Redis Kafka Sink Connector for Confluent Cloud¶
The fully-managed Redis Kafka Sink connector for Confluent Cloud maps and writes records from Apache Kafka® topics directly to a Redis database. The connector supports AVRO, BYTES, JSON, JSON Schema, PROTOBUF, and STRING data formats from Apache Kafka® topics. The connector reads records from a Kafka topic and writes them to Redis., making the data available for querying, enrichment, and analytics.
Features¶
The fully-managed Redis Kafka Sink connector provides the following features:
- At least once delivery: The connector guarantees that records are written at least once to Redis.
- Database authentication: The connector supports password-based authentication.
- Compatibility: The connector supports Redis-compatible databases, including AWS Valkey and AWS MemoryDB.
- Redis data structure: The connector supports STREAM, LIST, SET, ZSET, STRING, HASH, TIMESERIES, JSON Redis data-structure types as targets.
- Client-side field level encryption (CSFLE) support: The connector supports CSFLE for sensitive data. For more information about CSFLE setup, see the connector configuration.
- Input data formats: The connector accepts AVRO, BYTES, JSON, JSON_SR (JSON Schema), PROTOBUF, or STRING input data formats for record keys and values. Schema Registry must be enabled to use a Schema Registry-based format (for example, AVRO, JSON_SR (JSON Schema), or PROTOBUF). For more information, see Schema Registry Enabled Environments.
- Time to live (TTL) support: The connector supports allows you to set a TTL for Redis keys to automatically expire data after a specified duration.
- Multiple tasks: The connector supports running one or more tasks. More tasks may improve performance.
For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect Usage Examples section.
Limitations¶
Be sure to review the following information.
- For connector limitations, see Redis Kafka Sink limitations.
- If you plan to use one or more Single Message Transforms (SMTs), see SMT Limitations.
- If you plan to use Confluent Cloud Schema Registry, see Schema Registry Enabled Environments.
Quick Start¶
Use this quick start to get up and running with the Confluent Cloud Redis Kafka Sink connector. The quick start provides the basics of selecting the connector and configuring it to consume data from Kafka and persist the data to a Redis Kafka database.
- Prerequisites
- Authorized access to a Confluent Cloud cluster on Amazon Web Services (AWS), Microsoft Azure (Azure), or Google Cloud.
- The Confluent CLI installed and configured for the cluster. For more information, see Install the Confluent CLI.
- Schema Registry must be enabled to use a Schema Registry-based format (for example, AVRO, JSON_SR (JSON Schema), or PROTOBUF). For more information, see Schema Registry Enabled Environments.
- Access to a Redis Kafka database.
- The Redis Kafka database service endpoint and the Kafka cluster must be in the same region.
- For networking considerations, see Networking and DNS. To use a set of public egress IP addresses, see Public Egress IP Addresses for Confluent Cloud Connectors.
- Kafka cluster credentials. The following lists the different ways you can provide credentials.
- Enter an existing service account resource ID.
- Create a Confluent Cloud service account for the connector. Make sure to review the ACL entries required in the service account documentation. Some connectors have specific ACL requirements.
- Create a Confluent Cloud API key and secret. To create a key and secret, you can use confluent api-key create or you can autogenerate the API key and secret directly in the Cloud Console when setting up the connector.
Using the Confluent Cloud Console¶
Step 1: Launch your Confluent Cloud cluster¶
To create and launch a Kafka cluster in Confluent Cloud, see Create a kafka cluster in Confluent Cloud.
Step 2: Add a connector¶
In the left navigation menu, click Connectors. If you already have connectors in your cluster, click + Add connector.
Step 4: Enter the connector details¶
Note
- Ensure you have all your prerequisites completed.
- An asterisk ( * ) designates a required entry.
At the Add Redis Kafka Sink Connector screen, complete the following:
If you’ve already populated your Kafka topics, select the topics you want to connect from the Topics list.
To create a new topic, click +Add new topic.
Select the way you want to provide Kafka Cluster credentials. You can choose one of the following options:
- My account: This setting allows your connector to globally access everything that you have access to. With a user account, the connector uses an API key and secret to access the Kafka cluster. This option is not recommended for production.
- Service account: This setting limits the access for your connector by using a service account. This option is recommended for production.
- Use an existing API key: This setting allows you to specify an API key and a secret pair. You can use an existing pair or create a new one. This method is not recommended for production environments.
Note
Freight clusters support only service accounts for Kafka authentication.
Click Continue.
Add the following database connection details:
Connection credentials
- Redis host: The IP address or hostname of the Redis database server.
- Redis port: The port number used to connect to Redis database server.
- Redis database index: The numerical index of the Redis database you want to write data to.
- Redis username: The username of the Redis user connecting to the Redis database server.
- Redis password: The password of the Redis user connecting to the Redis database server.
TLS configuration
- Enable TLS: Specify whether to use Transport Layer Security (TLS) to connect
to the Redis database. Defaults to
false
. - CA certificate file: If you set
Enable TLS
property totrue
, upload the CA certificate file. The connector uses a TLS-encrypted connection and verifies the server’s TLS certificate against the configured Certificate Authority (CA) certificates. You can use this with or without client certificates.
Client certificate authentication
- Private Key File: Upload the private key file in PEM format. Use this file along with the certificate file for client certificate authentication.
- Certificate File: Upload the certificate file in PEM format. Use this file along with the private key file for client certificate authentication.
- Key password: Specify the password of the private key file if it is password-protected.
Click Continue.
Note
See Configuration Properties for all property values and definitions.
Configure the following:
- Redis data type: Defines the destination Redis data structure. Valid entries are STREAM, LIST, SET, ZSET, STRING, HASH, TIMESERIES, JSON. Note that multi/exec transactions only work with STREAM, LIST, SET, or ZSET data types.
- Input Kafka record value format: Select the input Kafka record value format (data coming from the Kafka topic). Valid entires are AVRO, BYTES, JSON, JSON_SR (JSON Schema), PROTOBUF, or STRING. A valid schema must be available in Schema Registry to use a schema-based message format (for example, AVRO, JSON_SR, or PROTOBUF). See Schema Registry Enabled Environments for additional information.
- Input Kafka record key format: Select the input Kafka record key format. Valid entires are AVRO, BYTES, JSON, JSON_SR (JSON Schema), PROTOBUF, or STRING. A valid schema must be available in Schema Registry to use a schema-based message format (for example, AVRO, JSON_SR, or PROTOBUF).
Configuration
Key space: A format string for the destination key space. It may contain
${topic}
as a placeholder for the originating topic name. For example,kafka_${topic}
for the topicorders
maps to the Redis key spacekafka_orders
.Key separator: Species the separator for non-collection destination keys.
Key TTL: The time to live (in seconds) for the key. If not set (default
-1
), the record will not expire.You can set a TTL for individual records by including a
redis.key.ttl
header in your Kafka message. When present, this record-level TTL header takes precedence over the global configuration.Use multi/exec transactions: Specifies whether to execute Redis commands in multi/exec transactions. This option only works with STREAM, LIST, SET, ZSET data types.
Wait for replicas: The number of replicas to wait for. Use
0
to disable waiting for replicas.Character set: Specifies the character set to encode Redis key and value strings. This must be a valid charset name.
Data encryption
- (Optional) Enable Client-Side Field Level Encryption for data decryption. Specify a Service Account to
access the Schema Registry and associated encryption rules or keys with that schema. Select the connector behavior
(
ERROR
orNONE
) on data decryption failure. If set toERROR
, the connector fails and writes the encrypted data in the DLQ. If set toNONE
, the connector writes the encrypted data in the target system without decryption. For more information on CSFLE setup, see Manage CSFLE for connectors.
Show advanced configurations
Schema context: Select a schema context to use for this connector, if using a schema-based data format. This property defaults to the Default context, which configures the connector to use the default schema set up for Schema Registry in your Confluent Cloud environment. A schema context allows you to use separate schemas (like schema sub-registries) tied to topics in different Kafka clusters that share the same Schema Registry environment. For example, if you select a non-default context, a Source connector uses only that schema context to register a schema and a Sink connector uses only that schema context to read from. For more information about setting up a schema context, see What are schema contexts and when should you use them?.
Command timeout: Set the Redis command timeout in seconds. Defaults to
60
.Connection pool size: Specify the maximum number of connections in the pool. Defaults to
8
.Redis server mode: Specify whether the Redis server runs on a single node or across multiple nodes. Defaults to
Standalone
.
Additional configurations
To add an additional configuration, see Additional Connector Configuration Reference for Confluent Cloud.
Auto-restart policy
Enable Connector Auto-restart: Control the auto-restart behavior of the connector and its task in the event of user-actionable errors. Defaults to
true
, enabling the connector to automatically restart in case of user-actionable errors. Set this property tofalse
to disable auto-restart for failed connectors. In such cases, you would need to manually restart the connector.
Consumer configuration
Max poll interval(ms): Set the maximum delay between subsequent consume requests to Kafka. Use this property to improve connector performance in cases when the connector cannot send records to the sink system. The default is 300,000 milliseconds (5 minutes).
Max poll records: Set the maximum number of records to consume from Kafka in a single request. Use this property to improve connector performance in cases when the connector cannot send records to the sink system. The default is 500 records.
Transforms
Single Message Transforms: To add a new SMT, see Add transforms. For more information about unsupported SMTs, see Unsupported transformations.
Processing position
Set offsets: Click Set offsets to define a specific offset for this connector to begin procession data from. For more information on managing offsets, see Manage offsets.
Click Continue.
Based on the number of topic partitions you select, you will be provided with a recommended number of tasks. One task can handle up to 100 partitions.
- To change the number of recommended tasks, enter the number of tasks for the connector to use in the Tasks field.
- Click Continue.
Verify the connection details by previewing the running configuration.
After you’ve validated that the properties are configured to your satisfaction, click Launch.
Tip
For information about previewing your connector output, see Data Previews for Confluent Cloud Connectors.
Verify the connection details and click Launch.
The status for the connector should go from Provisioning to Running. It may take a few minutes.
Step 5: Check Redis database¶
After the connector is running, verify that messages are being added to your Redis database.
Tip
When you launch a connector, a Dead Letter Queue topic is automatically created. See View Connector Dead Letter Queue Errors in Confluent Cloud for details.
Using the Confluent CLI¶
Complete the following steps to set up and run the connector using the Confluent CLI.
Note
Make sure you have all your prerequisites completed.
Step 1: List the available connectors¶
Enter the following command to list available connectors:
confluent connect plugin list
Step 2: List the connector configuration properties¶
Enter the following command to show the connector configuration properties:
confluent connect plugin describe <connector-plugin-name>
The command output shows the required and optional configuration properties.
Step 3: Create the connector configuration file¶
Create a JSON file that contains the connector configuration properties. The following example shows the required connector properties.
{
"connector.class": "RedisKafkaSink",
"name": "RedisKafkaSinkConnector_0",
"kafka.auth.mode": "KAFKA_API_KEY",
"kafka.api.key": "<my-kafka-api-key",
"kafka.api.secret": "<my-kafka-api-secret>",
"redis.host": "test-18211.c90.us-east-1.ec2.redis-cloud.com",
"redis.port": "18211",
"redis.database": "0",
"redis.tls": "false",
"redis.timeout": "60",
"redis.pool": "8",
"redis.server.mode": "Standalone",
"topics": "keys_source",
"input.data.format" : "JSON",
"input.key.format" : "STRING",
"redis.charset": "UTF-8",
"redis.type": "STREAM",
"redis.multiexec": "false",
"redis.separator": ":",
"redis.wait.replicas": "0",
"redis.key.ttl": "-1",
"tasks.max": "1",
"auto.restart.on.user.error": "true"
}
Note the following property definitions:
"connector.class"
: Identifies the connector plugin name."name"
: Sets a name for your new connector.
"kafka.auth.mode"
: Identifies the connector authentication mode you want to use. There are two options:SERVICE_ACCOUNT
orKAFKA_API_KEY
(the default). To use an API key and secret, specify the configuration propertieskafka.api.key
andkafka.api.secret
, as shown in the example configuration (above). To use a service account, specify the Resource ID in the propertykafka.service.account.id=<service-account-resource-ID>
. To list the available service account resource IDs, use the following command:confluent iam service-account list
For example:
confluent iam service-account list Id | Resource ID | Name | Description +---------+-------------+-------------------+------------------- 123456 | sa-l1r23m | sa-1 | Service account 1 789101 | sa-l4d56p | sa-2 | Service account 2
"input.data.format"
: Sets the input Kafka record value format (data coming from the Kafka topic). Valid entires are AVRO, BYTES, JSON, JSON_SR (JSON Schema), PROTOBUF, or STRING. You must have Confluent Cloud Schema Registry configured if using a schema-based message format (for example, AVRO, JSON_SR (JSON Schema), or PROTOBUF)."input.key.format"
: Sets the input record key format (data coming from the Kafka topic). Valid entries are AVRO, JSON_SR (JSON Schema), PROTOBUF, or STRING. You must have Confluent Cloud Schema Registry configured if using a schema-based message format."redis.host"
: The IP address or hostname of the Redis database server."redis.port"
: The port number used to connect to Redis database server."redis.tls"
: Specify whether to use Transport Layer Security (TLS) to connect to the Redis database. Defaults tofalse
."tasks.max"
: Enter the number of tasks for the connector. For more information, see Confluent Cloud connector limitations.
Note
(Optional) To enable CSFLE for data encryption, specify the following properties:
csfle.enabled
: Flag to indicate whether the connector honors CSFLE rules.sr.service.account.id
: A Service Account to access the Schema Registry and associated encryption rules or keys with that schema.csfle.onFailure
: Configures the connector behavior (ERROR
orNONE
) on data decryption failure. If set toERROR
, the connector fails and writes the encrypted data in the DLQ. If set toNONE
, the connector writes the encrypted data in the target system without decryption.
Warning
Security Risk: Dead Letter Queue (DLQ) with CSFLE
When using CSFLE with connectors that route failed messages to a Dead Letter Queue (DLQ), be aware that data sent to the DLQ is written in plaintext (unencrypted). This poses a significant security risk as sensitive data that should be encrypted may be exposed in the DLQ.
Do not use DLQ with CSFLE in the current version. If you need error handling for CSFLE-enabled data, use alternative approaches such as:
- Setting the connector behavior to
ERROR
to throw exceptions instead of routing to DLQ- Implementing custom error handling in your applications
- Using
NONE
to pass encrypted data through without decryption
For more information on CSFLE setup, see Manage CSFLE for connectors.
Single Message Transforms: For more information about adding SMTs using the CLI, see Single Message Transforms (SMT) documentation.
See Configuration Properties for all property values and definitions.
Step 4: Load the properties file and create the connector¶
Enter the following command to load the configuration and start the connector:
confluent connect cluster create --config-file <file-name>.json
For example:
confluent connect cluster create --config-file RedisKafkaSink.json
Example output:
Created connector confluent-RedisKafkaSink lcc-ix4dl
Step 5: Check the connector status¶
Enter the following command to check the connector status:
confluent connect cluster list
Example output:
ID | Name | Status | Type
+-----------+-------------------------+---------+------+
lcc-ix4dl | confluent-RedisKafkaSink | RUNNING | sink
Step 6: Check Redis Kafka¶
After the connector is running, verify that records are populating your Redis Kafka database.
Tip
When you launch a connector, a Dead Letter Queue topic is automatically created. See View Connector Dead Letter Queue Errors in Confluent Cloud for details.
Configuration Properties¶
Use the following configuration properties with the fully-managed connector. For self-managed connector property definitions and other details, see the connector docs in Self-managed connectors for Confluent Platform.
Which topics do you want to get data from?¶
topics.regex
A regular expression that matches the names of the topics to consume from. This is useful when you want to consume from multiple topics that match a certain pattern without having to list them all individually.
- Type: string
- Importance: low
topics
Identifies the topic name or a comma-separated list of topic names.
- Type: list
- Importance: high
errors.deadletterqueue.topic.name
The name of the topic to be used as the dead letter queue (DLQ) for messages that result in an error when processed by this sink connector, or its transformations or converters. Defaults to ‘dlq-${connector}’ if not set. The DLQ topic will be created automatically if it does not exist. You can provide
${connector}
in the value to use it as a placeholder for the logical cluster ID.- Type: string
- Default: dlq-${connector}
- Importance: low
Schema Config¶
schema.context.name
Add a schema context name. A schema context represents an independent scope in Schema Registry. It is a separate sub-schema tied to topics in different Kafka clusters that share the same Schema Registry instance. If not used, the connector uses the default schema configured for Schema Registry in your Confluent Cloud environment.
- Type: string
- Default: default
- Importance: medium
How should we connect to your data?¶
name
Sets a name for your connector.
- Type: string
- Valid Values: A string at most 64 characters long
- Importance: high
Kafka Cluster credentials¶
kafka.auth.mode
Kafka Authentication mode. It can be one of KAFKA_API_KEY or SERVICE_ACCOUNT. It defaults to KAFKA_API_KEY mode.
- Type: string
- Default: KAFKA_API_KEY
- Valid Values: KAFKA_API_KEY, SERVICE_ACCOUNT
- Importance: high
kafka.api.key
Kafka API Key. Required when kafka.auth.mode==KAFKA_API_KEY.
- Type: password
- Importance: high
kafka.service.account.id
The Service Account that will be used to generate the API keys to communicate with Kafka Cluster.
- Type: string
- Importance: high
kafka.api.secret
Secret associated with Kafka API key. Required when kafka.auth.mode==KAFKA_API_KEY.
- Type: password
- Importance: high
Redis connection¶
redis.host
The hostname of Redis server to connect to.
- Type: string
- Importance: high
redis.port
The port number of Redis server to connect to.
- Type: string
- Importance: high
redis.database
The database index to write to.
- Type: int
- Default: 0
- Importance: medium
redis.username
The username of the Redis user connecting to the Redis database server.
- Type: string
- Importance: medium
redis.password
The password of the Redis user connecting to the Redis database server.
- Type: password
- Importance: medium
Redis security¶
redis.tls
Establish a secure TLS connection to Redis.
- Type: boolean
- Default: false
- Importance: medium
redis.cacert
X.509 CA certificate file to verify with. Use this with or without client certificates.
- Type: password
- Importance: medium
Redis client certificate auth¶
redis.key.file
Private key file (PEM format) to authenticate with. Use this file along with the certificate file for client certificate authentication.
- Type: password
- Importance: medium
redis.key.cert
X.509 certificate chain file (PEM format) to authenticate with. Use this file along with the private key file for client certificate authentication.
- Type: password
- Importance: medium
redis.key.password
Password of the private key file. Leave empty if key file is not password-protected.
- Type: password
- Importance: medium
Redis data structure¶
redis.type
Destination Redis data structure. Valid entries are STREAM, LIST, SET, ZSET, STRING, HASH, TIMESERIES, or JSON. Note that multi/exec transactions only work with STREAM, LIST, SET, or ZSET data types.
- Type: string
- Default: STREAM
- Importance: high
Input messages¶
input.data.format
Sets the input Kafka record value format. Valid entries are AVRO, BYTES, JSON, JSON_SR, PROTOBUF, or STRING. Note that you need to have Confluent Cloud Schema Registry configured if using a schema-based message format like AVRO, JSON_SR, and PROTOBUF.
- Type: string
- Default: JSON
- Importance: high
input.key.format
Sets the input Kafka record key format. Valid entries are AVRO, BYTES, JSON, JSON_SR, PROTOBUF, STRING. Note that you need to have Confluent Cloud Schema Registry configured if using a schema-based message format like AVRO, JSON_SR, and PROTOBUF
- Type: string
- Default: BYTES
- Valid Values: AVRO, BYTES, JSON, JSON_SR, PROTOBUF, STRING
- Importance: high
Redis configuration¶
redis.keyspace
A format string for destination key space, which may contain
${topic}
as a placeholder for the originating topic name. For example,kafka_${topic}
for the topicorders
will map to the Redis key spacekafka_orders
.- Type: string
- Default: ${topic}
- Importance: medium
redis.separator
Separator for non-collection destination keys.
- Type: string
- Default: :
- Importance: medium
redis.key.ttl
Time to live in seconds for the key to automatically expire data after a specified duration. If not set (default
-1
), the record will not expire.- Type: long
- Default: -1
- Valid Values: [-1,…,2147483647]
- Importance: medium
redis.multiexec
Whether to execute Redis commands in multi/exec transactions. Only works with STREAM, LIST, SET, or ZSET data types.
- Type: boolean
- Default: false
- Importance: medium
redis.wait.replicas
Number of replicas to wait for. Use
0
to disable waiting for replicas.- Type: int
- Default: 0
- Valid Values: [0,…,100]
- Importance: medium
redis.charset
Character set to encode Redis key and value strings. Must be a valid charset name.
- Type: string
- Default: UTF-8
- Importance: high
redis.wait.timeout
Timeout in milliseconds for WAIT command.
- Type: long
- Default: 1000
- Valid Values: [1,…,60000]
- Importance: medium
redis.timeout
Redis command timeout in seconds.
- Type: long
- Default: 60
- Valid Values: [1,…,3600]
- Importance: medium
redis.pool
Maximum number of connections in the pool in the range of 1 to 100.
- Type: int
- Default: 8
- Valid Values: [1,…,100]
- Importance: medium
redis.server.mode
Whether redis server is running on one or multiple nodes.
- Type: string
- Default: Standalone
- Importance: medium
Consumer configuration¶
max.poll.interval.ms
The maximum delay between subsequent consume requests to Kafka. This configuration property may be used to improve the performance of the connector, if the connector cannot send records to the sink system. Defaults to 300000 milliseconds (5 minutes).
- Type: long
- Default: 300000 (5 minutes)
- Valid Values: [60000,…,1800000] for non-dedicated clusters and [60000,…] for dedicated clusters
- Importance: low
max.poll.records
The maximum number of records to consume from Kafka in a single request. This configuration property may be used to improve the performance of the connector, if the connector cannot send records to the sink system. Defaults to 500 records.
- Type: long
- Default: 500
- Valid Values: [1,…,500] for non-dedicated clusters and [1,…] for dedicated clusters
- Importance: low
Number of tasks for this connector¶
tasks.max
Maximum number of tasks for the connector.
- Type: int
- Valid Values: [1,…]
- Importance: high
Additional Configs¶
consumer.override.auto.offset.reset
Defines the behavior of the consumer when there is no committed position (which occurs when the group is first initialized) or when an offset is out of range. You can choose either to reset the position to the “earliest” offset (the default) or the “latest” offset. You can also select “none” if you would rather set the initial offset yourself and you are willing to handle out of range errors manually. More details: https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#auto-offset-reset
- Type: string
- Importance: low
consumer.override.isolation.level
Controls how to read messages written transactionally. If set to read_committed, consumer.poll() will only return transactional messages which have been committed. If set to read_uncommitted (the default), consumer.poll() will return all messages, even transactional messages which have been aborted. Non-transactional messages will be returned unconditionally in either mode. More details: https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#isolation-level
- Type: string
- Importance: low
header.converter
The converter class for the headers. This is used to serialize and deserialize the headers of the messages.
- Type: string
- Importance: low
value.converter.allow.optional.map.keys
Allow optional string map key when converting from Connect Schema to Avro Schema. Applicable for Avro Converters.
- Type: boolean
- Importance: low
value.converter.auto.register.schemas
Specify if the Serializer should attempt to register the Schema.
- Type: boolean
- Importance: low
value.converter.connect.meta.data
Allow the Connect converter to add its metadata to the output schema. Applicable for Avro Converters.
- Type: boolean
- Importance: low
value.converter.enhanced.avro.schema.support
Enable enhanced schema support to preserve package information and Enums. Applicable for Avro Converters.
- Type: boolean
- Importance: low
value.converter.enhanced.protobuf.schema.support
Enable enhanced schema support to preserve package information. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.flatten.unions
Whether to flatten unions (oneofs). Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.generate.index.for.unions
Whether to generate an index suffix for unions. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.generate.struct.for.nulls
Whether to generate a struct variable for null values. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.int.for.enums
Whether to represent enums as integers. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.latest.compatibility.strict
Verify latest subject version is backward compatible when use.latest.version is true.
- Type: boolean
- Importance: low
value.converter.object.additional.properties
Whether to allow additional properties for object schemas. Applicable for JSON_SR Converters.
- Type: boolean
- Importance: low
value.converter.optional.for.nullables
Whether nullable fields should be specified with an optional label. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.optional.for.proto2
Whether proto2 optionals are supported. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.scrub.invalid.names
Whether to scrub invalid names by replacing invalid characters with valid characters. Applicable for Avro and Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.use.latest.version
Use latest version of schema in subject for serialization when auto.register.schemas is false.
- Type: boolean
- Importance: low
value.converter.use.optional.for.nonrequired
Whether to set non-required properties to be optional. Applicable for JSON_SR Converters.
- Type: boolean
- Importance: low
value.converter.wrapper.for.nullables
Whether nullable fields should use primitive wrapper messages. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.wrapper.for.raw.primitives
Whether a wrapper message should be interpreted as a raw primitive at root level. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
errors.tolerance
Use this property if you would like to configure the connector’s error handling behavior. WARNING: This property should be used with CAUTION for SOURCE CONNECTORS as it may lead to dataloss. If you set this property to ‘all’, the connector will not fail on errant records, but will instead log them (and send to DLQ for Sink Connectors) and continue processing. If you set this property to ‘none’, the connector task will fail on errant records.
- Type: string
- Default: all
- Importance: low
key.converter.key.subject.name.strategy
How to construct the subject name for key schema registration.
- Type: string
- Default: TopicNameStrategy
- Importance: low
key.converter.replace.null.with.default
Whether to replace fields that have a default value and that are null to the default value. When set to true, the default value is used, otherwise null is used. Applicable for JSON Key Converter.
- Type: boolean
- Default: true
- Importance: low
key.converter.schemas.enable
Include schemas within each of the serialized keys. Input message keys must contain schema and payload fields and may not contain additional fields. For plain JSON data, set this to false. Applicable for JSON Key Converter.
- Type: boolean
- Default: false
- Importance: low
value.converter.decimal.format
Specify the JSON/JSON_SR serialization format for Connect DECIMAL logical type values with two allowed literals:
BASE64 to serialize DECIMAL logical types as base64 encoded binary data and
NUMERIC to serialize Connect DECIMAL logical type values in JSON/JSON_SR as a number representing the decimal value.
- Type: string
- Default: BASE64
- Importance: low
value.converter.flatten.singleton.unions
Whether to flatten singleton unions. Applicable for Avro and JSON_SR Converters.
- Type: boolean
- Default: false
- Importance: low
value.converter.ignore.default.for.nullables
When set to true, this property ensures that the corresponding record in Kafka is NULL, instead of showing the default column value. Applicable for AVRO,PROTOBUF and JSON_SR Converters.
- Type: boolean
- Default: false
- Importance: low
value.converter.reference.subject.name.strategy
Set the subject reference name strategy for value. Valid entries are DefaultReferenceSubjectNameStrategy or QualifiedReferenceSubjectNameStrategy. Note that the subject reference name strategy can be selected only for PROTOBUF format with the default strategy being DefaultReferenceSubjectNameStrategy.
- Type: string
- Default: DefaultReferenceSubjectNameStrategy
- Importance: low
value.converter.replace.null.with.default
Whether to replace fields that have a default value and that are null to the default value. When set to true, the default value is used, otherwise null is used. Applicable for JSON Converter.
- Type: boolean
- Default: true
- Importance: low
value.converter.schemas.enable
Include schemas within each of the serialized values. Input messages must contain schema and payload fields and may not contain additional fields. For plain JSON data, set this to false. Applicable for JSON Converter.
- Type: boolean
- Default: false
- Importance: low
value.converter.value.subject.name.strategy
Determines how to construct the subject name under which the value schema is registered with Schema Registry.
- Type: string
- Default: TopicNameStrategy
- Importance: low
Auto-restart policy¶
auto.restart.on.user.error
Enable connector to automatically restart on user-actionable errors.
- Type: boolean
- Default: true
- Importance: medium
Next Steps¶
For an example that shows fully-managed Confluent Cloud connectors in action with Confluent Cloud for Apache Flink, see the Cloud ETL Demo. This example also shows how to use Confluent CLI to manage your resources in Confluent Cloud.