames = output.frames[0]
export_to_gif(frames, "animation.gif")`,wrap:!1}}),te=new Wa({props:{warning:!0,$$slots:{default:[Wr]},$$scope:{ctx:A}}}),ne=new Wa({props:{$$slots:{default:[Vr]},$$scope:{ctx:A}}}),Jt=new w({props:{title:"Using AnimateLCM",local:"using-animatelcm",headingTag:"h2"}}),Ut=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZQaXBlbGluZSUyQyUyMExDTVNjaGVkdWxlciUyQyUyME1vdGlvbkFkYXB0ZXIlMEFmcm9tJTIwZGlmZnVzZXJzLnV0aWxzJTIwaW1wb3J0JTIwZXhwb3J0X3RvX2dpZiUwQSUwQWFkYXB0ZXIlMjAlM0QlMjBNb3Rpb25BZGFwdGVyLmZyb21fcHJldHJhaW5lZCglMjJ3YW5nZnV5dW4lMkZBbmltYXRlTENNJTIyKSUwQXBpcGUlMjAlM0QlMjBBbmltYXRlRGlmZlBpcGVsaW5lLmZyb21fcHJldHJhaW5lZCglMjJlbWlsaWFuSlIlMkZlcGlDUmVhbGlzbSUyMiUyQyUyMG1vdGlvbl9hZGFwdGVyJTNEYWRhcHRlciklMEFwaXBlLnNjaGVkdWxlciUyMCUzRCUyMExDTVNjaGVkdWxlci5mcm9tX2NvbmZpZyhwaXBlLnNjaGVkdWxlci5jb25maWclMkMlMjBiZXRhX3NjaGVkdWxlJTNEJTIybGluZWFyJTIyKSUwQSUwQXBpcGUubG9hZF9sb3JhX3dlaWdodHMoJTIyd2FuZ2Z1eXVuJTJGQW5pbWF0ZUxDTSUyMiUyQyUyMHdlaWdodF9uYW1lJTNEJTIyc2QxNV9sb3JhX2JldGEuc2FmZXRlbnNvcnMlMjIlMkMlMjBhZGFwdGVyX25hbWUlM0QlMjJsY20tbG9yYSUyMiklMEElMEFwaXBlLmVuYWJsZV92YWVfc2xpY2luZygpJTBBcGlwZS5lbmFibGVfbW9kZWxfY3B1X29mZmxvYWQoKSUwQSUwQW91dHB1dCUyMCUzRCUyMHBpcGUoJTBBJTIwJTIwJTIwJTIwcHJvbXB0JTNEJTIyQSUyMHNwYWNlJTIwcm9ja2V0JTIwd2l0aCUyMHRyYWlscyUyMG9mJTIwc21va2UlMjBiZWhpbmQlMjBpdCUyMGxhdW5jaGluZyUyMGludG8lMjBzcGFjZSUyMGZyb20lMjB0aGUlMjBkZXNlcnQlMkMlMjA0ayUyQyUyMGhpZ2glMjByZXNvbHV0aW9uJTIyJTJDJTBBJTIwJTIwJTIwJTIwbmVnYXRpdmVfcHJvbXB0JTNEJTIyYmFkJTIwcXVhbGl0eSUyQyUyMHdvcnNlJTIwcXVhbGl0eSUyQyUyMGxvdyUyMHJlc29sdXRpb24lMjIlMkMlMEElMjAlMjAlMjAlMjBudW1fZnJhbWVzJTNEMTYlMkMlMEElMjAlMjAlMjAlMjBndWlkYW5jZV9zY2FsZSUzRDEuNSUyQyUwQSUyMCUyMCUyMCUyMG51bV9pbmZlcmVuY2Vfc3RlcHMlM0Q2JTJDJTBBJTIwJTIwJTIwJTIwZ2VuZXJhdG9yJTNEdG9yY2guR2VuZXJhdG9yKCUyMmNwdSUyMikubWFudWFsX3NlZWQoMCklMkMlMEEpJTBBZnJhbWVzJTIwJTNEJTIwb3V0cHV0LmZyYW1lcyU1QjAlNUQlMEFleHBvcnRfdG9fZ2lmKGZyYW1lcyUyQyUyMCUyMmFuaW1hdGVsY20uZ2lmJTIyKQ==",highlighted:`import torch
from diffusers import AnimateDiffPipeline, LCMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="sd15_lora_beta.safetensors", adapter_name="lcm-lora")
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt="A space rocket with trails of smoke behind it launching into space from the desert, 4k, high resolution",
negative_prompt="bad quality, worse quality, low resolution",
num_frames=16,
guidance_scale=1.5,
num_inference_steps=6,
generator=torch.Generator("cpu").manual_seed(0),
)
frames = output.frames[0]
export_to_gif(frames, "animatelcm.gif")`,wrap:!1}}),It=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQW5pbWF0ZURpZmZQaXBlbGluZSUyQyUyMExDTVNjaGVkdWxlciUyQyUyME1vdGlvbkFkYXB0ZXIlMEFmcm9tJTIwZGlmZnVzZXJzLnV0aWxzJTIwaW1wb3J0JTIwZXhwb3J0X3RvX2dpZiUwQSUwQWFkYXB0ZXIlMjAlM0QlMjBNb3Rpb25BZGFwdGVyLmZyb21fcHJldHJhaW5lZCglMjJ3YW5nZnV5dW4lMkZBbmltYXRlTENNJTIyKSUwQXBpcGUlMjAlM0QlMjBBbmltYXRlRGlmZlBpcGVsaW5lLmZyb21fcHJldHJhaW5lZCglMjJlbWlsaWFuSlIlMkZlcGlDUmVhbGlzbSUyMiUyQyUyMG1vdGlvbl9hZGFwdGVyJTNEYWRhcHRlciklMEFwaXBlLnNjaGVkdWxlciUyMCUzRCUyMExDTVNjaGVkdWxlci5mcm9tX2NvbmZpZyhwaXBlLnNjaGVkdWxlci5jb25maWclMkMlMjBiZXRhX3NjaGVkdWxlJTNEJTIybGluZWFyJTIyKSUwQSUwQXBpcGUubG9hZF9sb3JhX3dlaWdodHMoJTIyd2FuZ2Z1eXVuJTJGQW5pbWF0ZUxDTSUyMiUyQyUyMHdlaWdodF9uYW1lJTNEJTIyc2QxNV9sb3JhX2JldGEuc2FmZXRlbnNvcnMlMjIlMkMlMjBhZGFwdGVyX25hbWUlM0QlMjJsY20tbG9yYSUyMiklMEFwaXBlLmxvYWRfbG9yYV93ZWlnaHRzKCUyMmd1b3l3dyUyRmFuaW1hdGVkaWZmLW1vdGlvbi1sb3JhLXRpbHQtdXAlMjIlMkMlMjBhZGFwdGVyX25hbWUlM0QlMjJ0aWx0LXVwJTIyKSUwQSUwQXBpcGUuc2V0X2FkYXB0ZXJzKCU1QiUyMmxjbS1sb3JhJTIyJTJDJTIwJTIydGlsdC11cCUyMiU1RCUyQyUyMCU1QjEuMCUyQyUyMDAuOCU1RCklMEFwaXBlLmVuYWJsZV92YWVfc2xpY2luZygpJTBBcGlwZS5lbmFibGVfbW9kZWxfY3B1X29mZmxvYWQoKSUwQSUwQW91dHB1dCUyMCUzRCUyMHBpcGUoJTBBJTIwJTIwJTIwJTIwcHJvbXB0JTNEJTIyQSUyMHNwYWNlJTIwcm9ja2V0JTIwd2l0aCUyMHRyYWlscyUyMG9mJTIwc21va2UlMjBiZWhpbmQlMjBpdCUyMGxhdW5jaGluZyUyMGludG8lMjBzcGFjZSUyMGZyb20lMjB0aGUlMjBkZXNlcnQlMkMlMjA0ayUyQyUyMGhpZ2glMjByZXNvbHV0aW9uJTIyJTJDJTBBJTIwJTIwJTIwJTIwbmVnYXRpdmVfcHJvbXB0JTNEJTIyYmFkJTIwcXVhbGl0eSUyQyUyMHdvcnNlJTIwcXVhbGl0eSUyQyUyMGxvdyUyMHJlc29sdXRpb24lMjIlMkMlMEElMjAlMjAlMjAlMjBudW1fZnJhbWVzJTNEMTYlMkMlMEElMjAlMjAlMjAlMjBndWlkYW5jZV9zY2FsZSUzRDEuNSUyQyUwQSUyMCUyMCUyMCUyMG51bV9pbmZlcmVuY2Vfc3RlcHMlM0Q2JTJDJTBBJTIwJTIwJTIwJTIwZ2VuZXJhdG9yJTNEdG9yY2guR2VuZXJhdG9yKCUyMmNwdSUyMikubWFudWFsX3NlZWQoMCklMkMlMEEpJTBBZnJhbWVzJTIwJTNEJTIwb3V0cHV0LmZyYW1lcyU1QjAlNUQlMEFleHBvcnRfdG9fZ2lmKGZyYW1lcyUyQyUyMCUyMmFuaW1hdGVsY20tbW90aW9uLWxvcmEuZ2lmJTIyKQ==",highlighted:`import torch
from diffusers import AnimateDiffPipeline, LCMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="sd15_lora_beta.safetensors", adapter_name="lcm-lora")
pipe.load_lora_weights("guoyww/animatediff-motion-lora-tilt-up", adapter_name="tilt-up")
pipe.set_adapters(["lcm-lora", "tilt-up"], [1.0, 0.8])
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt="A space rocket with trails of smoke behind it launching into space from the desert, 4k, high resolution",
negative_prompt="bad quality, worse quality, low resolution",
num_frames=16,
guidance_scale=1.5,
num_inference_steps=6,
generator=torch.Generator("cpu").manual_seed(0),
)
frames = output.frames[0]
export_to_gif(frames, "animatelcm-motion-lora.gif")`,wrap:!1}}),Gt=new w({props:{title:"Using FreeNoise",local:"using-freenoise",headingTag:"h2"}}),Nt=new I({props:{code:"JTJCJTIwcGlwZS5lbmFibGVfZnJlZV9ub2lzZSgp",highlighted:'+ pipe.enable_free_noise()',wrap:!1}}),Rt=new I({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwQXV0b2VuY29kZXJLTCUyQyUyMEFuaW1hdGVEaWZmUGlwZWxpbmUlMkMlMjBMQ01TY2hlZHVsZXIlMkMlMjBNb3Rpb25BZGFwdGVyJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGV4cG9ydF90b192aWRlbyUyQyUyMGxvYWRfaW1hZ2UlMEElMEElMjMlMjBMb2FkJTIwcGlwZWxpbmUlMEFkdHlwZSUyMCUzRCUyMHRvcmNoLmZsb2F0MTYlMEFtb3Rpb25fYWRhcHRlciUyMCUzRCUyME1vdGlvbkFkYXB0ZXIuZnJvbV9wcmV0cmFpbmVkKCUyMndhbmdmdXl1biUyRkFuaW1hdGVMQ00lMjIlMkMlMjB0b3JjaF9kdHlwZSUzRGR0eXBlKSUwQXZhZSUyMCUzRCUyMEF1dG9lbmNvZGVyS0wuZnJvbV9wcmV0cmFpbmVkKCUyMnN0YWJpbGl0eWFpJTJGc2QtdmFlLWZ0LW1zZSUyMiUyQyUyMHRvcmNoX2R0eXBlJTNEZHR5cGUpJTBBJTBBcGlwZSUyMCUzRCUyMEFuaW1hdGVEaWZmUGlwZWxpbmUuZnJvbV9wcmV0cmFpbmVkKCUyMmVtaWxpYW5KUiUyRmVwaUNSZWFsaXNtJTIyJTJDJTIwbW90aW9uX2FkYXB0ZXIlM0Rtb3Rpb25fYWRhcHRlciUyQyUyMHZhZSUzRHZhZSUyQyUyMHRvcmNoX2R0eXBlJTNEZHR5cGUpJTBBcGlwZS5zY2hlZHVsZXIlMjAlM0QlMjBMQ01TY2hlZHVsZXIuZnJvbV9jb25maWcocGlwZS5zY2hlZHVsZXIuY29uZmlnJTJDJTIwYmV0YV9zY2hlZHVsZSUzRCUyMmxpbmVhciUyMiklMEElMEFwaXBlLmxvYWRfbG9yYV93ZWlnaHRzKCUwQSUyMCUyMCUyMCUyMCUyMndhbmdmdXl1biUyRkFuaW1hdGVMQ00lMjIlMkMlMjB3ZWlnaHRfbmFtZSUzRCUyMkFuaW1hdGVMQ01fc2QxNV90MnZfbG9yYS5zYWZldGVuc29ycyUyMiUyQyUyMGFkYXB0ZXJfbmFtZSUzRCUyMmxjbV9sb3JhJTIyJTBBKSUwQXBpcGUuc2V0X2FkYXB0ZXJzKCU1QiUyMmxjbV9sb3JhJTIyJTVEJTJDJTIwJTVCMC44JTVEKSUwQSUwQSUyMyUyMEVuYWJsZSUyMEZyZWVOb2lzZSUyMGZvciUyMGxvbmclMjBwcm9tcHQlMjBnZW5lcmF0aW9uJTBBcGlwZS5lbmFibGVfZnJlZV9ub2lzZShjb250ZXh0X2xlbmd0aCUzRDE2JTJDJTIwY29udGV4dF9zdHJpZGUlM0Q0KSUwQXBpcGUudG8oJTIyY3VkYSUyMiklMEElMEElMjMlMjBDYW4lMjBiZSUyMGElMjBzaW5nbGUlMjBwcm9tcHQlMkMlMjBvciUyMGElMjBkaWN0aW9uYXJ5JTIwd2l0aCUyMGZyYW1lJTIwdGltZXN0ZXBzJTBBcHJvbXB0JTIwJTNEJTIwJTdCJTBBJTIwJTIwJTIwJTIwMCUzQSUyMCUyMkElMjBjYXRlcnBpbGxhciUyMG9uJTIwYSUyMGxlYWYlMkMlMjBoaWdoJTIwcXVhbGl0eSUyQyUyMHBob3RvcmVhbGlzdGljJTIyJTJDJTBBJTIwJTIwJTIwJTIwNDAlM0ElMjAlMjJBJTIwY2F0ZXJwaWxsYXIlMjB0cmFuc2Zvcm1pbmclMjBpbnRvJTIwYSUyMGNvY29vbiUyQyUyMG9uJTIwYSUyMGxlYWYlMkMlMjBuZWFyJTIwZmxvd2VycyUyQyUyMHBob3RvcmVhbGlzdGljJTIyJTJDJTBBJTIwJTIwJTIwJTIwODAlM0ElMjAlMjJBJTIwY29jb29uJTIwb24lMjBhJTIwbGVhZiUyQyUyMGZsb3dlcnMlMjBpbiUyMHRoZSUyMGJhY2tncm91bmQlMkMlMjBwaG90b3JlYWxpc3RpYyUyMiUyQyUwQSUyMCUyMCUyMCUyMDEyMCUzQSUyMCUyMkElMjBjb2Nvb24lMjBtYXR1cmluZyUyMGFuZCUyMGElMjBidXR0ZXJmbHklMjBiZWluZyUyMGJvcm4lMkMlMjBmbG93ZXJzJTIwYW5kJTIwbGVhdmVzJTIwdmlzaWJsZSUyMGluJTIwdGhlJTIwYmFja2dyb3VuZCUyQyUyMHBob3RvcmVhbGlzdGljJTIyJTJDJTBBJTIwJTIwJTIwJTIwMTYwJTNBJTIwJTIyQSUyMGJlYXV0aWZ1bCUyMGJ1dHRlcmZseSUyQyUyMHZpYnJhbnQlMjBjb2xvcnMlMkMlMjBzaXR0aW5nJTIwb24lMjBhJTIwbGVhZiUyQyUyMGZsb3dlcnMlMjBpbiUyMHRoZSUyMGJhY2tncm91bmQlMkMlMjBwaG90b3JlYWxpc3RpYyUyMiUyQyUwQSUyMCUyMCUyMCUyMDIwMCUzQSUyMCUyMkElMjBiZWF1dGlmdWwlMjBidXR0ZXJmbHklMkMlMjBmbHlpbmclMjBhd2F5JTIwaW4lMjBhJTIwZm9yZXN0JTJDJTIwcGhvdG9yZWFsaXN0aWMlMjIlMkMlMEElMjAlMjAlMjAlMjAyNDAlM0ElMjAlMjJBJTIwY3liZXJwdW5rJTIwYnV0dGVyZmx5JTJDJTIwbmVvbiUyMGxpZ2h0cyUyQyUyMGdsb3dpbmclMjIlMkMlMEElN0QlMEFuZWdhdGl2ZV9wcm9tcHQlMjAlM0QlMjAlMjJiYWQlMjBxdWFsaXR5JTJDJTIwd29yc3QlMjBxdWFsaXR5JTJDJTIwanBlZyUyMGFydGlmYWN0cyUyMiUwQSUwQSUyMyUyMFJ1biUyMGluZmVyZW5jZSUwQW91dHB1dCUyMCUzRCUyMHBpcGUoJTBBJTIwJTIwJTIwJTIwcHJvbXB0JTNEcHJvbXB0JTJDJTBBJTIwJTIwJTIwJTIwbmVnYXRpdmVfcHJvbXB0JTNEbmVnYXRpdmVfcHJvbXB0JTJDJTBBJTIwJTIwJTIwJTIwbnVtX2ZyYW1lcyUzRDI1NiUyQyUwQSUyMCUyMCUyMCUyMGd1aWRhbmNlX3NjYWxlJTNEMi41JTJDJTBBJTIwJTIwJTIwJTIwbnVtX2luZmVyZW5jZV9zdGVwcyUzRDEwJTJDJTBBJTIwJTIwJTIwJTIwZ2VuZXJhdG9yJTNEdG9yY2guR2VuZXJhdG9yKCUyMmNwdSUyMikubWFudWFsX3NlZWQoMCklMkMlMEEpJTBBJTBBJTIzJTIwU2F2ZSUyMHZpZGVvJTBBZnJhbWVzJTIwJTNEJTIwb3V0cHV0LmZyYW1lcyU1QjAlNUQlMEFleHBvcnRfdG9fdmlkZW8oZnJhbWVzJTJDJTIwJTIyb3V0cHV0Lm1wNCUyMiUyQyUyMGZwcyUzRDE2KQ==",highlighted:`import torch
from diffusers import AutoencoderKL, AnimateDiffPipeline, LCMScheduler, MotionAdapter
from diffusers.utils import export_to_video, load_image
# Load pipeline
dtype = torch.float16
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM", torch_dtype=dtype)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype)
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=motion_adapter, vae=vae, torch_dtype=dtype)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights(
"wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm_lora"
)
pipe.set_adapters(["lcm_lora"], [0.8])
# Enable FreeNoise for long prompt generation
pipe.enable_free_noise(context_length=16, context_stride=4)
pipe.to("cuda")
# Can be a single prompt, or a dictionary with frame timesteps
prompt = {
0: "A caterpillar on a leaf, high quality, photorealistic",
40: "A caterpillar transforming into a cocoon, on a leaf, near flowers, photorealistic",
80: "A cocoon on a leaf, flowers in the background, photorealistic",
120: "A cocoon maturing and a butterfly being born, flowers and leaves visible in the background, photorealistic",
160: "A beautiful butterfly, vibrant colors, sitting on a leaf, flowers in the background, photorealistic",
200: "A beautiful butterfly, flying away in a forest, photorealistic",
240: "A cyberpunk butterfly, neon lights, glowing",
}
negative_prompt = "bad quality, worst quality, jpeg artifacts"
# Run inference
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=256,
guidance_scale=2.5,
num_inference_steps=10,
generator=torch.Generator("cpu").manual_seed(0),
)
# Save video
frames = output.frames[0]
export_to_video(frames, "output.mp4", fps=16)`,wrap:!1}}),Xt=new w({props:{title:"FreeNoise memory savings",local:"freenoise-memory-savings",headingTag:"h3"}}),Lt=new I({props:{code:"JTIzJTIwTG9hZCUyMHBpcGVsaW5lJTIwYW5kJTIwYWRhcHRlcnMlMEElMjMlMjAuLi4lMEElMkIlMjBwaXBlLmVuYWJsZV9mcmVlX25vaXNlX3NwbGl0X2luZmVyZW5jZSgpJTBBJTJCJTIwcGlwZS51bmV0LmVuYWJsZV9mb3J3YXJkX2NodW5raW5nKDE2KQ==",highlighted:`# Load pipeline and adapters
# ...
+ pipe.enable_free_noise_split_inference()
+ pipe.unet.enable_forward_chunking(16)`,wrap:!1}}),Et=new w({props:{title:"Using from_single_file with the MotionAdapter",local:"using-fromsinglefile-with-the-motionadapter",headingTag:"h2"}}),Pt=new I({props:{code:"ZnJvbSUyMGRpZmZ1c2VycyUyMGltcG9ydCUyME1vdGlvbkFkYXB0ZXIlMEElMEFja3B0X3BhdGglMjAlM0QlMjAlMjJodHRwcyUzQSUyRiUyRmh1Z2dpbmdmYWNlLmNvJTJGTGlnaHRyaWNrcyUyRkxvbmdBbmltYXRlRGlmZiUyRmJsb2IlMkZtYWluJTJGbHRfbG9uZ19tbV8zMl9mcmFtZXMuY2twdCUyMiUwQSUwQWFkYXB0ZXIlMjAlM0QlMjBNb3Rpb25BZGFwdGVyLmZyb21fc2luZ2xlX2ZpbGUoY2twdF9wYXRoJTJDJTIwdG9yY2hfZHR5cGUlM0R0b3JjaC5mbG9hdDE2KSUwQXBpcGUlMjAlM0QlMjBBbmltYXRlRGlmZlBpcGVsaW5lLmZyb21fcHJldHJhaW5lZCglMjJlbWlsaWFuSlIlMkZlcGlDUmVhbGlzbSUyMiUyQyUyMG1vdGlvbl9hZGFwdGVyJTNEYWRhcHRlcik=",highlighted:`from diffusers import MotionAdapter
ckpt_path = "https://huggingface.co/Lightricks/LongAnimateDiff/blob/main/lt_long_mm_32_frames.ckpt"
adapter = MotionAdapter.from_single_file(ckpt_path, torch_dtype=torch.float16)
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter)`,wrap:!1}}),Ft=new w({props:{title:"AnimateDiffPipeline",local:"diffusers.AnimateDiffPipeline",headingTag:"h2"}}),Ht=new j({props:{name:"class diffusers.AnimateDiffPipeline",anchor:"diffusers.AnimateDiffPipeline",parameters:[{name:"vae",val:": AutoencoderKL"},{name:"text_encoder",val:": CLIPTextModel"},{name:"tokenizer",val:": CLIPTokenizer"},{name:"unet",val:": typing.Union[diffusers.models.unets.unet_2d_condition.UNet2DConditionModel, diffusers.models.unets.unet_motion_model.UNetMotionModel]"},{name:"motion_adapter",val:": MotionAdapter"},{name:"scheduler",val:": typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_pndm.PNDMScheduler, diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler, diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler, diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler, diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler]"},{name:"feature_extractor",val:": CLIPImageProcessor = None"},{name:"image_encoder",val:": CLIPVisionModelWithProjection = None"}],parametersDescription:[{anchor:"diffusers.AnimateDiffPipeline.vae",description:`vae (AutoencoderKL) —
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.`,name:"vae"},{anchor:"diffusers.AnimateDiffPipeline.text_encoder",description:`text_encoder (CLIPTextModel
) —
Frozen text-encoder (clip-vit-large-patch14).`,name:"text_encoder"},{anchor:"diffusers.AnimateDiffPipeline.tokenizer",description:`tokenizer (CLIPTokenizer
) —
A CLIPTokenizer
to tokenize text.`,name:"tokenizer"},{anchor:"diffusers.AnimateDiffPipeline.unet",description:`unet (UNet2DConditionModel) —
A UNet2DConditionModel used to create a UNetMotionModel to denoise the encoded video latents.`,name:"unet"},{anchor:"diffusers.AnimateDiffPipeline.motion_adapter",description:`motion_adapter (MotionAdapter
) —
A MotionAdapter
to be used in combination with unet
to denoise the encoded video latents.`,name:"motion_adapter"},{anchor:"diffusers.AnimateDiffPipeline.scheduler",description:`scheduler (SchedulerMixin) —
A scheduler to be used in combination with unet
to denoise the encoded image latents. Can be one of
DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.`,name:"scheduler"}],source:"https://github.com/huggingface/diffusers/blob/v0.35.1/src/diffusers/pipelines/animatediff/pipeline_animatediff.py#L78"}}),zt=new j({props:{name:"__call__",anchor:"diffusers.AnimateDiffPipeline.__call__",parameters:[{name:"prompt",val:": typing.Union[str, typing.List[str], NoneType] = None"},{name:"num_frames",val:": typing.Optional[int] = 16"},{name:"height",val:": typing.Optional[int] = None"},{name:"width",val:": typing.Optional[int] = None"},{name:"num_inference_steps",val:": int = 50"},{name:"guidance_scale",val:": float = 7.5"},{name:"negative_prompt",val:": typing.Union[str, typing.List[str], NoneType] = None"},{name:"num_videos_per_prompt",val:": typing.Optional[int] = 1"},{name:"eta",val:": float = 0.0"},{name:"generator",val:": typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None"},{name:"latents",val:": typing.Optional[torch.Tensor] = None"},{name:"prompt_embeds",val:": typing.Optional[torch.Tensor] = None"},{name:"negative_prompt_embeds",val:": typing.Optional[torch.Tensor] = None"},{name:"ip_adapter_image",val:": typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor], NoneType] = None"},{name:"ip_adapter_image_embeds",val:": typing.Optional[typing.List[torch.Tensor]] = None"},{name:"output_type",val:": typing.Optional[str] = 'pil'"},{name:"return_dict",val:": bool = True"},{name:"cross_attention_kwargs",val:": typing.Optional[typing.Dict[str, typing.Any]] = None"},{name:"clip_skip",val:": typing.Optional[int] = None"},{name:"callback_on_step_end",val:": typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None"},{name:"callback_on_step_end_tensor_inputs",val:": typing.List[str] = ['latents']"},{name:"decode_chunk_size",val:": int = 16"},{name:"**kwargs",val:""}],parametersDescription:[{anchor:"diffusers.AnimateDiffPipeline.__call__.prompt",description:`prompt (str
or List[str]
, optional) —
The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds
.`,name:"prompt"},{anchor:"diffusers.AnimateDiffPipeline.__call__.height",description:`height (int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) —
The height in pixels of the generated video.`,name:"height"},{anchor:"diffusers.AnimateDiffPipeline.__call__.width",description:`width (int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) —
The width in pixels of the generated video.`,name:"width"},{anchor:"diffusers.AnimateDiffPipeline.__call__.num_frames",description:`num_frames (int
, optional, defaults to 16) —
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
amounts to 2 seconds of video.`,name:"num_frames"},{anchor:"diffusers.AnimateDiffPipeline.__call__.num_inference_steps",description:`num_inference_steps (int
, optional, defaults to 50) —
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
expense of slower inference.`,name:"num_inference_steps"},{anchor:"diffusers.AnimateDiffPipeline.__call__.guidance_scale",description:`guidance_scale (float
, optional, defaults to 7.5) —
A higher guidance scale value encourages the model to generate images closely linked to the text
prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
.`,name:"guidance_scale"},{anchor:"diffusers.AnimateDiffPipeline.__call__.negative_prompt",description:`negative_prompt (str
or List[str]
, optional) —
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
).`,name:"negative_prompt"},{anchor:"diffusers.AnimateDiffPipeline.__call__.eta",description:`eta (float
, optional, defaults to 0.0) —
Corresponds to parameter eta (η) from the DDIM paper. Only
applies to the DDIMScheduler, and is ignored in other schedulers.`,name:"eta"},{anchor:"diffusers.AnimateDiffPipeline.__call__.generator",description:`generator (torch.Generator
or List[torch.Generator]
, optional) —
A torch.Generator
to make
generation deterministic.`,name:"generator"},{anchor:"diffusers.AnimateDiffPipeline.__call__.latents",description:`latents (torch.Tensor
, optional) —
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random generator
. Latents should be of shape
(batch_size, num_channel, num_frames, height, width)
.`,name:"latents"},{anchor:"diffusers.AnimateDiffPipeline.__call__.prompt_embeds",description:`prompt_embeds (torch.Tensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the prompt
input argument.`,name:"prompt_embeds"},{anchor:"diffusers.AnimateDiffPipeline.__call__.negative_prompt_embeds",description:`negative_prompt_embeds (torch.Tensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, negative_prompt_embeds
are generated from the negative_prompt
input argument.`,name:"negative_prompt_embeds"},{anchor:"diffusers.AnimateDiffPipeline.__call__.ip_adapter_image",description:`ip_adapter_image — (PipelineImageInput
, optional):
Optional image input to work with IP Adapters.`,name:"ip_adapter_image"},{anchor:"diffusers.AnimateDiffPipeline.__call__.ip_adapter_image_embeds",description:`ip_adapter_image_embeds (List[torch.Tensor]
, optional) —
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
IP-adapters. Each element should be a tensor of shape (batch_size, num_images, emb_dim)
. It should
contain the negative image embedding if do_classifier_free_guidance
is set to True
. If not
provided, embeddings are computed from the ip_adapter_image
input argument.`,name:"ip_adapter_image_embeds"},{anchor:"diffusers.AnimateDiffPipeline.__call__.output_type",description:`output_type (str
, optional, defaults to "pil"
) —
The output format of the generated video. Choose between torch.Tensor
, PIL.Image
or np.array
.`,name:"output_type"},{anchor:"diffusers.AnimateDiffPipeline.__call__.return_dict",description:`return_dict (bool
, optional, defaults to True
) —
Whether or not to return a TextToVideoSDPipelineOutput instead
of a plain tuple.`,name:"return_dict"},{anchor:"diffusers.AnimateDiffPipeline.__call__.cross_attention_kwargs",description:`cross_attention_kwargs (dict
, optional) —
A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined in
self.processor
.`,name:"cross_attention_kwargs"},{anchor:"diffusers.AnimateDiffPipeline.__call__.clip_skip",description:`clip_skip (int
, optional) —
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.`,name:"clip_skip"},{anchor:"diffusers.AnimateDiffPipeline.__call__.callback_on_step_end",description:`callback_on_step_end (Callable
, optional) —
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
. callback_kwargs
will include a list of all tensors as specified by
callback_on_step_end_tensor_inputs
.`,name:"callback_on_step_end"},{anchor:"diffusers.AnimateDiffPipeline.__call__.callback_on_step_end_tensor_inputs",description:`callback_on_step_end_tensor_inputs (List
, optional) —
The list of tensor inputs for the callback_on_step_end
function. The tensors specified in the list
will be passed as callback_kwargs
argument. You will only be able to include variables listed in the
._callback_tensor_inputs
attribute of your pipeline class.`,name:"callback_on_step_end_tensor_inputs"},{anchor:"diffusers.AnimateDiffPipeline.__call__.decode_chunk_size",description:`decode_chunk_size (int
, defaults to 16
) —
The number of frames to decode at a time when calling decode_latents
method.`,name:"decode_chunk_size"}],source:"https://github.com/huggingface/diffusers/blob/v0.35.1/src/diffusers/pipelines/animatediff/pipeline_animatediff.py#L573",returnDescription:`