import{s as as,o as ss,n as Ln}from"../chunks/scheduler.8c3d61f6.js";import{S as os,i as is,g as o,s as t,r as d,A as rs,h as i,f as s,c as a,j as y,u as c,x as b,k as I,y as n,a as h,v as m,d as g,t as u,w as f}from"../chunks/index.da70eac4.js";import{T as ts}from"../chunks/Tip.1d9b8c37.js";import{D as v}from"../chunks/Docstring.c021b19a.js";import{C as qn}from"../chunks/CodeBlock.a9c4becf.js";import{E as yt}from"../chunks/ExampleCodeBlock.56b4589c.js";import{H as nn,E as ls}from"../chunks/getInferenceSnippets.725ed3d4.js";function ps(E){let p,x='Caching may also speed up inference by storing and reusing intermediate outputs.';return{c(){p=o("p"),p.innerHTML=x},l(w){p=i(w,"P",{"data-svelte-h":!0}),b(p)!=="svelte-yvhnlz"&&(p.innerHTML=x)},m(w,_){h(w,p,_)},p:Ln,d(w){w&&s(p)}}}function ds(E){let p,x="The guidance_scale parameter in the pipeline is there to support future guidance-distilled models when they come up. Note that passing guidance_scale to the pipeline is ineffective. To enable classifier-free guidance, please pass true_cfg_scale and negative_prompt (even an empty negative prompt like ” ”) should enable classifier-free guidance computations.";return{c(){p=o("p"),p.innerHTML=x},l(w){p=i(w,"P",{"data-svelte-h":!0}),b(p)!=="svelte-1ftpam8"&&(p.innerHTML=x)},m(w,_){h(w,p,_)},p:Ln,d(w){w&&s(p)}}}function cs(E){let p,x="Examples:",w,_,M;return _=new qn({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwUXdlbkltYWdlUGlwZWxpbmUlMEElMEFwaXBlJTIwJTNEJTIwUXdlbkltYWdlUGlwZWxpbmUuZnJvbV9wcmV0cmFpbmVkKCUyMlF3ZW4lMkZRd2VuLUltYWdlJTIyJTJDJTIwdG9yY2hfZHR5cGUlM0R0b3JjaC5iZmxvYXQxNiklMEFwaXBlLnRvKCUyMmN1ZGElMjIpJTBBcHJvbXB0JTIwJTNEJTIwJTIyQSUyMGNhdCUyMGhvbGRpbmclMjBhJTIwc2lnbiUyMHRoYXQlMjBzYXlzJTIwaGVsbG8lMjB3b3JsZCUyMiUwQSUyMyUyMERlcGVuZGluZyUyMG9uJTIwdGhlJTIwdmFyaWFudCUyMGJlaW5nJTIwdXNlZCUyQyUyMHRoZSUyMHBpcGVsaW5lJTIwY2FsbCUyMHdpbGwlMjBzbGlnaHRseSUyMHZhcnkuJTBBJTIzJTIwUmVmZXIlMjB0byUyMHRoZSUyMHBpcGVsaW5lJTIwZG9jdW1lbnRhdGlvbiUyMGZvciUyMG1vcmUlMjBkZXRhaWxzLiUwQWltYWdlJTIwJTNEJTIwcGlwZShwcm9tcHQlMkMlMjBudW1faW5mZXJlbmNlX3N0ZXBzJTNENTApLmltYWdlcyU1QjAlNUQlMEFpbWFnZS5zYXZlKCUyMnF3ZW5pbWFnZS5wbmclMjIp",highlighted:`>>> import torch >>> from diffusers import QwenImagePipeline >>> pipe = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> prompt = "A cat holding a sign that says hello world" >>> # Depending on the variant being used, the pipeline call will slightly vary. >>> # Refer to the pipeline documentation for more details. >>> image = pipe(prompt, num_inference_steps=50).images[0] >>> image.save("qwenimage.png")`,wrap:!1}}),{c(){p=o("p"),p.textContent=x,w=t(),d(_.$$.fragment)},l(r){p=i(r,"P",{"data-svelte-h":!0}),b(p)!=="svelte-kvfsh7"&&(p.textContent=x),w=a(r),c(_.$$.fragment,r)},m(r,T){h(r,p,T),h(r,w,T),m(_,r,T),M=!0},p:Ln,i(r){M||(g(_.$$.fragment,r),M=!0)},o(r){u(_.$$.fragment,r),M=!1},d(r){r&&(s(p),s(w)),f(_,r)}}}function ms(E){let p,x="Examples:",w,_,M;return _=new qn({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwUXdlbkltYWdlSW1nMkltZ1BpcGVsaW5lJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGxvYWRfaW1hZ2UlMEElMEFwaXBlJTIwJTNEJTIwUXdlbkltYWdlSW1nMkltZ1BpcGVsaW5lLmZyb21fcHJldHJhaW5lZCglMjJRd2VuJTJGUXdlbi1JbWFnZSUyMiUyQyUyMHRvcmNoX2R0eXBlJTNEdG9yY2guYmZsb2F0MTYpJTBBcGlwZSUyMCUzRCUyMHBpcGUudG8oJTIyY3VkYSUyMiklMEF1cmwlMjAlM0QlMjAlMjJodHRwcyUzQSUyRiUyRnJhdy5naXRodWJ1c2VyY29udGVudC5jb20lMkZDb21wVmlzJTJGc3RhYmxlLWRpZmZ1c2lvbiUyRm1haW4lMkZhc3NldHMlMkZzdGFibGUtc2FtcGxlcyUyRmltZzJpbWclMkZza2V0Y2gtbW91bnRhaW5zLWlucHV0LmpwZyUyMiUwQWluaXRfaW1hZ2UlMjAlM0QlMjBsb2FkX2ltYWdlKHVybCkucmVzaXplKCgxMDI0JTJDJTIwMTAyNCkpJTBBcHJvbXB0JTIwJTNEJTIwJTIyY2F0JTIwd2l6YXJkJTJDJTIwZ2FuZGFsZiUyQyUyMGxvcmQlMjBvZiUyMHRoZSUyMHJpbmdzJTJDJTIwZGV0YWlsZWQlMkMlMjBmYW50YXN5JTJDJTIwY3V0ZSUyQyUyMGFkb3JhYmxlJTJDJTIwUGl4YXIlMkMlMjBEaXNuZXklMjIlMEFpbWFnZXMlMjAlM0QlMjBwaXBlKHByb21wdCUzRHByb21wdCUyQyUyMG5lZ2F0aXZlX3Byb21wdCUzRCUyMiUyMCUyMiUyQyUyMGltYWdlJTNEaW5pdF9pbWFnZSUyQyUyMHN0cmVuZ3RoJTNEMC45NSkuaW1hZ2VzJTVCMCU1RCUwQWltYWdlcy5zYXZlKCUyMnF3ZW5pbWFnZV9pbWcyaW1nLnBuZyUyMik=",highlighted:`>>> import torch >>> from diffusers import QwenImageImg2ImgPipeline >>> from diffusers.utils import load_image >>> pipe = QwenImageImg2ImgPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16) >>> pipe = pipe.to("cuda") >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" >>> init_image = load_image(url).resize((1024, 1024)) >>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney" >>> images = pipe(prompt=prompt, negative_prompt=" ", image=init_image, strength=0.95).images[0] >>> images.save("qwenimage_img2img.png")`,wrap:!1}}),{c(){p=o("p"),p.textContent=x,w=t(),d(_.$$.fragment)},l(r){p=i(r,"P",{"data-svelte-h":!0}),b(p)!=="svelte-kvfsh7"&&(p.textContent=x),w=a(r),c(_.$$.fragment,r)},m(r,T){h(r,p,T),h(r,w,T),m(_,r,T),M=!0},p:Ln,i(r){M||(g(_.$$.fragment,r),M=!0)},o(r){u(_.$$.fragment,r),M=!1},d(r){r&&(s(p),s(w)),f(_,r)}}}function gs(E){let p,x="Examples:",w,_,M;return _=new qn({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwUXdlbkltYWdlSW5wYWludFBpcGVsaW5lJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGxvYWRfaW1hZ2UlMEElMEFwaXBlJTIwJTNEJTIwUXdlbkltYWdlSW5wYWludFBpcGVsaW5lLmZyb21fcHJldHJhaW5lZCglMjJRd2VuJTJGUXdlbi1JbWFnZSUyMiUyQyUyMHRvcmNoX2R0eXBlJTNEdG9yY2guYmZsb2F0MTYpJTBBcGlwZS50byglMjJjdWRhJTIyKSUwQXByb21wdCUyMCUzRCUyMCUyMkZhY2UlMjBvZiUyMGElMjB5ZWxsb3clMjBjYXQlMkMlMjBoaWdoJTIwcmVzb2x1dGlvbiUyQyUyMHNpdHRpbmclMjBvbiUyMGElMjBwYXJrJTIwYmVuY2glMjIlMEFpbWdfdXJsJTIwJTNEJTIwJTIyaHR0cHMlM0ElMkYlMkZyYXcuZ2l0aHVidXNlcmNvbnRlbnQuY29tJTJGQ29tcFZpcyUyRmxhdGVudC1kaWZmdXNpb24lMkZtYWluJTJGZGF0YSUyRmlucGFpbnRpbmdfZXhhbXBsZXMlMkZvdmVydHVyZS1jcmVhdGlvbnMtNXNJNmZRZ1lJdW8ucG5nJTIyJTBBbWFza191cmwlMjAlM0QlMjAlMjJodHRwcyUzQSUyRiUyRnJhdy5naXRodWJ1c2VyY29udGVudC5jb20lMkZDb21wVmlzJTJGbGF0ZW50LWRpZmZ1c2lvbiUyRm1haW4lMkZkYXRhJTJGaW5wYWludGluZ19leGFtcGxlcyUyRm92ZXJ0dXJlLWNyZWF0aW9ucy01c0k2ZlFnWUl1b19tYXNrLnBuZyUyMiUwQXNvdXJjZSUyMCUzRCUyMGxvYWRfaW1hZ2UoaW1nX3VybCklMEFtYXNrJTIwJTNEJTIwbG9hZF9pbWFnZShtYXNrX3VybCklMEFpbWFnZSUyMCUzRCUyMHBpcGUocHJvbXB0JTNEcHJvbXB0JTJDJTIwbmVnYXRpdmVfcHJvbXB0JTNEJTIyJTIwJTIyJTJDJTIwaW1hZ2UlM0Rzb3VyY2UlMkMlMjBtYXNrX2ltYWdlJTNEbWFzayUyQyUyMHN0cmVuZ3RoJTNEMC44NSkuaW1hZ2VzJTVCMCU1RCUwQWltYWdlLnNhdmUoJTIycXdlbmltYWdlX2lucGFpbnRpbmcucG5nJTIyKQ==",highlighted:`>>> import torch >>> from diffusers import QwenImageInpaintPipeline >>> from diffusers.utils import load_image >>> pipe = QwenImageInpaintPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench" >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" >>> source = load_image(img_url) >>> mask = load_image(mask_url) >>> image = pipe(prompt=prompt, negative_prompt=" ", image=source, mask_image=mask, strength=0.85).images[0] >>> image.save("qwenimage_inpainting.png")`,wrap:!1}}),{c(){p=o("p"),p.textContent=x,w=t(),d(_.$$.fragment)},l(r){p=i(r,"P",{"data-svelte-h":!0}),b(p)!=="svelte-kvfsh7"&&(p.textContent=x),w=a(r),c(_.$$.fragment,r)},m(r,T){h(r,p,T),h(r,w,T),m(_,r,T),M=!0},p:Ln,i(r){M||(g(_.$$.fragment,r),M=!0)},o(r){u(_.$$.fragment,r),M=!1},d(r){r&&(s(p),s(w)),f(_,r)}}}function us(E){let p,x="Examples:",w,_,M;return _=new qn({props:{code:"aW1wb3J0JTIwdG9yY2glMEFmcm9tJTIwUElMJTIwaW1wb3J0JTIwSW1hZ2UlMEFmcm9tJTIwZGlmZnVzZXJzJTIwaW1wb3J0JTIwUXdlbkltYWdlRWRpdFBpcGVsaW5lJTBBZnJvbSUyMGRpZmZ1c2Vycy51dGlscyUyMGltcG9ydCUyMGxvYWRfaW1hZ2UlMEElMEFwaXBlJTIwJTNEJTIwUXdlbkltYWdlRWRpdFBpcGVsaW5lLmZyb21fcHJldHJhaW5lZCglMjJRd2VuJTJGUXdlbi1JbWFnZS1FZGl0JTIyJTJDJTIwdG9yY2hfZHR5cGUlM0R0b3JjaC5iZmxvYXQxNiklMEFwaXBlLnRvKCUyMmN1ZGElMjIpJTBBaW1hZ2UlMjAlM0QlMjBsb2FkX2ltYWdlKCUwQSUyMCUyMCUyMCUyMCUyMmh0dHBzJTNBJTJGJTJGaHVnZ2luZ2ZhY2UuY28lMkZkYXRhc2V0cyUyRmh1Z2dpbmdmYWNlJTJGZG9jdW1lbnRhdGlvbi1pbWFnZXMlMkZyZXNvbHZlJTJGbWFpbiUyRmRpZmZ1c2VycyUyRnlhcm4tYXJ0LXBpa2FjaHUucG5nJTIyJTBBKS5jb252ZXJ0KCUyMlJHQiUyMiklMEFwcm9tcHQlMjAlM0QlMjAoJTBBJTIwJTIwJTIwJTIwJTIyTWFrZSUyMFBpa2FjaHUlMjBob2xkJTIwYSUyMHNpZ24lMjB0aGF0JTIwc2F5cyUyMCdRd2VuJTIwRWRpdCUyMGlzJTIwYXdlc29tZSclMkMlMjB5YXJuJTIwYXJ0JTIwc3R5bGUlMkMlMjBkZXRhaWxlZCUyQyUyMHZpYnJhbnQlMjBjb2xvcnMlMjIlMEEpJTBBJTIzJTIwRGVwZW5kaW5nJTIwb24lMjB0aGUlMjB2YXJpYW50JTIwYmVpbmclMjB1c2VkJTJDJTIwdGhlJTIwcGlwZWxpbmUlMjBjYWxsJTIwd2lsbCUyMHNsaWdodGx5JTIwdmFyeS4lMEElMjMlMjBSZWZlciUyMHRvJTIwdGhlJTIwcGlwZWxpbmUlMjBkb2N1bWVudGF0aW9uJTIwZm9yJTIwbW9yZSUyMGRldGFpbHMuJTBBaW1hZ2UlMjAlM0QlMjBwaXBlKGltYWdlJTJDJTIwcHJvbXB0JTJDJTIwbnVtX2luZmVyZW5jZV9zdGVwcyUzRDUwKS5pbWFnZXMlNUIwJTVEJTBBaW1hZ2Uuc2F2ZSglMjJxd2VuaW1hZ2VfZWRpdC5wbmclMjIp",highlighted:`>>> import torch >>> from PIL import Image >>> from diffusers import QwenImageEditPipeline >>> from diffusers.utils import load_image >>> pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> image = load_image( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png" ... ).convert("RGB") >>> prompt = ( ... "Make Pikachu hold a sign that says 'Qwen Edit is awesome', yarn art style, detailed, vibrant colors" ... ) >>> # Depending on the variant being used, the pipeline call will slightly vary. >>> # Refer to the pipeline documentation for more details. >>> image = pipe(image, prompt, num_inference_steps=50).images[0] >>> image.save("qwenimage_edit.png")`,wrap:!1}}),{c(){p=o("p"),p.textContent=x,w=t(),d(_.$$.fragment)},l(r){p=i(r,"P",{"data-svelte-h":!0}),b(p)!=="svelte-kvfsh7"&&(p.textContent=x),w=a(r),c(_.$$.fragment,r)},m(r,T){h(r,p,T),h(r,w,T),m(_,r,T),M=!0},p:Ln,i(r){M||(g(_.$$.fragment,r),M=!0)},o(r){u(_.$$.fragment,r),M=!1},d(r){r&&(s(p),s(w)),f(_,r)}}}function fs(E){let p,x,w,_,M,r,T,Ia='LoRA',Vn,de,va="Qwen-Image from the Qwen team is an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. Experiments show strong general capabilities in both image generation and editing, with exceptional performance in text rendering, especially for Chinese.",Gn,ce,Ma="Qwen-Image comes in the following variants:",Nn,me,Ta='model type model id Qwen-Image Qwen/Qwen-Image Qwen-Image-Edit Qwen/Qwen-Image-Edit',Bn,N,Dn,ge,Xn,ue,xa=`Use a LoRA from lightx2v/Qwen-Image-Lightning to speed up inference by reducing the number of steps. Refer to the code snippet below:`,Rn,B,tn,$a="Code",It,fe,zn,D,An,he,Fn,$,_e,vt,an,Qa="The QwenImage pipeline for text-to-image generation.",Mt,Z,we,Tt,sn,Ja="Function invoked when calling the pipeline for generation.",xt,X,$t,R,be,Qt,on,ka=`Disable sliced VAE decoding. If enable_vae_slicing was previously enabled, this method will go back to computing decoding in one step.`,Jt,z,ye,kt,rn,ja=`Disable tiled VAE decoding. If enable_vae_tiling was previously enabled, this method will go back to computing decoding in one step.`,jt,A,Ie,Ut,ln,Ua=`Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.`,Pt,F,ve,Ct,pn,Pa=`Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.`,Et,dn,Me,Hn,Te,Yn,Q,xe,Zt,cn,Ca="The QwenImage pipeline for text-to-image generation.",Lt,L,$e,Wt,mn,Ea="Function invoked when calling the pipeline for generation.",qt,H,Vt,Y,Qe,Gt,gn,Za=`Disable sliced VAE decoding. If enable_vae_slicing was previously enabled, this method will go back to computing decoding in one step.`,Nt,S,Je,Bt,un,La=`Disable tiled VAE decoding. If enable_vae_tiling was previously enabled, this method will go back to computing decoding in one step.`,Dt,O,ke,Xt,fn,Wa=`Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.`,Rt,K,je,zt,hn,qa=`Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.`,At,_n,Ue,Sn,Pe,On,J,Ce,Ft,wn,Va="The QwenImage pipeline for text-to-image generation.",Ht,W,Ee,Yt,bn,Ga="Function invoked when calling the pipeline for generation.",St,ee,Ot,ne,Ze,Kt,yn,Na=`Disable sliced VAE decoding. If enable_vae_slicing was previously enabled, this method will go back to computing decoding in one step.`,ea,te,Le,na,In,Ba=`Disable tiled VAE decoding. If enable_vae_tiling was previously enabled, this method will go back to computing decoding in one step.`,ta,ae,We,aa,vn,Da=`Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.`,sa,se,qe,oa,Mn,Xa=`Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.`,ia,Tn,Ve,Kn,Ge,et,k,Ne,ra,xn,Ra="The Qwen-Image-Edit pipeline for image editing.",la,q,Be,pa,$n,za="Function invoked when calling the pipeline for generation.",da,oe,ca,ie,De,ma,Qn,Aa=`Disable sliced VAE decoding. If enable_vae_slicing was previously enabled, this method will go back to computing decoding in one step.`,ga,re,Xe,ua,Jn,Fa=`Disable tiled VAE decoding. If enable_vae_tiling was previously enabled, this method will go back to computing decoding in one step.`,fa,le,Re,ha,kn,Ha=`Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.`,_a,pe,ze,wa,jn,Ya=`Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.`,ba,Un,Ae,nt,Fe,tt,V,He,ya,Pn,Sa="Output class for Stable Diffusion pipelines.",at,Ye,st,Wn,ot;return M=new nn({props:{title:"QwenImage",local:"qwenimage",headingTag:"h1"}}),N=new ts({props:{$$slots:{default:[ps]},$$scope:{ctx:E}}}),ge=new nn({props:{title:"LoRA for faster inference",local:"lora-for-faster-inference",headingTag:"h2"}}),fe=new qn({props:{code:"ZnJvbSUyMGRpZmZ1c2VycyUyMGltcG9ydCUyMERpZmZ1c2lvblBpcGVsaW5lJTJDJTIwRmxvd01hdGNoRXVsZXJEaXNjcmV0ZVNjaGVkdWxlciUwQWltcG9ydCUyMHRvcmNoJTIwJTBBaW1wb3J0JTIwbWF0aCUwQSUwQWNrcHRfaWQlMjAlM0QlMjAlMjJRd2VuJTJGUXdlbi1JbWFnZSUyMiUwQSUwQSUyMyUyMEZyb20lMEElMjMlMjBodHRwcyUzQSUyRiUyRmdpdGh1Yi5jb20lMkZNb2RlbFRDJTJGUXdlbi1JbWFnZS1MaWdodG5pbmclMkZibG9iJTJGMzQyMjYwZThmNTQ2OGQyZjI0ZDA4NGNlMDRmNTVlMTAxMDA3MTE4YiUyRmdlbmVyYXRlX3dpdGhfZGlmZnVzZXJzLnB5JTIzTDgyQzktTDk3QzEwJTBBc2NoZWR1bGVyX2NvbmZpZyUyMCUzRCUyMCU3QiUwQSUyMCUyMCUyMCUyMCUyMmJhc2VfaW1hZ2Vfc2VxX2xlbiUyMiUzQSUyMDI1NiUyQyUwQSUyMCUyMCUyMCUyMCUyMmJhc2Vfc2hpZnQlMjIlM0ElMjBtYXRoLmxvZygzKSUyQyUyMCUyMCUyMyUyMFdlJTIwdXNlJTIwc2hpZnQlM0QzJTIwaW4lMjBkaXN0aWxsYXRpb24lMEElMjAlMjAlMjAlMjAlMjJpbnZlcnRfc2lnbWFzJTIyJTNBJTIwRmFsc2UlMkMlMEElMjAlMjAlMjAlMjAlMjJtYXhfaW1hZ2Vfc2VxX2xlbiUyMiUzQSUyMDgxOTIlMkMlMEElMjAlMjAlMjAlMjAlMjJtYXhfc2hpZnQlMjIlM0ElMjBtYXRoLmxvZygzKSUyQyUyMCUyMCUyMyUyMFdlJTIwdXNlJTIwc2hpZnQlM0QzJTIwaW4lMjBkaXN0aWxsYXRpb24lMEElMjAlMjAlMjAlMjAlMjJudW1fdHJhaW5fdGltZXN0ZXBzJTIyJTNBJTIwMTAwMCUyQyUwQSUyMCUyMCUyMCUyMCUyMnNoaWZ0JTIyJTNBJTIwMS4wJTJDJTBBJTIwJTIwJTIwJTIwJTIyc2hpZnRfdGVybWluYWwlMjIlM0ElMjBOb25lJTJDJTIwJTIwJTIzJTIwc2V0JTIwc2hpZnRfdGVybWluYWwlMjB0byUyME5vbmUlMEElMjAlMjAlMjAlMjAlMjJzdG9jaGFzdGljX3NhbXBsaW5nJTIyJTNBJTIwRmFsc2UlMkMlMEElMjAlMjAlMjAlMjAlMjJ0aW1lX3NoaWZ0X3R5cGUlMjIlM0ElMjAlMjJleHBvbmVudGlhbCUyMiUyQyUwQSUyMCUyMCUyMCUyMCUyMnVzZV9iZXRhX3NpZ21hcyUyMiUzQSUyMEZhbHNlJTJDJTBBJTIwJTIwJTIwJTIwJTIydXNlX2R5bmFtaWNfc2hpZnRpbmclMjIlM0ElMjBUcnVlJTJDJTBBJTIwJTIwJTIwJTIwJTIydXNlX2V4cG9uZW50aWFsX3NpZ21hcyUyMiUzQSUyMEZhbHNlJTJDJTBBJTIwJTIwJTIwJTIwJTIydXNlX2thcnJhc19zaWdtYXMlMjIlM0ElMjBGYWxzZSUyQyUwQSU3RCUwQXNjaGVkdWxlciUyMCUzRCUyMEZsb3dNYXRjaEV1bGVyRGlzY3JldGVTY2hlZHVsZXIuZnJvbV9jb25maWcoc2NoZWR1bGVyX2NvbmZpZyklMEFwaXBlJTIwJTNEJTIwRGlmZnVzaW9uUGlwZWxpbmUuZnJvbV9wcmV0cmFpbmVkKCUwQSUyMCUyMCUyMCUyMGNrcHRfaWQlMkMlMjBzY2hlZHVsZXIlM0RzY2hlZHVsZXIlMkMlMjB0b3JjaF9kdHlwZSUzRHRvcmNoLmJmbG9hdDE2JTBBKS50byglMjJjdWRhJTIyKSUwQXBpcGUubG9hZF9sb3JhX3dlaWdodHMoJTBBJTIwJTIwJTIwJTIwJTIybGlnaHR4MnYlMkZRd2VuLUltYWdlLUxpZ2h0bmluZyUyMiUyQyUyMHdlaWdodF9uYW1lJTNEJTIyUXdlbi1JbWFnZS1MaWdodG5pbmctOHN0ZXBzLVYxLjAuc2FmZXRlbnNvcnMlMjIlMEEpJTBBJTBBcHJvbXB0JTIwJTNEJTIwJTIyYSUyMHRpbnklMjBhc3Ryb25hdXQlMjBoYXRjaGluZyUyMGZyb20lMjBhbiUyMGVnZyUyMG9uJTIwdGhlJTIwbW9vbiUyQyUyMFVsdHJhJTIwSEQlMkMlMjA0SyUyQyUyMGNpbmVtYXRpYyUyMGNvbXBvc2l0aW9uLiUyMiUwQW5lZ2F0aXZlX3Byb21wdCUyMCUzRCUyMCUyMiUyMCUyMiUwQWltYWdlJTIwJTNEJTIwcGlwZSglMEElMjAlMjAlMjAlMjBwcm9tcHQlM0Rwcm9tcHQlMkMlMEElMjAlMjAlMjAlMjBuZWdhdGl2ZV9wcm9tcHQlM0RuZWdhdGl2ZV9wcm9tcHQlMkMlMEElMjAlMjAlMjAlMjB3aWR0aCUzRDEwMjQlMkMlMEElMjAlMjAlMjAlMjBoZWlnaHQlM0QxMDI0JTJDJTBBJTIwJTIwJTIwJTIwbnVtX2luZmVyZW5jZV9zdGVwcyUzRDglMkMlMEElMjAlMjAlMjAlMjB0cnVlX2NmZ19zY2FsZSUzRDEuMCUyQyUwQSUyMCUyMCUyMCUyMGdlbmVyYXRvciUzRHRvcmNoLm1hbnVhbF9zZWVkKDApJTJDJTBBKS5pbWFnZXMlNUIwJTVEJTBBaW1hZ2Uuc2F2ZSglMjJxd2VuX2Zld3N0ZXBzLnBuZyUyMik=",highlighted:`from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler import torch import math ckpt_id = "Qwen/Qwen-Image" # From # https://github.com/ModelTC/Qwen-Image-Lightning/blob/342260e8f5468d2f24d084ce04f55e101007118b/generate_with_diffusers.py#L82C9-L97C10 scheduler_config = { "base_image_seq_len": 256, "base_shift": math.log(3), # We use shift=3 in distillation "invert_sigmas": False, "max_image_seq_len": 8192, "max_shift": math.log(3), # We use shift=3 in distillation "num_train_timesteps": 1000, "shift": 1.0, "shift_terminal": None, # set shift_terminal to None "stochastic_sampling": False, "time_shift_type": "exponential", "use_beta_sigmas": False, "use_dynamic_shifting": True, "use_exponential_sigmas": False, "use_karras_sigmas": False, } scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) pipe = DiffusionPipeline.from_pretrained( ckpt_id, scheduler=scheduler, torch_dtype=torch.bfloat16 ).to("cuda") pipe.load_lora_weights( "lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.0.safetensors" ) prompt = "a tiny astronaut hatching from an egg on the moon, Ultra HD, 4K, cinematic composition." negative_prompt = " " image = pipe( prompt=prompt, negative_prompt=negative_prompt, width=1024, height=1024, num_inference_steps=8, true_cfg_scale=1.0, generator=torch.manual_seed(0), ).images[0] image.save("qwen_fewsteps.png")`,wrap:!1}}),D=new ts({props:{$$slots:{default:[ds]},$$scope:{ctx:E}}}),he=new nn({props:{title:"QwenImagePipeline",local:"diffusers.QwenImagePipeline",headingTag:"h2"}}),_e=new v({props:{name:"class diffusers.QwenImagePipeline",anchor:"diffusers.QwenImagePipeline",parameters:[{name:"scheduler",val:": FlowMatchEulerDiscreteScheduler"},{name:"vae",val:": AutoencoderKLQwenImage"},{name:"text_encoder",val:": Qwen2_5_VLForConditionalGeneration"},{name:"tokenizer",val:": Qwen2Tokenizer"},{name:"transformer",val:": QwenImageTransformer2DModel"}],parametersDescription:[{anchor:"diffusers.QwenImagePipeline.transformer",description:`transformer (QwenImageTransformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.`,name:"transformer"},{anchor:"diffusers.QwenImagePipeline.scheduler",description:`scheduler (FlowMatchEulerDiscreteScheduler) — A scheduler to be used in combination with transformer to denoise the encoded image latents.`,name:"scheduler"},{anchor:"diffusers.QwenImagePipeline.vae",description:`vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.`,name:"vae"},{anchor:"diffusers.QwenImagePipeline.text_encoder",description:`text_encoder (Qwen2.5-VL-7B-Instruct) — Qwen2.5-VL-7B-Instruct, specifically the Qwen2.5-VL-7B-Instruct variant.`,name:"text_encoder"},{anchor:"diffusers.QwenImagePipeline.tokenizer",description:`tokenizer (QwenTokenizer) — Tokenizer of class CLIPTokenizer.`,name:"tokenizer"}],source:"https://github.com/huggingface/diffusers/blob/v0.35.1/src/diffusers/pipelines/qwenimage/pipeline_qwenimage.py#L132"}}),we=new v({props:{name:"__call__",anchor:"diffusers.QwenImagePipeline.__call__",parameters:[{name:"prompt",val:": typing.Union[str, typing.List[str]] = None"},{name:"negative_prompt",val:": typing.Union[str, typing.List[str]] = None"},{name:"true_cfg_scale",val:": float = 4.0"},{name:"height",val:": typing.Optional[int] = None"},{name:"width",val:": typing.Optional[int] = None"},{name:"num_inference_steps",val:": int = 50"},{name:"sigmas",val:": typing.Optional[typing.List[float]] = None"},{name:"guidance_scale",val:": float = 1.0"},{name:"num_images_per_prompt",val:": int = 1"},{name:"generator",val:": typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None"},{name:"latents",val:": typing.Optional[torch.Tensor] = None"},{name:"prompt_embeds",val:": typing.Optional[torch.Tensor] = None"},{name:"prompt_embeds_mask",val:": typing.Optional[torch.Tensor] = None"},{name:"negative_prompt_embeds",val:": typing.Optional[torch.Tensor] = None"},{name:"negative_prompt_embeds_mask",val:": typing.Optional[torch.Tensor] = None"},{name:"output_type",val:": typing.Optional[str] = 'pil'"},{name:"return_dict",val:": bool = True"},{name:"attention_kwargs",val:": typing.Optional[typing.Dict[str, typing.Any]] = None"},{name:"callback_on_step_end",val:": typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None"},{name:"callback_on_step_end_tensor_inputs",val:": typing.List[str] = ['latents']"},{name:"max_sequence_length",val:": int = 512"}],parametersDescription:[{anchor:"diffusers.QwenImagePipeline.__call__.prompt",description:`prompt (str or List[str], optional) — The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.`,name:"prompt"},{anchor:"diffusers.QwenImagePipeline.__call__.negative_prompt",description:`negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if true_cfg_scale is not greater than 1).`,name:"negative_prompt"},{anchor:"diffusers.QwenImagePipeline.__call__.true_cfg_scale",description:`true_cfg_scale (float, optional, defaults to 1.0) — When > 1.0 and a provided negative_prompt, enables true classifier-free guidance.`,name:"true_cfg_scale"},{anchor:"diffusers.QwenImagePipeline.__call__.height",description:`height (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results.`,name:"height"},{anchor:"diffusers.QwenImagePipeline.__call__.width",description:`width (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results.`,name:"width"},{anchor:"diffusers.QwenImagePipeline.__call__.num_inference_steps",description:`num_inference_steps (int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.`,name:"num_inference_steps"},{anchor:"diffusers.QwenImagePipeline.__call__.sigmas",description:`sigmas (List[float], optional) — Custom sigmas to use for the denoising process with schedulers which support a sigmas argument in their set_timesteps method. If not defined, the default behavior when num_inference_steps is passed will be used.`,name:"sigmas"},{anchor:"diffusers.QwenImagePipeline.__call__.guidance_scale",description:`guidance_scale (float, optional, defaults to 3.5) — Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

This parameter in the pipeline is there to support future guidance-distilled models when they come up. Note that passing guidance_scale to the pipeline is ineffective. To enable classifier-free guidance, please pass true_cfg_scale and negative_prompt (even an empty negative prompt like ” ”) should enable classifier-free guidance computations.`,name:"guidance_scale"},{anchor:"diffusers.QwenImagePipeline.__call__.num_images_per_prompt",description:`num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.`,name:"num_images_per_prompt"},{anchor:"diffusers.QwenImagePipeline.__call__.generator",description:`generator (torch.Generator or List[torch.Generator], optional) — One or a list of torch generator(s) to make generation deterministic.`,name:"generator"},{anchor:"diffusers.QwenImagePipeline.__call__.latents",description:`latents (torch.Tensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will be generated by sampling using the supplied random generator.`,name:"latents"},{anchor:"diffusers.QwenImagePipeline.__call__.prompt_embeds",description:`prompt_embeds (torch.Tensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.`,name:"prompt_embeds"},{anchor:"diffusers.QwenImagePipeline.__call__.negative_prompt_embeds",description:`negative_prompt_embeds (torch.Tensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.`,name:"negative_prompt_embeds"},{anchor:"diffusers.QwenImagePipeline.__call__.output_type",description:`output_type (str, optional, defaults to "pil") — The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.`,name:"output_type"},{anchor:"diffusers.QwenImagePipeline.__call__.return_dict",description:`return_dict (bool, optional, defaults to True) — Whether or not to return a ~pipelines.qwenimage.QwenImagePipelineOutput instead of a plain tuple.`,name:"return_dict"},{anchor:"diffusers.QwenImagePipeline.__call__.attention_kwargs",description:`attention_kwargs (dict, optional) — A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.`,name:"attention_kwargs"},{anchor:"diffusers.QwenImagePipeline.__call__.callback_on_step_end",description:`callback_on_step_end (Callable, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.`,name:"callback_on_step_end"},{anchor:"diffusers.QwenImagePipeline.__call__.callback_on_step_end_tensor_inputs",description:`callback_on_step_end_tensor_inputs (List, optional) — The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.`,name:"callback_on_step_end_tensor_inputs"},{anchor:"diffusers.QwenImagePipeline.__call__.max_sequence_length",description:"max_sequence_length (int defaults to 512) — Maximum sequence length to use with the prompt.",name:"max_sequence_length"}],source:"https://github.com/huggingface/diffusers/blob/v0.35.1/src/diffusers/pipelines/qwenimage/pipeline_qwenimage.py#L427",returnDescription:`