Please give a thumbs up to this comment if you found it helpful!
\n
If you want recommendations for any Paper on Hugging Face checkout this Space
\n
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: \n\n@librarian-bot\n\t recommend
\n","updatedAt":"2025-09-24T01:35:56.743Z","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":264}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.7113507390022278},"editors":["librarian-bot"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2509.16596","authors":[{"_id":"68d205331ca7156988a8ecbd","user":{"_id":"66384be673c2c55f2ded89fa","avatarUrl":"/avatars/1d8721074f0f51fab405f81474f2035f.svg","isPro":false,"fullname":"Junjie Ye","user":"Junjie-Ye","type":"user"},"name":"Junjie Ye","status":"claimed_verified","statusLastChangedAt":"2025-09-23T02:40:25.849Z","hidden":false},{"_id":"68d205331ca7156988a8ecbe","user":{"_id":"655c6b1abfb531437a54c0e6","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/V8Md2mMX83hrSowKk6qMS.jpeg","isPro":false,"fullname":"Yuming Yang","user":"Umean","type":"user"},"name":"Yuming Yang","status":"claimed_verified","statusLastChangedAt":"2025-09-23T10:07:02.770Z","hidden":false},{"_id":"68d205331ca7156988a8ecbf","name":"Yang Nan","hidden":false},{"_id":"68d205331ca7156988a8ecc0","name":"Shuo Li","hidden":false},{"_id":"68d205331ca7156988a8ecc1","name":"Qi Zhang","hidden":false},{"_id":"68d205331ca7156988a8ecc2","name":"Tao Gui","hidden":false},{"_id":"68d205331ca7156988a8ecc3","name":"Xuanjing Huang","hidden":false},{"_id":"68d205331ca7156988a8ecc4","name":"Peng Wang","hidden":false},{"_id":"68d205331ca7156988a8ecc5","name":"Zhongchao Shi","hidden":false},{"_id":"68d205331ca7156988a8ecc6","name":"Jianping Fan","hidden":false}],"publishedAt":"2025-09-20T09:40:32.000Z","submittedOnDailyAt":"2025-09-23T00:56:48.151Z","title":"Analyzing the Effects of Supervised Fine-Tuning on Model Knowledge from\n Token and Parameter Levels","submittedOnDailyBy":{"_id":"655c6b1abfb531437a54c0e6","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/V8Md2mMX83hrSowKk6qMS.jpeg","isPro":false,"fullname":"Yuming Yang","user":"Umean","type":"user"},"summary":"Large language models (LLMs) acquire substantial world knowledge during\npre-training, which is further shaped by post-training techniques such as\nsupervised fine-tuning (SFT). However, the impact of SFT on a model's knowledge\nremains underexplored, limiting our ability to control knowledge change\nbehavior in fine-tuned models. To address this gap, we evaluate closed-book\nquestion answering (CBQA) performance across five LLMs from the LLaMA-2 and\nLLaMA-3 families. Surprisingly, models fine-tuned on 1,920 samples perform up\nto 14% worse than those fine-tuned on only 240 samples. Furthermore, varying\nthe level of knowledge mastery in the fine-tuning data leads to performance\nfluctuations of over 12%. To investigate these effects, we analyze model\nbehavior at both the token and parameter levels. Our analysis reveals that up\nto 90% of parameter updates during SFT do not contribute to knowledge\nenhancement. Restoring these updates can improve performance on the CBQA task,\ndepending on the characteristics of the fine-tuning data. These insights offer\npractical guidance for developing fine-tuning strategies that more effectively\nstrengthen model knowledge.","upvotes":12,"discussionId":"68d205331ca7156988a8ecc7","ai_summary":"Supervised fine-tuning of large language models can negatively impact closed-book question answering performance, with up to 90% of parameter updates not contributing to knowledge enhancement.","ai_keywords":["large language models","pre-training","supervised fine-tuning","closed-book question answering","token","parameter updates","knowledge enhancement"]},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"655c6b1abfb531437a54c0e6","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/V8Md2mMX83hrSowKk6qMS.jpeg","isPro":false,"fullname":"Yuming Yang","user":"Umean","type":"user"},{"_id":"66384be673c2c55f2ded89fa","avatarUrl":"/avatars/1d8721074f0f51fab405f81474f2035f.svg","isPro":false,"fullname":"Junjie Ye","user":"Junjie-Ye","type":"user"},{"_id":"66f68f5f9884fa00e9150a2c","avatarUrl":"/avatars/e94fcf78bffba6705cb0300236dfc71e.svg","isPro":false,"fullname":"Nan","user":"Sirius518","type":"user"},{"_id":"620783f24e28382272337ba4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/620783f24e28382272337ba4/zkUveQPNiDfYjgGhuFErj.jpeg","isPro":false,"fullname":"GuoLiangTang","user":"Tommy930","type":"user"},{"_id":"65f8dfbc03a21601bf0b3a5c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/65f8dfbc03a21601bf0b3a5c/sGhdEf266p7wUlT0M0xbv.png","isPro":false,"fullname":"hienhq","user":"wanhin","type":"user"},{"_id":"66d8512c54209e9101811e8e","avatarUrl":"/avatars/62dfd8e6261108f2508efe678d5a2a57.svg","isPro":false,"fullname":"M Saad Salman","user":"MSS444","type":"user"},{"_id":"65c20ee58aedd6edd2b89000","avatarUrl":"/avatars/db1bbf4c8f6a88459da967ec83e9bc08.svg","isPro":false,"fullname":"Chmielewski","user":"Eryk-Chmielewski","type":"user"},{"_id":"648eb1eb59c4e5c87dc116e0","avatarUrl":"/avatars/c636cea39c2c0937f01398c94ead5dad.svg","isPro":false,"fullname":"fdsqefsgergd","user":"T-representer","type":"user"},{"_id":"61b839889f7cfeae618e72c9","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/61b839889f7cfeae618e72c9/5kFRCChdqwv7MGM8T_y5v.jpeg","isPro":false,"fullname":"Raja Biswas","user":"rbiswasfc","type":"user"},{"_id":"62447e04f555de1927a9c879","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1648655841478-noauth.png","isPro":false,"fullname":"jasonjiang","user":"mikinyaa","type":"user"},{"_id":"68939f5ddfd414bbd5aafa12","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/_rPJDe2EnQOyySwbEmdJg.png","isPro":false,"fullname":"Stephen Hope","user":"steve-hope","type":"user"},{"_id":"68d23240e133063ab3c58271","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/5eybL8giYD8K_NcEJLbqV.png","isPro":false,"fullname":"Mykola Martych","user":"Mykola5689","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0}">
Supervised fine-tuning of large language models can negatively impact closed-book question answering performance, with up to 90% of parameter updates not contributing to knowledge enhancement.
AI-generated summary
Large language models (LLMs) acquire substantial world knowledge during
pre-training, which is further shaped by post-training techniques such as
supervised fine-tuning (SFT). However, the impact of SFT on a model's knowledge
remains underexplored, limiting our ability to control knowledge change
behavior in fine-tuned models. To address this gap, we evaluate closed-book
question answering (CBQA) performance across five LLMs from the LLaMA-2 and
LLaMA-3 families. Surprisingly, models fine-tuned on 1,920 samples perform up
to 14% worse than those fine-tuned on only 240 samples. Furthermore, varying
the level of knowledge mastery in the fine-tuning data leads to performance
fluctuations of over 12%. To investigate these effects, we analyze model
behavior at both the token and parameter levels. Our analysis reveals that up
to 90% of parameter updates during SFT do not contribute to knowledge
enhancement. Restoring these updates can improve performance on the CBQA task,
depending on the characteristics of the fine-tuning data. These insights offer
practical guidance for developing fine-tuning strategies that more effectively
strengthen model knowledge.