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Abstract.

In this paper, I illustrate an extension of Smale’s analysis of the repeated prisoner’s dilemma
with imperfect recall to a dynamic Cournot duopoly game in which firms have bounded memory
and rationality and can thus observe only summary statistics of past history. A stable long-run
cooperation is achieved by employing a dynamical system that takes into account repeated
interactions between firms and a set of behavioural rules, irrespective of the initial conditions.

Sunto.

Oligopolio e teoria dei giochi negli studi di Vittorio Cafagna. In questo lavoro viene presentata
una estensione del modello di Smale sul dilemma del prigioniero ripetuto con memoria imper-
fetta a un gioco dinamico di duopolio alla Cournot in cui le imprese hanno limiti sostanziali nel
custodire ed organizzare le informazioni a disposizione, e possono dunque conservare soltanto
un qualche tipo di riassunto dei precedenti accadimenti (una sorta di ”valore medio”). Viene
dimostrato che e possibile raggiungere un equilibrio cooperativo stabile di lungo periodo at-
traverso I'implementazione di un sistema dinamico che tiene conto delle interazioni ripetute
fra le imprese e di un set di regole di comportamento, e che inoltre prescinde dalle condizioni
iniziali.

1 Our collaboration: how it all began

Vittorio Cafagna was a family friend, to whom my father was very attached. The first
time I talked to him was after my first degree. I was looking for information about
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foreign masters and Ph.D.’s, and he gave me a lot of instructions and suggestions. The
impression he made on me in that occasion never changed in the following years, when I
had the possibility to know him very well and share with him many hours of study and
conversation: Vittorio was kind, helpful, generous, noble, smiling. He used to be a true
friend. He loved life and was eager to explore it in all its facets. Several years passed since
then, during which there hadn’t been any occasion to discuss with him, also because my
field of studies was (or better, seemed to me) quite far from his. Later, I happened to
develop a theoretical model on the relationship between advertising and entry barriers
and asked him for some advices. It was 1998. We talked a lot, and for the first time I
heard about his growing interest towards economics and finance. That was the birth of
our collaboration.

At first we met to discuss about my industrial organization model (Coccorese, 2001),
and more in general about the application of game theory to economics. Actually, in my
paper I recall and apply the well-known taxonomy of business strategies by Fudenberg and
Tirole (1984): by using an ”animal terminology” (top dog, lean and hungry look, puppy
dog, fat cat) within a two-stage model, it shows under which conditions an incumbent
firm chooses to over-invest or under-invest in order to respond to the threat of entry from
a potential rival. The model by Fudenberg and Tirole can be applied to both the entry
deterrence and the accommodation case, and is able to clarify the functioning of a great
deal of commitment models (concerning investments in capacity, advertising, R&D, etc.),
where the payoffs of the final period are influenced by some strategic commitment that
one of the players can afford in a previous period. 2

This topic intrigued Vittorio, who began to study some of the milestone contributions,
among which there was the game theory manual by Fudenberg and Tirole (1991). Just
when dealing with this book, he sent me a nice message: "I am absorbed in a preliminar
coming and going between your paper and the wicked Fudenberg-Tirole. As you know,
unfortunately I am not a game theory expert yet, even if with my current rhythm of
studying I hope to soon become like that. I am working out a list of issues, some of which
self-destroy as I understand more and more. Before long I will mail you those that will
survive”.

In that period Vittorio travelled a lot, especially to France. So, given my and his en-
gagements, we found very little time to organize and clearly identify the game theory
readings that we wanted to study together and with regular frequency. Besides, I had
started to devote part of my research energies to empirical industrial organization.

2Regarding the commitment models, see also Tirole (1988), chapter 8.



One year passed, may be a bit more. In the meantime, we met seldom but we were
often in touch. During one of our sporadic meetings of that time, we started talking
about the book by Fudenberg and Levine (1998), which had been published recently
and explored the role of learning in multi-period games. The authors considered the
equilibrium of a game as the long-run outcome of a process in which less than fully
rational players fumble for optimality over time. In our study plans, this book competed
with that by Weibull (1995), which was specifically focused on evolutionary game theory
(a sort of meeting point between evolutionary biology and rationalistic economics). Under
Vittorio’s point of view, the book by Weibull was more simple, because game theory was
more mathematically formalized, but at the same time he thought that its content was
more limited. Finally, we opted for the book by Fudenberg and Levine, and commenced
to dedicate some of our time reading it (on the other hand, we were both quite busy
because of our job, and Vittorio also travelled a lot in United States and France).

On average we met twice or three times a month, and discussed the sections of the book
we had previously read on our own. One of the topics concerned the fictitious play?.
Within the learning and evolutionary theory, we have a fictitious play dynamics when,
under repeated interactions, each player assumes that the strategies of his opponents
are randomly chosen from some unknown stationary distribution, and in each period he
selects the best response to the historical frequency of actions of his opponents. In other
words, each player does not react to what happened in the very last stage, but takes into
account the whole story of the game, which is summarized by some proper indicator.
He updates this indicator in each round, then chooses the strategy that allows him the
highest expected payoff, given the historical distribution of his opponents’ strategies.

This kind of conjecture seemed us rational and realistic, especially we foresaw the poten-
tial for an application to oligopolistic markets. When there are few firms in a market,
it is very likely that their strategic interactions repeat over time; furthermore, possible
adjustments regarding the level of the variables under firms’ control (quantity or price),
as a reaction to rivals’ past behaviour, can not be too drastic; finally, it is plausible
that every producer has memory bounds that impede the storing of the whole set of
opponents’ past choices. All the above led us to regard as unrealistic the tit-for-tat so-
lution (which consists in doing what the rival did in the previous stage, and has been
demonstrated to be the optimal behaviour to attain cooperation in repeated games?),
also because in real world accidental deviations or misunderstandings can happen, with
the result of locking players in an endless cycle of mutual defection that they would have
unquestionably avoided.

3The fictitious play was first proposed by Brown (1951) and Robinson (1951).
4For further details, see Axelrod (1984).



At the beginning of 2000, Vittorio went to the United States for a short stay. On
his return, he told me he had met José Scheinkman, who he knew since long time.?
In that occasion, they talked about our research interests, and Scheinkman was quite
encouraging. He also told Vittorio about an article by Steve Smale that had appeared in
Econometrica in 1980. In his opinion, this paper would have been very interesting to us.

So we got Smale’s (1980) paper. The renowned mathematician had introduced bounded
rationality in the repeated prisoner’s dilemma game by assuming that players were not
able to keep the memory of all past interactions. Particularly, he moved from the idea
that agents have substantive bounds to the storing and organizing of information, so
they only keep some kind of summary (a sort of "average value”) of past outcomes in
their memory. At each stage, they take a decision according to this summary, and are
restricted to strategies where the action depends continuously on it. His analysis was
therefore based on a dynamical system, without promises or binding agreements.

This approach was quite fascinating, especially because it gave us the possibility of work-
ing on a model characterized by a good degree of realism. Actually, it is logically reason-
able (and also analytically convenient) that ”history-dependent state variables” should
be preferred to "history-dependent strategies”: over time (when history matters) the
latter group tends to require an extraordinary amount of information at every move,
while the former represents a reasonable alternative for players with bounded rationality
(Clemhout and Wan, 1989, p. 131; Aumann, 1989, pp. 42-43).

After all, Smale had extended the frames of fictitious play by introducing (in the context
of the repeated prisoner’s dilemma) a class of general strategy updating rules that fed
back with the historical distributions of payoffs.

We decided to work on a dynamic Cournot duopoly model, reformulated a la Smale
in order to take memory into consideration. We needed to identify a specific set of
behavioural rules that would have been able to warrant the achievement of the cooperative
solution, so avoiding any sub-optimal outcome. In our intentions (fruits of long and
lively discussions), this set of rules should have been characterized by a tendency to
avoid unnecessary conflicts, the presence of punishments for defections and forgiveness

®José Scheinkman is currently Professor of Economics at Princeton University. He writes: "I was
first introduced to Vittorio in 1985, in Paris, by our common friend Henri Berestycki. Vittorio and
I met many times in Paris, New York and at least once in Rome, and I have wonderful memories of
conversations that ranged over a wide set of topics, including, naturally, mathematics and economics”.
I wish to thank him for this recollection.

6Smale’s analysis has been later extended by Benaim and Hirsch (1997) and Ahmed and Hegazi (1999,
2001).



after punishment, and also by transparency and predictability for all players. Our hope
was that, in a dynamic framework where many interactions take place and players are
neither stupid nor totally without foresight, cooperation could have emerged as long as
participants were able to learn during the sequence of game rounds.

We worked on this topic for more than one year, with up and down mood and luck.
Sometimes we felt this was an impossible undertaking, other times we were absolutely sure
to walk the right way. At last, we hit the target: we built a duopolistic model where two
rational firms with bounded memory were able to achieve a stable cooperative equilibrium
simply following a set of behavioural rules, without need of stipulating agreements or
retaliating.

2 The duopoly model

We start with two firms producing a homogeneous good in a given market. Production
decisions are taken at discrete time periods t = 0,1,2,3,... The quantity of output by
each firm at time ¢ is denoted by ¢;, 7 = 1,2. The cost of production, C;;, is a linear
function of the output:

Cit = ciqiz - (2.1)
The inverse demand function is also linear:
pr=a—bQy, (2.2)

where a,b >0, a > ¢; and Q¢ =), ¢is.

At time ¢, the profit of each firm, 7,4, is equal to:
Tie = (@ —bQr — i) Gig - (2.3)

Given the dynamical nature of our Cournot model, we needed to characterize how firms
decide the quantity to be produced in period ¢t + 1 as a response of the profit accrued in
period t.

The standard Cournot conjecture holds that each firm expects the rival to leave its quan-
tity unchanged in the next period, which means that ¢;11 = ¢;¢+, 7 = 1,2. Even if this
assumption foreshadows a sort of learning behaviour, it did not appear to us particularly
clever: both firms behave as if they expect that tomorrow’s play by the opponent will be
the same as today ”, and choose their strategies ignoring previous experience.

"See Fudenberg and Levine (1998), p. 10. Ahmed and Hegazi (2002) formalize a dynamic model
where the rival’s expected quantity in period ¢ 4+ 1 is a weighted function of its previous quantities.



In order to overcome those limitations and make the decision process closer to reality, we
strove to change the quantity game by introducing bounded rationality memory effects.
It was here that the model proposed by Smale for the solution of the iterative prisoner’s
dilemma turned out to be extremely valuable.

We had first to construct a two-dimensional space of possible firms’ payoffs (i.e. profits).
Here, we faced a non-trivial problem: while in Smale’s model players can select only
among two strategies (play easy and play tough) and the interaction between their choices
drives straight to the payoff matrix, in our framework firms had to choose the output
level (the variable under their control) among a set of possibilities that was continuous
and hence theoretically infinite. In addition, we needed to move from a quantity space
to a profit space, with profits being generated by the interaction between the individual
production choices, which also affected the price level.
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a) ps b)

qa

e
Tnd

ge Gne qd q1 TTod e e g T
Figure 1: a) The convex quantity space. b) The conves profit space.

Figure 1 a) shows the quantity space map. We had also to build the corresponding space
map of profits. Given the profit function (2.3), and assuming (for simplicity) that firms
have equal size (implying that ¢; = ¢ = ¢), our "non-cooperative” outcome (nc) was
the standard Cournot—Nagh equilibrium, whose quantities and profits for both firms were

_ a—c _ (a—c)

Gne = % and T, = 5p

, respectively.

The ”cooperative” solution (¢) coincided with the case of collusion, when firms are sup-
posed to act as a monopolist in the market. Under this conjecture, and assuming that -

a—c

being equal - they enjoyed the same market share, quantities and profits were q. = “5*
_ (a=0)?

and 7, = =g~ respectively, for each of them.

Finally, still in parallel with the prisoner’s dilemma, we had to identify the outcome



of a unilateral deviation from the cooperative behaviour coming from one of the two
firms. In this case, we assumed that the defecting firm maximizes its own profit given
the cooperative quantity produced by the other firm. Therefore, the resulting quantities

3(a—c) 9(a—c)? _ 3(a—c)?

_ _ __ a—c _
were qg = —g;— and ¢ua = q. = “5°, and profits were g = =5~ and T, = =55, where

the subscripts d and nd refer to the deviating and the non-deviating firm, respectively.

Note that for our payoffs the following condition holds: 7wy — 7. < 7. — muq. So,
when a firm cooperates and the other defects, the additional reward 7y — 7. the sec-
ond firm receives for its deviating behaviour is lower than the penalty 7. — m,q weight-
ing on the first firm for its cooperating behaviour.® This condition also implies that
- like the prisoner’s dilemma game - in the profit space the quadrilateral with vertices
(e, )y (Tay Tnd)s (Tne, Tne)s (Tna, Ta), Tepresenting our space of possible payoffs, is con-
vex. For firm 1, it is depicted in Figure 1 b) (firm 2’s state space has an identical graph,
but with inverted axes).

In a static framework, the outlined game has a unique Nash equilibrium, where both
players choose to behave non-cooperatively (and therefore to defect if the rival tries to
cooperate). Actually, this is a dominating strategy for both of them, even though there
would be a gain in cooperating, since 7. > m,.. However, considering that in a market
the interaction between firms is repeated (and also that price, and hence unit revenue, is
a function of the level of production of both firms), there is room for cooperation.

Our purpose was therefore to provide a set of deterministic behaviour rules that allow to
reach the cooperative equilibrium (7., 7..), or better to grant firms a long run cumulative
profit flow whose average value approaches the cooperation outcome.

The repeated interaction gives rise to a sequence of production levels {q1,q2, ..., ¢},
yielding the series of profits {m,mo,...,m}. Our assumption was that, given players’
bounded memory, at time ¢ firm ¢ makes its decision according to its up-to-date average
profit, calculated as follows:

* Zin:l Tm

Tt = ;

After observing the average profit 7, at time ¢, firm ¢ decides about the strategy, which
involves the choice of a new level of quantity. In symbols: g;+1 = f(7];). This output,
together with the production of the other firm, determines the market price (through
the inverse demand function) and the level of profit ; ;41 of period ¢ + 1, which in turn
updates the average profit.

(2.4)

8If this condition does not hold, in the long run firms could receive more than 7. by alternating defec-
tion and cooperation (in the sense that when one of them defects, the other cooperates, and viceversa).



It is possible to write the outlined averaging (memory) process as a dynamical system:

* *
B I+ T

WZtH = Q(W;t) = P (2.5)

3 The ’good’ strategy

At this time, we had to establish how firms choose their quantity ¢;,+1 in period ¢, after
having observed 77,. In our model, we define as firm ¢’s strategy the choice of the quantity
¢i+ € S, to be produced (where S, is the convex quantity space). Every choice ¢;; in
period t generates a payoff m;; € S, (with S, representing the convex profit space), that
updates the average profit 7;,. The latter constitutes the reference point for the choice
of the quantity g; 11, to be made as follows.

First of all, a solution is a pair (q, ), where ¢ is a level of output and 7 is the stationary
associated payoff, both generated through the dynamics defined by (2.5).

As already noted, while in the prisoner’s dilemma each player can choose between two
dichotomic strategies (”cooperate” and ”defect”, let’s say), production decisions imply
that there exist infinite possibilities of quantity choices. So it is reasonable to imagine that
firms approximate both the cooperative and the non-cooperative quantity in a gradual
fashion, also considering technological constraints that may discourage sudden production
changes.

In our model, we therefore assumed that firms increase (decrease) their output according
to a given fraction «; (3;) of the gap between the production of the previous period and
the production characterizing the equilibrium they wish to reach.

Let us consider firm 1. First of all, it knows that, having produced ¢,. in all periods
(1,...,t), at time t it has to be T4 2 Tne- Therefore, a value T < Tnes which follows
at least one cooperative choice from firm 1, means that the rival has taken advantage
of the cooperative behaviour of firm 1. This implies that the exploited firm will expand
its production and therefore move toward the noncooperative level ¢,.. In particular, we
suppose that

Giprr = Qi + Qi(Qne — qip) I T <Tpe, 1=1,2, 0<a; <1 (A)

Second, firm 1 knows that it is always 77, + 75, < 27.. Therefore, if 75, > 7., then it
has to be 7] ; < 7.: again the rival is exploiting the cooperative behaviour of firm 1, and
again there will be the incentive for the latter to increase the production level moving
toward the non-cooperative level ¢,.. So we suppose that

i t+1 = it + ai(qnc - qiﬂf) if ﬂ-;':t > Te, Z>] = 1727 ] 7é 'é> 0<a; <l (B)

8



Third, we must acknowledge that firms need to be a bit cooperative in their behaviour,
otherwise they will end up in the Cournot-Nash (sub-optimal) equilibrium. Therefore,
we assumed that one of the cases characterized by a cooperative attitude from firm 1 is
when 77, > 73 ,. Here, there is no evidence of recent cheating behaviour from firm 2,
and this appears a good incentive for firm 1 to assume a conciliating conduct as well,
and therefore reduce the output. Accordingly, we suppose that

Git+1 = Git — ﬁi(%’,t - (Jc) if W;t > 77;,5, 1,)=1,2, j 7é i, 0<Bi <l (C)

Finally, we needed another crucial condition imposing a little more altruistic mood in
firms’ behaviour, in order to be sure of reaching the cooperative equilibrium. This was
done by assuming that firms move their output toward the cooperative level also when
their average output is lower than the rival’s, up to a fraction ¢; of its own average profit
77 In other words, there is some open set where firms behave cooperatively even though
they are earning less than the opponent.® Therefore, we assume that

Gitr1 = Git — Bilqie — qc) if 77:,15 < 77;15 and (W;,t - 7T;k,t) < 5@'77:,15

1,7 =12, 5#14, 0<fB <L (D)

Rules for firm 2 are defined symmetrically.
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Figure 2: The profit space and the effects of the "good strategy” rules.

9Tn his model with two dichotomic choices ("tough” and ”easy”), Smale gives reason of this condition
by saying that it ”...is an expression that we should play a little on the easy side”. See Smale (1980), p.
1621.



Figure 2 shows the space of profits for firm 1, together with the areas where our previous
conditions hold (shaded accordingly). It is worth to note that in Figure 2 a non—shaded
area also appears: here players are not compelled to any rule, and therefore can behave
as they wish.

In analogy with Smale, a player’s strategy is called good when it satisfies conditions
(A) through (D). Thus, a good strategy requires that each firm should not let itself be
exploited, but also that it has to play more on the cooperative side.

4 The stability of the ’good’ strategy: a proof

In order to demonstrate the convergence of our set of behavioural rules toward the point
(7, m.), we performed some numerical simulations.
We considered two identical firms, whose parameters of interest were as follows:

a:8; bzl, 012022020; Oq:Oég:0.0l; 61262:0005, 81282:0.015.

With reference to the non-shaded area, we supposed that (with only one exception:
see below) firms can randomly choose whether to increase or decrease their production.
Besides, we assumed a number of interactions equal to 500. % We identified four repre-
sentative simulations, indicated as (a), (b), (¢) and (d), in which the initial choices by
both firms were the following:

a) qi

( = (ne;
(b

=

1 = {q4d;

)

)

(€) @1 = Gna; @2 = qa;

(d) ¢1 = q4; g2 = qna; furthermore, in the non-shaded area firms would have always
chosen to increase production (assuming a non-cooperative disposition, then).

For each hypothesis, the dynamics of ¢;, m; and 7, ¢« = 1,2, are reported in Figures 3
through 6.

Regarding simulations (a) and (b), we observe how the two curves (one for each firm)
are always perfectly overlapping (see Figures 3 and 4): hence, firms follow the same
behaviour. The only difference is that in the first situation they start from the non—

cooperative level of production, while in the second their initial (simultaneous) move is

R

0Given the value of parameters a, b and ¢, under our assumptions the various solution pairs are:
Gne = 2.66 and 7, = 7.11; ¢c =2 and 7. = 8; g4 = 3 and 14 = 9; ¢ng = 2 and g = 6.
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to deviate from a supposed cooperative choice of the rival. In the latter case, in spite of
this double cheating, we observe that the good strategy allows the cooperative solution
to occur.
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Figure 3: (on the left) Case (a): dynamics of q¢;, m; and w; (i = 1,2), respectively, when both
firms start producing gne.

Figure 4: (on the right) Case (b): dynamics of gi, m; and w; (i =1,2), respectively, when both
firms start producing qq.

Simulation (c¢) corresponds to the situation where in the first period one of the firms
(firm 1, here characterized by a black line) starts with a cooperative behaviour but has
to face (at least initially) a disloyal partner (firm 2, grey line). Again, the dynamics is
convergent to the cooperative outcome (see Figure 5). The trembling movement of the
curves in the first two graphs is due to the fact that in those stages firms are in the non-
shaded area of Figure 2, where they are free to choose whether to increase or decrease
current production, and select one of these actions with equal probability. We calculated
that in this simulation firm 1 fell in the free-choice area 134 times (94 for firm 2).

Simulation (d) allows to evaluate what happens when in the free-choice area we ex-
ogenously impose a non-cooperative attitude (both firms always increase production).

11



Figure 6 shows that, regardless of this, the proposed set of rules guarantees the achieve-
ment of the cooperative point, also if the convergence is slightly slower than before, as
firms happen to fall 207 times as a whole in that area (95 for firm 1 and 112 for firm 2).

25 25
235 225 /\ \\\
— o —
100 200 300

2 100 200 300 400 00 ] 400 800

2 100 200 200 400 S00 a 100 200 00 400 00

2 100 200 200 400 S00 a 100 200 00 400 00

Figure 5: (on the left) Case (¢): dynamics of q;, m; and @} (i =1,2), respectively, when firm
1 starts producing qna = q. (black line) and firm 2 starts producing qq (grey line).

Figure 6: (on the right) Case (d): dynamics of q;, m and ©} (i = 1,2), respectively, when
firm 1 starts producing qq (black line), firm 2 starts producing qng = q. (grey line), and in the
free-choice area both of them always choose to increase production.

Finally, in order to prove the robustness of our rules in the attainment of the cooperative
outcome, we performed a fifth simulation (e), where we randomly chose the initial levels
of production: in particular, we fixed ¢y = 6 and ¢ = 0. Figure 7 shows that the
convergence is nonetheless assured, although a higher number of interactions is needed
in comparison with the previous cases (actually, we set 2000 interaction here). The
dynamics is clear: firm 2 raises its production up to the Cournot value, and leaves it
unchanged until firm 1’s conciliatory behaviour - deriving from condition (C') - makes
possible a cooperative mood, in accordance with condition (D).

12



L= R R S

T T T
2 s00 1009 1500 2000

1z

1044,

= ok oe @

o 500 1000 1500 2000

1z

N

8 —_— —

= ke @

o 500 1000 1500 2000

Figure 7: Case (e): dynamics of q;, m and w7 (i = 1,2), respectively, when firm 1 starts
producing qu = 6 (black line) and firm 2 starts producing go = 0 (grey line).

Even if through a group of simulations, we had reached an unambiguous and encouraging
result, summarized in the following proposition.

Proposition 4.1 If both players play good strategies qy and g5, then the solution
((q1, %), (me, 7)) is a globally stable solution.

This means that, given any ¢;; (and hence 1), the sequence 7; 2, 7; 3, ..., which has
been generated by the dynamics reported in (2.5), converges to the cooperative outcome.
Our evidence allowed us to also formulate some other propositions.

Proposition 4.2 If firm 1 plays a good strategy, then:

lim inf 7T>1k7t > e -

Proof. Actually, for firm 1 the worst situation is when firm 2 always chooses ¢,.. This
implies that, if in time 1 it is ¢ = ¢., firm 1’s profit will be equal to m,; (and also

13



7}, = Tna), but subsequently - according to condition (A) - it will gradually approach
The- ]

Proposition 4.3 If firm 1 plays a good strategy, the best choice for firm 2 is to play a
good strategy as well, given that:

limsup my , < 7.

Proof. In this case, with firm 1 following a good strategy, firm 2’s average profit 75,
will approach 7. or m,. according to whether it decides to play a good strategy or not.
Since m. > m,., the optimal strategy for firm 2 is to adopt a good strategy too. O

Proposition 4.4 If both firms play good strategies, then for e > 0 there exists a t, such
that fort > t,, and for any wnitial g1 € Sy, it is:

[Ti e — mig| <€, all miy € Sy

. (t=1)mf, | +mt . . . ..
Proof. Sincen}, = ——“~1— we can substitute this value in |7},—; ;| < ¢, obtaining

t

(t—1)m;, +m
t
sufficiently large ¢ and for firms playing good strategies, which also ensures that =} and

m; converge to the same value. O

*

— Wi,t‘ < . Rearranging, we get: |=1(n7,_, —m)| < e. This is true for a

Proposition 4.5 If firms are identical and both play good strategies, then for e > 0 there
exists a t, such that fort > t, and for any initial g1 € S, and qx € Sy, 1t is:

(4.5a) (7}, + 75 ,) — 27| <¢;

(4.5b) [T — Ty <€

Proof. According to Proposition 4.3, the adoption of good strategies drives both firms
toward the cooperative outcome .. This yields (4.5a) and (4.5b). O
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5 Epilogue

Vittorio and I were extremely happy: we had shown that, if firms interact repeatedly,
they realize that the non-cooperative solution is Pareto-inferior and can alter their be-
haviour according to a learning process and a set of rules that guarantee an optimal and
stable outcome, regardless of any (explicit or implicit) agreement. After publishing our
paper (Cafagna and Coccorese, 2005) we began to think to possible future developments
regarding this topic and our scientific collaboration as a whole. Particularly, we aimed
to provide an analytical proof of the convergence and stability of our model, and started
a series of discussions and conjectures, during which Vittorio again stood out for his
intelligence and competency.

However, in that period he was being more and more caught by his latest studies on the
theory of sound, on which he was working hard - as usual - with interest and passion.
So we met rarely, but he always used to promise me that we would have soon begun to
study, discuss and write again.

Two messages bear witness to this intent. One goes back to September 2005, when he
was organizing the 2nd Sound and Music Computing Conference, which on his initiative
was held in the University of Salerno (November 24-26, 2005): ” There are less than two
months to the Conference, and we are in a crucial stage now. Anyway, I hope to meet
you soon, at least for a coffee. From December onward I will be a new man, free as a
bird and also on sabbatical leave. It would be nice to start working together again’.

He sent me the second message around Christmas 2005: ” The Conference is over: ev-
erything went all right. I am a free man now. I am going to Boston for few days. When
I come back, I hope to meet you and start our collaboration again”.

It is not difficult to find in these few lines Vittorio’s distinguishing marks: enthusiasm,
wish of freedom, love for research. Today we can only have memory of this, but even the
memory of a man can teach a lot.
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