lynx   »   [go: up one dir, main page]

\"Screenshot

\n","updatedAt":"2025-03-12T04:08:58.823Z","author":{"_id":"60f1abe7544c2adfd699860c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg","fullname":"AK","name":"akhaliq","type":"user","isPro":false,"isHf":true,"isHfAdmin":false,"isMod":false,"followerCount":8212}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.2533748745918274},"editors":["akhaliq"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg"],"reactions":[],"isReport":false}},{"id":"67d12ac635066eade61f7fce","author":{"_id":"638b1440bbe083dfbba8de3c","avatarUrl":"/avatars/470274cfa638571b96c1c1adef469d13.svg","fullname":"Wa Haha","name":"wahaha1987","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false},"createdAt":"2025-03-12T06:33:42.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"open source?","html":"

open source?

\n","updatedAt":"2025-03-12T06:33:42.278Z","author":{"_id":"638b1440bbe083dfbba8de3c","avatarUrl":"/avatars/470274cfa638571b96c1c1adef469d13.svg","fullname":"Wa Haha","name":"wahaha1987","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.835456371307373},"editors":["wahaha1987"],"editorAvatarUrls":["/avatars/470274cfa638571b96c1c1adef469d13.svg"],"reactions":[],"isReport":false}},{"id":"67d388a828221b583a2d3e55","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":264},"createdAt":"2025-03-14T01:38:48.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"This is an automated message from the [Librarian Bot](https://huggingface.co/librarian-bots). I found the following papers similar to this paper. \n\nThe following papers were recommended by the Semantic Scholar API \n\n* [MMTEB: Massive Multilingual Text Embedding Benchmark](https://huggingface.co/papers/2502.13595) (2025)\n* [Enhancing Lexicon-Based Text Embeddings with Large Language Models](https://huggingface.co/papers/2501.09749) (2025)\n* [mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data](https://huggingface.co/papers/2502.08468) (2025)\n* [xVLM2Vec: Adapting LVLM-based embedding models to multilinguality using Self-Knowledge Distillation](https://huggingface.co/papers/2503.09313) (2025)\n* [FaMTEB: Massive Text Embedding Benchmark in Persian Language](https://huggingface.co/papers/2502.11571) (2025)\n* [DeepRAG: Building a Custom Hindi Embedding Model for Retrieval Augmented Generation from Scratch](https://huggingface.co/papers/2503.08213) (2025)\n* [Franken-Adapter: Cross-Lingual Adaptation of LLMs by Embedding Surgery](https://huggingface.co/papers/2502.08037) (2025)\n\n\n Please give a thumbs up to this comment if you found it helpful!\n\n If you want recommendations for any Paper on Hugging Face checkout [this](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) Space\n\n You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: `@librarian-bot recommend`","html":"

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

\n

The following papers were recommended by the Semantic Scholar API

\n\n

Please give a thumbs up to this comment if you found it helpful!

\n

If you want recommendations for any Paper on Hugging Face checkout this Space

\n

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: \n\n@librarian-bot\n\t recommend

\n","updatedAt":"2025-03-14T01:38:48.870Z","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":264}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.6852983832359314},"editors":["librarian-bot"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2503.07891","authors":[{"_id":"67d108c56bd6c57bab0b6f07","user":{"_id":"63fd3edc3c880680af44aa78","avatarUrl":"/avatars/98759e23e89f9da3ce13266d030e611b.svg","isPro":false,"fullname":"Jinhyuk Lee","user":"jinhyuklee","type":"user"},"name":"Jinhyuk Lee","status":"admin_assigned","statusLastChangedAt":"2025-03-12T15:42:14.774Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f08","user":{"_id":"673fd856a45b6f21829a3bf5","avatarUrl":"/avatars/deb8c5362fad22019cccaed6d03dea09.svg","isPro":false,"fullname":"Feiyang Chen","user":"PhilipChen","type":"user"},"name":"Feiyang Chen","status":"admin_assigned","statusLastChangedAt":"2025-03-12T15:42:50.034Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f09","user":{"_id":"67d198850e00700a6b9f1715","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/oBAOklXUYODJ7XxxNndqu.png","isPro":false,"fullname":"Sahil Dua","user":"sahildua2305","type":"user"},"name":"Sahil Dua","status":"claimed_verified","statusLastChangedAt":"2025-03-12T14:25:43.248Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f0a","user":{"_id":"610dd291dda0cb4dbfbf32d2","avatarUrl":"/avatars/6f3fe6d53c37076e2cefc1b4d95743d6.svg","isPro":false,"fullname":"Daniel Cer","user":"danielcer","type":"user"},"name":"Daniel Cer","status":"admin_assigned","statusLastChangedAt":"2025-03-12T15:46:21.396Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f0b","user":{"_id":"64b09a273b6d9c4ef7626b72","avatarUrl":"/avatars/a5fed033a8d241276059289318b3c49b.svg","isPro":false,"fullname":"Madhuri Shanbhogue","user":"madhuris","type":"user"},"name":"Madhuri Shanbhogue","status":"admin_assigned","statusLastChangedAt":"2025-03-12T15:46:29.742Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f0c","name":"Iftekhar Naim","hidden":false},{"_id":"67d108c56bd6c57bab0b6f0d","name":"Gustavo Hernández Ábrego","hidden":false},{"_id":"67d108c56bd6c57bab0b6f0e","name":"Zhe Li","hidden":false},{"_id":"67d108c56bd6c57bab0b6f0f","user":{"_id":"67a4fae79a07de7c65c4f516","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/67a4fae79a07de7c65c4f516/yl6gPpFDJOWShsiQJ7Kwn.jpeg","isPro":false,"fullname":"Kaifeng Chen","user":"kfrancischen","type":"user"},"name":"Kaifeng Chen","status":"claimed_verified","statusLastChangedAt":"2025-09-26T12:27:42.402Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f10","user":{"_id":"686ecc7564498736bc13db91","avatarUrl":"/avatars/ebff7401fe0b88bf99753aeb23f31081.svg","isPro":false,"fullname":"Henrique Schechter Vera","user":"hschechter","type":"user"},"name":"Henrique Schechter Vera","status":"claimed_verified","statusLastChangedAt":"2025-09-09T13:52:31.927Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f11","name":"Xiaoqi Ren","hidden":false},{"_id":"67d108c56bd6c57bab0b6f12","name":"Shanfeng Zhang","hidden":false},{"_id":"67d108c56bd6c57bab0b6f13","user":{"_id":"68d5c05805ddd80041f80776","avatarUrl":"/avatars/53a304076359f11cc92de22a2cfbec06.svg","isPro":false,"fullname":"Daniel Salz","user":"dasalz","type":"user"},"name":"Daniel Salz","status":"claimed_verified","statusLastChangedAt":"2025-09-26T12:27:48.289Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f14","user":{"_id":"655ead197b7450fedc485ce9","avatarUrl":"/avatars/fecccddf67edb87cc1971feeff556511.svg","isPro":false,"fullname":"Michael Boratko","user":"Roulette6888","type":"user"},"name":"Michael Boratko","status":"admin_assigned","statusLastChangedAt":"2025-03-12T15:47:38.164Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f15","name":"Jay Han","hidden":false},{"_id":"67d108c56bd6c57bab0b6f16","name":"Blair Chen","hidden":false},{"_id":"67d108c56bd6c57bab0b6f17","name":"Shuo Huang","hidden":false},{"_id":"67d108c56bd6c57bab0b6f18","user":{"_id":"68d5c1e09dd1fad14a71bb8e","avatarUrl":"/avatars/88c03aab9bd932eb5aa642e56048876b.svg","isPro":false,"fullname":"Vikram Rao Sudarshan","user":"raosvikram","type":"user"},"name":"Vikram Rao","status":"claimed_verified","statusLastChangedAt":"2025-09-26T12:27:45.772Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f19","name":"Paul Suganthan","hidden":false},{"_id":"67d108c56bd6c57bab0b6f1a","name":"Feng Han","hidden":false},{"_id":"67d108c56bd6c57bab0b6f1b","name":"Andreas Doumanoglou","hidden":false},{"_id":"67d108c56bd6c57bab0b6f1c","name":"Nithi Gupta","hidden":false},{"_id":"67d108c56bd6c57bab0b6f1d","user":{"_id":"66df81e4608ec2ea4ab981a7","avatarUrl":"/avatars/003fce1379a7cf1e412d328128952188.svg","isPro":false,"fullname":"Fedor Moiseev","user":"femoiseev","type":"user"},"name":"Fedor Moiseev","status":"admin_assigned","statusLastChangedAt":"2025-03-12T15:45:35.363Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f1e","name":"Cathy Yip","hidden":false},{"_id":"67d108c56bd6c57bab0b6f1f","name":"Aashi Jain","hidden":false},{"_id":"67d108c56bd6c57bab0b6f20","user":{"_id":"6560f697e0a7720b6ae377bc","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6560f697e0a7720b6ae377bc/8b-p-lQ7KV_VygBJ6Vf3_.jpeg","isPro":false,"fullname":"Simon Baumgartner","user":"sens3","type":"user"},"name":"Simon Baumgartner","status":"claimed_verified","statusLastChangedAt":"2025-05-20T19:29:55.305Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f21","name":"Shahrokh Shahi","hidden":false},{"_id":"67d108c56bd6c57bab0b6f22","name":"Frank Palma Gomez","hidden":false},{"_id":"67d108c56bd6c57bab0b6f23","name":"Sandeep Mariserla","hidden":false},{"_id":"67d108c56bd6c57bab0b6f24","user":{"_id":"68a8d0b3e5168b01f778b0af","avatarUrl":"/avatars/33381d21885cbe72e3bc8b1ae197e24d.svg","isPro":false,"fullname":"Min Choi","user":"iohcsnim","type":"user"},"name":"Min Choi","status":"claimed_verified","statusLastChangedAt":"2025-09-26T12:27:38.430Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f25","name":"Parashar Shah","hidden":false},{"_id":"67d108c56bd6c57bab0b6f26","name":"Sonam Goenka","hidden":false},{"_id":"67d108c56bd6c57bab0b6f27","name":"Ke Chen","hidden":false},{"_id":"67d108c56bd6c57bab0b6f28","name":"Ye Xia","hidden":false},{"_id":"67d108c56bd6c57bab0b6f29","name":"Koert Chen","hidden":false},{"_id":"67d108c56bd6c57bab0b6f2a","name":"Sai Meher Karthik Duddu","hidden":false},{"_id":"67d108c56bd6c57bab0b6f2b","name":"Yichang Chen","hidden":false},{"_id":"67d108c56bd6c57bab0b6f2c","name":"Trevor Walker","hidden":false},{"_id":"67d108c56bd6c57bab0b6f2d","name":"Wenlei Zhou","hidden":false},{"_id":"67d108c56bd6c57bab0b6f2e","name":"Rakesh Ghiya","hidden":false},{"_id":"67d108c56bd6c57bab0b6f2f","name":"Zach Gleicher","hidden":false},{"_id":"67d108c56bd6c57bab0b6f30","name":"Karan Gill","hidden":false},{"_id":"67d108c56bd6c57bab0b6f31","name":"Zhe Dong","hidden":false},{"_id":"67d108c56bd6c57bab0b6f32","name":"Mojtaba Seyedhosseini","hidden":false},{"_id":"67d108c56bd6c57bab0b6f33","name":"Yunhsuan Sung","hidden":false},{"_id":"67d108c56bd6c57bab0b6f34","user":{"_id":"65ac1d802f560c70ff74412d","avatarUrl":"/avatars/763b352cd671ba7ef2637db14de86951.svg","isPro":false,"fullname":"Raphael hoffmann","user":"peacemac","type":"user"},"name":"Raphael Hoffmann","status":"admin_assigned","statusLastChangedAt":"2025-03-12T15:44:50.723Z","hidden":false},{"_id":"67d108c56bd6c57bab0b6f35","user":{"_id":"631a4acfc9f8cd19a735a0ab","avatarUrl":"/avatars/61cebf77358634876d978d87248a62f3.svg","isPro":false,"fullname":"Tom Duerig","user":"tduerig","type":"user"},"name":"Tom Duerig","status":"admin_assigned","statusLastChangedAt":"2025-03-12T15:44:36.769Z","hidden":false}],"publishedAt":"2025-03-10T22:16:45.000Z","submittedOnDailyAt":"2025-03-12T02:38:58.804Z","title":"Gemini Embedding: Generalizable Embeddings from Gemini","submittedOnDailyBy":{"_id":"60f1abe7544c2adfd699860c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg","isPro":false,"fullname":"AK","user":"akhaliq","type":"user"},"summary":"In this report, we introduce Gemini Embedding, a state-of-the-art embedding\nmodel leveraging the power of Gemini, Google's most capable large language\nmodel. Capitalizing on Gemini's inherent multilingual and code understanding\ncapabilities, Gemini Embedding produces highly generalizable embeddings for\ntext spanning numerous languages and textual modalities. The representations\ngenerated by Gemini Embedding can be precomputed and applied to a variety of\ndownstream tasks including classification, similarity, clustering, ranking, and\nretrieval. Evaluated on the Massive Multilingual Text Embedding Benchmark\n(MMTEB), which includes over one hundred tasks across 250+ languages, Gemini\nEmbedding substantially outperforms prior state-of-the-art models,\ndemonstrating considerable improvements in embedding quality. Achieving\nstate-of-the-art performance across MMTEB's multilingual, English, and code\nbenchmarks, our unified model demonstrates strong capabilities across a broad\nselection of tasks and surpasses specialized domain-specific models.","upvotes":43,"discussionId":"67d108c66bd6c57bab0b6f6e","ai_summary":"Gemini Embedding, utilizing Google's Gemini large language model, generates high-quality multilingual and code embeddings outperforming benchmarks across various tasks.","ai_keywords":["Gemini Embedding","multilingual","code understanding","embeddings","precomputed","downstream tasks","classification","similarity","clustering","ranking","retrieval","Massive Multilingual Text Embedding Benchmark (MMTEB)","state-of-the-art performance","unified model","domain-specific models"]},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"643be8879f5d314db2d9ed23","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/643be8879f5d314db2d9ed23/VrW2UtJ7ppOnGIYjTWd7b.png","isPro":false,"fullname":"Chen Dongping","user":"shuaishuaicdp","type":"user"},{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},{"_id":"66f612b934b8ac9ffa44f084","avatarUrl":"/avatars/6836c122e19c66c90f1673f28b30d7f0.svg","isPro":false,"fullname":"Tang","user":"tommysally","type":"user"},{"_id":"63b2a92e18e5cf2cdd333492","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63b2a92e18e5cf2cdd333492/GxnngJG0u7d0jYTEFOrfe.png","isPro":false,"fullname":"Jaehyun Jun","user":"btjhjeon","type":"user"},{"_id":"655eeb5532537bcc8d7460ab","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/655eeb5532537bcc8d7460ab/gV_GfYq-GEyi1cbCTQe0r.jpeg","isPro":false,"fullname":"Yongbin Choi","user":"whybe-choi","type":"user"},{"_id":"64747f7e33192631bacd8831","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/64747f7e33192631bacd8831/dstkZJ4sHJSeqLesV5cOC.jpeg","isPro":false,"fullname":"Taufiq Dwi Purnomo","user":"taufiqdp","type":"user"},{"_id":"648eb1eb59c4e5c87dc116e0","avatarUrl":"/avatars/c636cea39c2c0937f01398c94ead5dad.svg","isPro":false,"fullname":"fdsqefsgergd","user":"T-representer","type":"user"},{"_id":"6270324ebecab9e2dcf245de","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6270324ebecab9e2dcf245de/cMbtWSasyNlYc9hvsEEzt.jpeg","isPro":false,"fullname":"Kye Gomez","user":"kye","type":"user"},{"_id":"64169a99bce2fed80ab86122","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1679202958868-noauth.jpeg","isPro":false,"fullname":"Sigrid Jin","user":"sigridjineth","type":"user"},{"_id":"6555125a4f361968f0e3aad7","avatarUrl":"/avatars/e7692d82804338f21ecdc6e731f5c5ea.svg","isPro":false,"fullname":"marinaretikof","user":"marinaretik","type":"user"},{"_id":"6434b6619bd5a84b5dcfa4de","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6434b6619bd5a84b5dcfa4de/h8Q6kPNjFNc03wmdboHzq.jpeg","isPro":false,"fullname":"Young-Jun Lee","user":"passing2961","type":"user"},{"_id":"6317233cc92fd6fee317e030","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6317233cc92fd6fee317e030/cJHSvvimr1kqgQfHOjO5n.png","isPro":false,"fullname":"Tom Aarsen","user":"tomaarsen","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0}">
Papers
arxiv:2503.07891

Gemini Embedding: Generalizable Embeddings from Gemini

Published on Mar 10
· Submitted by AK on Mar 12
Authors:
,
,
,
,
,
,
,
,
,
,
,

Abstract

Gemini Embedding, utilizing Google's Gemini large language model, generates high-quality multilingual and code embeddings outperforming benchmarks across various tasks.

AI-generated summary

In this report, we introduce Gemini Embedding, a state-of-the-art embedding model leveraging the power of Gemini, Google's most capable large language model. Capitalizing on Gemini's inherent multilingual and code understanding capabilities, Gemini Embedding produces highly generalizable embeddings for text spanning numerous languages and textual modalities. The representations generated by Gemini Embedding can be precomputed and applied to a variety of downstream tasks including classification, similarity, clustering, ranking, and retrieval. Evaluated on the Massive Multilingual Text Embedding Benchmark (MMTEB), which includes over one hundred tasks across 250+ languages, Gemini Embedding substantially outperforms prior state-of-the-art models, demonstrating considerable improvements in embedding quality. Achieving state-of-the-art performance across MMTEB's multilingual, English, and code benchmarks, our unified model demonstrates strong capabilities across a broad selection of tasks and surpasses specialized domain-specific models.

Community

Paper submitter

Screenshot 2025-03-12 at 12.08.45 AM.png

open source?

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2503.07891 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2503.07891 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2503.07891 in a Space README.md to link it from this page.

Collections including this paper 17

Лучший частный хостинг