Abstract
IT is widely agreed that bacteria swim by moving their flagella, but how this motion is generated remains obscure1,2. A flagellum has a helical filament, a proximal hook, and components at its base associated with the cell wall and the cytoplasmic membrane. If there are several flagella per cell, the filaments tend to form bundles and to move in unison. When viewed by high-speed cinematography, the bundles show a screw-like motion. It is commonly believed that each filament propagates a helical wave3. We will show here that existing evidence favours a model in which each filament rotates.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
185,98 € per year
only 3,65 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Smith, R. W., and Koffler, H., Adv. microbiol. Physiol., 6, 219 (1971).
Doetsch, R. N., CRC Crit. Rev. Microbiol., 1, 73 (1971).
Lowy, J., and Spencer, M., Symp. Soc. exp. Biol., 22, 215 (1968).
Stocker, B. A. D., Symp. Soc. gen. Microbiol., 6, 19 (1956).
Doetsch, R. N., J. theor. Biol., 11, 411 (1966).
Doetsch, R. N., and Hageage, G. J., Biol. Rev., 43, 317 (1968).
Vaituzis, Z., and Doetsch, R. N., J. Bact., 100, 512 (1969).
Mussill, M., and Jarosch, R., Protoplasma, 75, 465 (1972).
Chwang, A. T., Wu, T. Y., and Winet, H., Biophys. J., 12, 1549 (1972).
Murray, R. G. E., and Birch-Andersen, A., Can. J. Microbiol., 9, 393 (1963).
DePamphilis, M. L., and Adler, J., J. Bact., 105, 384 (1971).
DePamphilis, M. L., and Adler, J., J. Bact., 105, 396 (1971).
Coakley, C. J., and Holwill, M. E. J., J. theor. Biol., 35, 525 (1972).
Huxley, A. F., and Simmons, R. M., Nature, 233, 533 (1971).
Huxley, H. E., Science, N. Y., 164, 1356 (1969).
DePamphilis, M. L., and Adler, J., J. Bact., 105, 376 (1971).
Klug, A., Symp. Int. Soc. Cell Biol., 6, 1 (1967).
Taylor, G., Proc. R. Soc., A 211, 225 (1952).
Chwang, A. T., and Wu, T. Y., Proc. R. Soc., B 178, 327 (1971).
Schreiner, K. E., Biomechanics, 4, 73 (1971).
Greenbury, C. L., and Moore, D. H., Immunology, 11, 617 (1966).
DiPierro, J. M., and Doetsch, R. N., Can. J. Microbiol., 14, 487 (1968).
Meynell, E. W., J. gen. Microbiol., 25, 253 (1961).
Raimondo, L. M., Lundh, N. P., and Martinez, R. J., J. Virol., 2, 256 (1968).
Schade, S. Z., Adler, J., and Ris, H., J. Virol., 1, 599 (1967).
Iino, T., and Mitani, M., J. gen. Microbiol., 49, 81 (1967).
O'Brien, E. J., and Bennett, P. M., J. molec. Biol., 70, 133 (1972).
Martinez, R. J., Ichiki, A. T., Lundh, N. P., and Tronick, S. R., J. molec. Biol., 34, 559 (1968).
Shoesmith, J. G., J. gen. Microbiol. 22, 528 (1960).
Berg, H. C., and Brown, D. A., Nature, 239, 500 (1972).
Taylor, G., Proc. R. Soc., A 209, 447 (1951).
Silverman, M. R., and Simon, M. I., J. Bact., 112, 986 (1972).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
BERG, H., ANDERSON, R. Bacteria Swim by Rotating their Flagellar Filaments. Nature 245, 380–382 (1973). https://doi.org/10.1038/245380a0
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1038/245380a0
This article is cited by
-
The nut-and-bolt motion of a bacteriophage sliding along a bacterial flagellum: a complete hydrodynamics model
Scientific Reports (2023)
-
A numerical framework for modeling the dynamics of micro-organism movement on Carreau-Yasuda layer
Soft Computing (2023)
-
Bacteria-on-a-bead: probing the hydrodynamic interplay of dynamic cell appendages during cell separation
Communications Biology (2022)
-
Materials, assemblies and reaction systems under rotation
Nature Reviews Materials (2022)
-
A multi-state dynamic process confers mechano-adaptation to a biological nanomachine
Nature Communications (2022)