lynx   »   [go: up one dir, main page]

core/iter/traits/
iterator.rs

1use super::super::{
2    ArrayChunks, ByRefSized, Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, FlatMap,
3    Flatten, Fuse, Inspect, Intersperse, IntersperseWith, Map, MapWhile, MapWindows, Peekable,
4    Product, Rev, Scan, Skip, SkipWhile, StepBy, Sum, Take, TakeWhile, TrustedRandomAccessNoCoerce,
5    Zip, try_process,
6};
7use crate::array;
8use crate::cmp::{self, Ordering};
9use crate::num::NonZero;
10use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
11
12fn _assert_is_dyn_compatible(_: &dyn Iterator<Item = ()>) {}
13
14/// A trait for dealing with iterators.
15///
16/// This is the main iterator trait. For more about the concept of iterators
17/// generally, please see the [module-level documentation]. In particular, you
18/// may want to know how to [implement `Iterator`][impl].
19///
20/// [module-level documentation]: crate::iter
21/// [impl]: crate::iter#implementing-iterator
22#[stable(feature = "rust1", since = "1.0.0")]
23#[rustc_on_unimplemented(
24    on(
25        _Self = "core::ops::range::RangeTo<Idx>",
26        note = "you might have meant to use a bounded `Range`"
27    ),
28    on(
29        _Self = "core::ops::range::RangeToInclusive<Idx>",
30        note = "you might have meant to use a bounded `RangeInclusive`"
31    ),
32    label = "`{Self}` is not an iterator",
33    message = "`{Self}` is not an iterator"
34)]
35#[doc(notable_trait)]
36#[lang = "iterator"]
37#[rustc_diagnostic_item = "Iterator"]
38#[must_use = "iterators are lazy and do nothing unless consumed"]
39pub trait Iterator {
40    /// The type of the elements being iterated over.
41    #[rustc_diagnostic_item = "IteratorItem"]
42    #[stable(feature = "rust1", since = "1.0.0")]
43    type Item;
44
45    /// Advances the iterator and returns the next value.
46    ///
47    /// Returns [`None`] when iteration is finished. Individual iterator
48    /// implementations may choose to resume iteration, and so calling `next()`
49    /// again may or may not eventually start returning [`Some(Item)`] again at some
50    /// point.
51    ///
52    /// [`Some(Item)`]: Some
53    ///
54    /// # Examples
55    ///
56    /// ```
57    /// let a = [1, 2, 3];
58    ///
59    /// let mut iter = a.iter();
60    ///
61    /// // A call to next() returns the next value...
62    /// assert_eq!(Some(&1), iter.next());
63    /// assert_eq!(Some(&2), iter.next());
64    /// assert_eq!(Some(&3), iter.next());
65    ///
66    /// // ... and then None once it's over.
67    /// assert_eq!(None, iter.next());
68    ///
69    /// // More calls may or may not return `None`. Here, they always will.
70    /// assert_eq!(None, iter.next());
71    /// assert_eq!(None, iter.next());
72    /// ```
73    #[lang = "next"]
74    #[stable(feature = "rust1", since = "1.0.0")]
75    fn next(&mut self) -> Option<Self::Item>;
76
77    /// Advances the iterator and returns an array containing the next `N` values.
78    ///
79    /// If there are not enough elements to fill the array then `Err` is returned
80    /// containing an iterator over the remaining elements.
81    ///
82    /// # Examples
83    ///
84    /// Basic usage:
85    ///
86    /// ```
87    /// #![feature(iter_next_chunk)]
88    ///
89    /// let mut iter = "lorem".chars();
90    ///
91    /// assert_eq!(iter.next_chunk().unwrap(), ['l', 'o']);              // N is inferred as 2
92    /// assert_eq!(iter.next_chunk().unwrap(), ['r', 'e', 'm']);         // N is inferred as 3
93    /// assert_eq!(iter.next_chunk::<4>().unwrap_err().as_slice(), &[]); // N is explicitly 4
94    /// ```
95    ///
96    /// Split a string and get the first three items.
97    ///
98    /// ```
99    /// #![feature(iter_next_chunk)]
100    ///
101    /// let quote = "not all those who wander are lost";
102    /// let [first, second, third] = quote.split_whitespace().next_chunk().unwrap();
103    /// assert_eq!(first, "not");
104    /// assert_eq!(second, "all");
105    /// assert_eq!(third, "those");
106    /// ```
107    #[inline]
108    #[unstable(feature = "iter_next_chunk", reason = "recently added", issue = "98326")]
109    fn next_chunk<const N: usize>(
110        &mut self,
111    ) -> Result<[Self::Item; N], array::IntoIter<Self::Item, N>>
112    where
113        Self: Sized,
114    {
115        array::iter_next_chunk(self)
116    }
117
118    /// Returns the bounds on the remaining length of the iterator.
119    ///
120    /// Specifically, `size_hint()` returns a tuple where the first element
121    /// is the lower bound, and the second element is the upper bound.
122    ///
123    /// The second half of the tuple that is returned is an <code>[Option]<[usize]></code>.
124    /// A [`None`] here means that either there is no known upper bound, or the
125    /// upper bound is larger than [`usize`].
126    ///
127    /// # Implementation notes
128    ///
129    /// It is not enforced that an iterator implementation yields the declared
130    /// number of elements. A buggy iterator may yield less than the lower bound
131    /// or more than the upper bound of elements.
132    ///
133    /// `size_hint()` is primarily intended to be used for optimizations such as
134    /// reserving space for the elements of the iterator, but must not be
135    /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
136    /// implementation of `size_hint()` should not lead to memory safety
137    /// violations.
138    ///
139    /// That said, the implementation should provide a correct estimation,
140    /// because otherwise it would be a violation of the trait's protocol.
141    ///
142    /// The default implementation returns <code>(0, [None])</code> which is correct for any
143    /// iterator.
144    ///
145    /// # Examples
146    ///
147    /// Basic usage:
148    ///
149    /// ```
150    /// let a = [1, 2, 3];
151    /// let mut iter = a.iter();
152    ///
153    /// assert_eq!((3, Some(3)), iter.size_hint());
154    /// let _ = iter.next();
155    /// assert_eq!((2, Some(2)), iter.size_hint());
156    /// ```
157    ///
158    /// A more complex example:
159    ///
160    /// ```
161    /// // The even numbers in the range of zero to nine.
162    /// let iter = (0..10).filter(|x| x % 2 == 0);
163    ///
164    /// // We might iterate from zero to ten times. Knowing that it's five
165    /// // exactly wouldn't be possible without executing filter().
166    /// assert_eq!((0, Some(10)), iter.size_hint());
167    ///
168    /// // Let's add five more numbers with chain()
169    /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
170    ///
171    /// // now both bounds are increased by five
172    /// assert_eq!((5, Some(15)), iter.size_hint());
173    /// ```
174    ///
175    /// Returning `None` for an upper bound:
176    ///
177    /// ```
178    /// // an infinite iterator has no upper bound
179    /// // and the maximum possible lower bound
180    /// let iter = 0..;
181    ///
182    /// assert_eq!((usize::MAX, None), iter.size_hint());
183    /// ```
184    #[inline]
185    #[stable(feature = "rust1", since = "1.0.0")]
186    fn size_hint(&self) -> (usize, Option<usize>) {
187        (0, None)
188    }
189
190    /// Consumes the iterator, counting the number of iterations and returning it.
191    ///
192    /// This method will call [`next`] repeatedly until [`None`] is encountered,
193    /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
194    /// called at least once even if the iterator does not have any elements.
195    ///
196    /// [`next`]: Iterator::next
197    ///
198    /// # Overflow Behavior
199    ///
200    /// The method does no guarding against overflows, so counting elements of
201    /// an iterator with more than [`usize::MAX`] elements either produces the
202    /// wrong result or panics. If debug assertions are enabled, a panic is
203    /// guaranteed.
204    ///
205    /// # Panics
206    ///
207    /// This function might panic if the iterator has more than [`usize::MAX`]
208    /// elements.
209    ///
210    /// # Examples
211    ///
212    /// ```
213    /// let a = [1, 2, 3];
214    /// assert_eq!(a.iter().count(), 3);
215    ///
216    /// let a = [1, 2, 3, 4, 5];
217    /// assert_eq!(a.iter().count(), 5);
218    /// ```
219    #[inline]
220    #[stable(feature = "rust1", since = "1.0.0")]
221    fn count(self) -> usize
222    where
223        Self: Sized,
224    {
225        self.fold(
226            0,
227            #[rustc_inherit_overflow_checks]
228            |count, _| count + 1,
229        )
230    }
231
232    /// Consumes the iterator, returning the last element.
233    ///
234    /// This method will evaluate the iterator until it returns [`None`]. While
235    /// doing so, it keeps track of the current element. After [`None`] is
236    /// returned, `last()` will then return the last element it saw.
237    ///
238    /// # Examples
239    ///
240    /// ```
241    /// let a = [1, 2, 3];
242    /// assert_eq!(a.iter().last(), Some(&3));
243    ///
244    /// let a = [1, 2, 3, 4, 5];
245    /// assert_eq!(a.iter().last(), Some(&5));
246    /// ```
247    #[inline]
248    #[stable(feature = "rust1", since = "1.0.0")]
249    fn last(self) -> Option<Self::Item>
250    where
251        Self: Sized,
252    {
253        #[inline]
254        fn some<T>(_: Option<T>, x: T) -> Option<T> {
255            Some(x)
256        }
257
258        self.fold(None, some)
259    }
260
261    /// Advances the iterator by `n` elements.
262    ///
263    /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
264    /// times until [`None`] is encountered.
265    ///
266    /// `advance_by(n)` will return `Ok(())` if the iterator successfully advances by
267    /// `n` elements, or a `Err(NonZero<usize>)` with value `k` if [`None`] is encountered,
268    /// where `k` is remaining number of steps that could not be advanced because the iterator ran out.
269    /// If `self` is empty and `n` is non-zero, then this returns `Err(n)`.
270    /// Otherwise, `k` is always less than `n`.
271    ///
272    /// Calling `advance_by(0)` can do meaningful work, for example [`Flatten`]
273    /// can advance its outer iterator until it finds an inner iterator that is not empty, which
274    /// then often allows it to return a more accurate `size_hint()` than in its initial state.
275    ///
276    /// [`Flatten`]: crate::iter::Flatten
277    /// [`next`]: Iterator::next
278    ///
279    /// # Examples
280    ///
281    /// ```
282    /// #![feature(iter_advance_by)]
283    ///
284    /// use std::num::NonZero;
285    ///
286    /// let a = [1, 2, 3, 4];
287    /// let mut iter = a.iter();
288    ///
289    /// assert_eq!(iter.advance_by(2), Ok(()));
290    /// assert_eq!(iter.next(), Some(&3));
291    /// assert_eq!(iter.advance_by(0), Ok(()));
292    /// assert_eq!(iter.advance_by(100), Err(NonZero::new(99).unwrap())); // only `&4` was skipped
293    /// ```
294    #[inline]
295    #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
296    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
297        for i in 0..n {
298            if self.next().is_none() {
299                // SAFETY: `i` is always less than `n`.
300                return Err(unsafe { NonZero::new_unchecked(n - i) });
301            }
302        }
303        Ok(())
304    }
305
306    /// Returns the `n`th element of the iterator.
307    ///
308    /// Like most indexing operations, the count starts from zero, so `nth(0)`
309    /// returns the first value, `nth(1)` the second, and so on.
310    ///
311    /// Note that all preceding elements, as well as the returned element, will be
312    /// consumed from the iterator. That means that the preceding elements will be
313    /// discarded, and also that calling `nth(0)` multiple times on the same iterator
314    /// will return different elements.
315    ///
316    /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
317    /// iterator.
318    ///
319    /// # Examples
320    ///
321    /// Basic usage:
322    ///
323    /// ```
324    /// let a = [1, 2, 3];
325    /// assert_eq!(a.iter().nth(1), Some(&2));
326    /// ```
327    ///
328    /// Calling `nth()` multiple times doesn't rewind the iterator:
329    ///
330    /// ```
331    /// let a = [1, 2, 3];
332    ///
333    /// let mut iter = a.iter();
334    ///
335    /// assert_eq!(iter.nth(1), Some(&2));
336    /// assert_eq!(iter.nth(1), None);
337    /// ```
338    ///
339    /// Returning `None` if there are less than `n + 1` elements:
340    ///
341    /// ```
342    /// let a = [1, 2, 3];
343    /// assert_eq!(a.iter().nth(10), None);
344    /// ```
345    #[inline]
346    #[stable(feature = "rust1", since = "1.0.0")]
347    fn nth(&mut self, n: usize) -> Option<Self::Item> {
348        self.advance_by(n).ok()?;
349        self.next()
350    }
351
352    /// Creates an iterator starting at the same point, but stepping by
353    /// the given amount at each iteration.
354    ///
355    /// Note 1: The first element of the iterator will always be returned,
356    /// regardless of the step given.
357    ///
358    /// Note 2: The time at which ignored elements are pulled is not fixed.
359    /// `StepBy` behaves like the sequence `self.next()`, `self.nth(step-1)`,
360    /// `self.nth(step-1)`, …, but is also free to behave like the sequence
361    /// `advance_n_and_return_first(&mut self, step)`,
362    /// `advance_n_and_return_first(&mut self, step)`, …
363    /// Which way is used may change for some iterators for performance reasons.
364    /// The second way will advance the iterator earlier and may consume more items.
365    ///
366    /// `advance_n_and_return_first` is the equivalent of:
367    /// ```
368    /// fn advance_n_and_return_first<I>(iter: &mut I, n: usize) -> Option<I::Item>
369    /// where
370    ///     I: Iterator,
371    /// {
372    ///     let next = iter.next();
373    ///     if n > 1 {
374    ///         iter.nth(n - 2);
375    ///     }
376    ///     next
377    /// }
378    /// ```
379    ///
380    /// # Panics
381    ///
382    /// The method will panic if the given step is `0`.
383    ///
384    /// # Examples
385    ///
386    /// ```
387    /// let a = [0, 1, 2, 3, 4, 5];
388    /// let mut iter = a.iter().step_by(2);
389    ///
390    /// assert_eq!(iter.next(), Some(&0));
391    /// assert_eq!(iter.next(), Some(&2));
392    /// assert_eq!(iter.next(), Some(&4));
393    /// assert_eq!(iter.next(), None);
394    /// ```
395    #[inline]
396    #[stable(feature = "iterator_step_by", since = "1.28.0")]
397    fn step_by(self, step: usize) -> StepBy<Self>
398    where
399        Self: Sized,
400    {
401        StepBy::new(self, step)
402    }
403
404    /// Takes two iterators and creates a new iterator over both in sequence.
405    ///
406    /// `chain()` will return a new iterator which will first iterate over
407    /// values from the first iterator and then over values from the second
408    /// iterator.
409    ///
410    /// In other words, it links two iterators together, in a chain. 🔗
411    ///
412    /// [`once`] is commonly used to adapt a single value into a chain of
413    /// other kinds of iteration.
414    ///
415    /// # Examples
416    ///
417    /// Basic usage:
418    ///
419    /// ```
420    /// let a1 = [1, 2, 3];
421    /// let a2 = [4, 5, 6];
422    ///
423    /// let mut iter = a1.iter().chain(a2.iter());
424    ///
425    /// assert_eq!(iter.next(), Some(&1));
426    /// assert_eq!(iter.next(), Some(&2));
427    /// assert_eq!(iter.next(), Some(&3));
428    /// assert_eq!(iter.next(), Some(&4));
429    /// assert_eq!(iter.next(), Some(&5));
430    /// assert_eq!(iter.next(), Some(&6));
431    /// assert_eq!(iter.next(), None);
432    /// ```
433    ///
434    /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
435    /// anything that can be converted into an [`Iterator`], not just an
436    /// [`Iterator`] itself. For example, slices (`&[T]`) implement
437    /// [`IntoIterator`], and so can be passed to `chain()` directly:
438    ///
439    /// ```
440    /// let s1 = &[1, 2, 3];
441    /// let s2 = &[4, 5, 6];
442    ///
443    /// let mut iter = s1.iter().chain(s2);
444    ///
445    /// assert_eq!(iter.next(), Some(&1));
446    /// assert_eq!(iter.next(), Some(&2));
447    /// assert_eq!(iter.next(), Some(&3));
448    /// assert_eq!(iter.next(), Some(&4));
449    /// assert_eq!(iter.next(), Some(&5));
450    /// assert_eq!(iter.next(), Some(&6));
451    /// assert_eq!(iter.next(), None);
452    /// ```
453    ///
454    /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
455    ///
456    /// ```
457    /// #[cfg(windows)]
458    /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
459    ///     use std::os::windows::ffi::OsStrExt;
460    ///     s.encode_wide().chain(std::iter::once(0)).collect()
461    /// }
462    /// ```
463    ///
464    /// [`once`]: crate::iter::once
465    /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
466    #[inline]
467    #[stable(feature = "rust1", since = "1.0.0")]
468    fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
469    where
470        Self: Sized,
471        U: IntoIterator<Item = Self::Item>,
472    {
473        Chain::new(self, other.into_iter())
474    }
475
476    /// 'Zips up' two iterators into a single iterator of pairs.
477    ///
478    /// `zip()` returns a new iterator that will iterate over two other
479    /// iterators, returning a tuple where the first element comes from the
480    /// first iterator, and the second element comes from the second iterator.
481    ///
482    /// In other words, it zips two iterators together, into a single one.
483    ///
484    /// If either iterator returns [`None`], [`next`] from the zipped iterator
485    /// will return [`None`].
486    /// If the zipped iterator has no more elements to return then each further attempt to advance
487    /// it will first try to advance the first iterator at most one time and if it still yielded an item
488    /// try to advance the second iterator at most one time.
489    ///
490    /// To 'undo' the result of zipping up two iterators, see [`unzip`].
491    ///
492    /// [`unzip`]: Iterator::unzip
493    ///
494    /// # Examples
495    ///
496    /// Basic usage:
497    ///
498    /// ```
499    /// let a1 = [1, 2, 3];
500    /// let a2 = [4, 5, 6];
501    ///
502    /// let mut iter = a1.iter().zip(a2.iter());
503    ///
504    /// assert_eq!(iter.next(), Some((&1, &4)));
505    /// assert_eq!(iter.next(), Some((&2, &5)));
506    /// assert_eq!(iter.next(), Some((&3, &6)));
507    /// assert_eq!(iter.next(), None);
508    /// ```
509    ///
510    /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
511    /// anything that can be converted into an [`Iterator`], not just an
512    /// [`Iterator`] itself. For example, slices (`&[T]`) implement
513    /// [`IntoIterator`], and so can be passed to `zip()` directly:
514    ///
515    /// ```
516    /// let s1 = &[1, 2, 3];
517    /// let s2 = &[4, 5, 6];
518    ///
519    /// let mut iter = s1.iter().zip(s2);
520    ///
521    /// assert_eq!(iter.next(), Some((&1, &4)));
522    /// assert_eq!(iter.next(), Some((&2, &5)));
523    /// assert_eq!(iter.next(), Some((&3, &6)));
524    /// assert_eq!(iter.next(), None);
525    /// ```
526    ///
527    /// `zip()` is often used to zip an infinite iterator to a finite one.
528    /// This works because the finite iterator will eventually return [`None`],
529    /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
530    ///
531    /// ```
532    /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
533    ///
534    /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
535    ///
536    /// assert_eq!((0, 'f'), enumerate[0]);
537    /// assert_eq!((0, 'f'), zipper[0]);
538    ///
539    /// assert_eq!((1, 'o'), enumerate[1]);
540    /// assert_eq!((1, 'o'), zipper[1]);
541    ///
542    /// assert_eq!((2, 'o'), enumerate[2]);
543    /// assert_eq!((2, 'o'), zipper[2]);
544    /// ```
545    ///
546    /// If both iterators have roughly equivalent syntax, it may be more readable to use [`zip`]:
547    ///
548    /// ```
549    /// use std::iter::zip;
550    ///
551    /// let a = [1, 2, 3];
552    /// let b = [2, 3, 4];
553    ///
554    /// let mut zipped = zip(
555    ///     a.into_iter().map(|x| x * 2).skip(1),
556    ///     b.into_iter().map(|x| x * 2).skip(1),
557    /// );
558    ///
559    /// assert_eq!(zipped.next(), Some((4, 6)));
560    /// assert_eq!(zipped.next(), Some((6, 8)));
561    /// assert_eq!(zipped.next(), None);
562    /// ```
563    ///
564    /// compared to:
565    ///
566    /// ```
567    /// # let a = [1, 2, 3];
568    /// # let b = [2, 3, 4];
569    /// #
570    /// let mut zipped = a
571    ///     .into_iter()
572    ///     .map(|x| x * 2)
573    ///     .skip(1)
574    ///     .zip(b.into_iter().map(|x| x * 2).skip(1));
575    /// #
576    /// # assert_eq!(zipped.next(), Some((4, 6)));
577    /// # assert_eq!(zipped.next(), Some((6, 8)));
578    /// # assert_eq!(zipped.next(), None);
579    /// ```
580    ///
581    /// [`enumerate`]: Iterator::enumerate
582    /// [`next`]: Iterator::next
583    /// [`zip`]: crate::iter::zip
584    #[inline]
585    #[stable(feature = "rust1", since = "1.0.0")]
586    fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
587    where
588        Self: Sized,
589        U: IntoIterator,
590    {
591        Zip::new(self, other.into_iter())
592    }
593
594    /// Creates a new iterator which places a copy of `separator` between adjacent
595    /// items of the original iterator.
596    ///
597    /// In case `separator` does not implement [`Clone`] or needs to be
598    /// computed every time, use [`intersperse_with`].
599    ///
600    /// # Examples
601    ///
602    /// Basic usage:
603    ///
604    /// ```
605    /// #![feature(iter_intersperse)]
606    ///
607    /// let mut a = [0, 1, 2].iter().intersperse(&100);
608    /// assert_eq!(a.next(), Some(&0));   // The first element from `a`.
609    /// assert_eq!(a.next(), Some(&100)); // The separator.
610    /// assert_eq!(a.next(), Some(&1));   // The next element from `a`.
611    /// assert_eq!(a.next(), Some(&100)); // The separator.
612    /// assert_eq!(a.next(), Some(&2));   // The last element from `a`.
613    /// assert_eq!(a.next(), None);       // The iterator is finished.
614    /// ```
615    ///
616    /// `intersperse` can be very useful to join an iterator's items using a common element:
617    /// ```
618    /// #![feature(iter_intersperse)]
619    ///
620    /// let hello = ["Hello", "World", "!"].iter().copied().intersperse(" ").collect::<String>();
621    /// assert_eq!(hello, "Hello World !");
622    /// ```
623    ///
624    /// [`Clone`]: crate::clone::Clone
625    /// [`intersperse_with`]: Iterator::intersperse_with
626    #[inline]
627    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
628    fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
629    where
630        Self: Sized,
631        Self::Item: Clone,
632    {
633        Intersperse::new(self, separator)
634    }
635
636    /// Creates a new iterator which places an item generated by `separator`
637    /// between adjacent items of the original iterator.
638    ///
639    /// The closure will be called exactly once each time an item is placed
640    /// between two adjacent items from the underlying iterator; specifically,
641    /// the closure is not called if the underlying iterator yields less than
642    /// two items and after the last item is yielded.
643    ///
644    /// If the iterator's item implements [`Clone`], it may be easier to use
645    /// [`intersperse`].
646    ///
647    /// # Examples
648    ///
649    /// Basic usage:
650    ///
651    /// ```
652    /// #![feature(iter_intersperse)]
653    ///
654    /// #[derive(PartialEq, Debug)]
655    /// struct NotClone(usize);
656    ///
657    /// let v = [NotClone(0), NotClone(1), NotClone(2)];
658    /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
659    ///
660    /// assert_eq!(it.next(), Some(NotClone(0)));  // The first element from `v`.
661    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
662    /// assert_eq!(it.next(), Some(NotClone(1)));  // The next element from `v`.
663    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
664    /// assert_eq!(it.next(), Some(NotClone(2)));  // The last element from `v`.
665    /// assert_eq!(it.next(), None);               // The iterator is finished.
666    /// ```
667    ///
668    /// `intersperse_with` can be used in situations where the separator needs
669    /// to be computed:
670    /// ```
671    /// #![feature(iter_intersperse)]
672    ///
673    /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
674    ///
675    /// // The closure mutably borrows its context to generate an item.
676    /// let mut happy_emojis = [" ❤️ ", " 😀 "].iter().copied();
677    /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
678    ///
679    /// let result = src.intersperse_with(separator).collect::<String>();
680    /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
681    /// ```
682    /// [`Clone`]: crate::clone::Clone
683    /// [`intersperse`]: Iterator::intersperse
684    #[inline]
685    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
686    fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
687    where
688        Self: Sized,
689        G: FnMut() -> Self::Item,
690    {
691        IntersperseWith::new(self, separator)
692    }
693
694    /// Takes a closure and creates an iterator which calls that closure on each
695    /// element.
696    ///
697    /// `map()` transforms one iterator into another, by means of its argument:
698    /// something that implements [`FnMut`]. It produces a new iterator which
699    /// calls this closure on each element of the original iterator.
700    ///
701    /// If you are good at thinking in types, you can think of `map()` like this:
702    /// If you have an iterator that gives you elements of some type `A`, and
703    /// you want an iterator of some other type `B`, you can use `map()`,
704    /// passing a closure that takes an `A` and returns a `B`.
705    ///
706    /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
707    /// lazy, it is best used when you're already working with other iterators.
708    /// If you're doing some sort of looping for a side effect, it's considered
709    /// more idiomatic to use [`for`] than `map()`.
710    ///
711    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
712    ///
713    /// # Examples
714    ///
715    /// Basic usage:
716    ///
717    /// ```
718    /// let a = [1, 2, 3];
719    ///
720    /// let mut iter = a.iter().map(|x| 2 * x);
721    ///
722    /// assert_eq!(iter.next(), Some(2));
723    /// assert_eq!(iter.next(), Some(4));
724    /// assert_eq!(iter.next(), Some(6));
725    /// assert_eq!(iter.next(), None);
726    /// ```
727    ///
728    /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
729    ///
730    /// ```
731    /// # #![allow(unused_must_use)]
732    /// // don't do this:
733    /// (0..5).map(|x| println!("{x}"));
734    ///
735    /// // it won't even execute, as it is lazy. Rust will warn you about this.
736    ///
737    /// // Instead, use for:
738    /// for x in 0..5 {
739    ///     println!("{x}");
740    /// }
741    /// ```
742    #[rustc_diagnostic_item = "IteratorMap"]
743    #[inline]
744    #[stable(feature = "rust1", since = "1.0.0")]
745    fn map<B, F>(self, f: F) -> Map<Self, F>
746    where
747        Self: Sized,
748        F: FnMut(Self::Item) -> B,
749    {
750        Map::new(self, f)
751    }
752
753    /// Calls a closure on each element of an iterator.
754    ///
755    /// This is equivalent to using a [`for`] loop on the iterator, although
756    /// `break` and `continue` are not possible from a closure. It's generally
757    /// more idiomatic to use a `for` loop, but `for_each` may be more legible
758    /// when processing items at the end of longer iterator chains. In some
759    /// cases `for_each` may also be faster than a loop, because it will use
760    /// internal iteration on adapters like `Chain`.
761    ///
762    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
763    ///
764    /// # Examples
765    ///
766    /// Basic usage:
767    ///
768    /// ```
769    /// use std::sync::mpsc::channel;
770    ///
771    /// let (tx, rx) = channel();
772    /// (0..5).map(|x| x * 2 + 1)
773    ///       .for_each(move |x| tx.send(x).unwrap());
774    ///
775    /// let v: Vec<_> = rx.iter().collect();
776    /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
777    /// ```
778    ///
779    /// For such a small example, a `for` loop may be cleaner, but `for_each`
780    /// might be preferable to keep a functional style with longer iterators:
781    ///
782    /// ```
783    /// (0..5).flat_map(|x| x * 100 .. x * 110)
784    ///       .enumerate()
785    ///       .filter(|&(i, x)| (i + x) % 3 == 0)
786    ///       .for_each(|(i, x)| println!("{i}:{x}"));
787    /// ```
788    #[inline]
789    #[stable(feature = "iterator_for_each", since = "1.21.0")]
790    fn for_each<F>(self, f: F)
791    where
792        Self: Sized,
793        F: FnMut(Self::Item),
794    {
795        #[inline]
796        fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
797            move |(), item| f(item)
798        }
799
800        self.fold((), call(f));
801    }
802
803    /// Creates an iterator which uses a closure to determine if an element
804    /// should be yielded.
805    ///
806    /// Given an element the closure must return `true` or `false`. The returned
807    /// iterator will yield only the elements for which the closure returns
808    /// `true`.
809    ///
810    /// # Examples
811    ///
812    /// Basic usage:
813    ///
814    /// ```
815    /// let a = [0i32, 1, 2];
816    ///
817    /// let mut iter = a.iter().filter(|x| x.is_positive());
818    ///
819    /// assert_eq!(iter.next(), Some(&1));
820    /// assert_eq!(iter.next(), Some(&2));
821    /// assert_eq!(iter.next(), None);
822    /// ```
823    ///
824    /// Because the closure passed to `filter()` takes a reference, and many
825    /// iterators iterate over references, this leads to a possibly confusing
826    /// situation, where the type of the closure is a double reference:
827    ///
828    /// ```
829    /// let a = [0, 1, 2];
830    ///
831    /// let mut iter = a.iter().filter(|x| **x > 1); // need two *s!
832    ///
833    /// assert_eq!(iter.next(), Some(&2));
834    /// assert_eq!(iter.next(), None);
835    /// ```
836    ///
837    /// It's common to instead use destructuring on the argument to strip away
838    /// one:
839    ///
840    /// ```
841    /// let a = [0, 1, 2];
842    ///
843    /// let mut iter = a.iter().filter(|&x| *x > 1); // both & and *
844    ///
845    /// assert_eq!(iter.next(), Some(&2));
846    /// assert_eq!(iter.next(), None);
847    /// ```
848    ///
849    /// or both:
850    ///
851    /// ```
852    /// let a = [0, 1, 2];
853    ///
854    /// let mut iter = a.iter().filter(|&&x| x > 1); // two &s
855    ///
856    /// assert_eq!(iter.next(), Some(&2));
857    /// assert_eq!(iter.next(), None);
858    /// ```
859    ///
860    /// of these layers.
861    ///
862    /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
863    #[inline]
864    #[stable(feature = "rust1", since = "1.0.0")]
865    #[rustc_diagnostic_item = "iter_filter"]
866    fn filter<P>(self, predicate: P) -> Filter<Self, P>
867    where
868        Self: Sized,
869        P: FnMut(&Self::Item) -> bool,
870    {
871        Filter::new(self, predicate)
872    }
873
874    /// Creates an iterator that both filters and maps.
875    ///
876    /// The returned iterator yields only the `value`s for which the supplied
877    /// closure returns `Some(value)`.
878    ///
879    /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
880    /// concise. The example below shows how a `map().filter().map()` can be
881    /// shortened to a single call to `filter_map`.
882    ///
883    /// [`filter`]: Iterator::filter
884    /// [`map`]: Iterator::map
885    ///
886    /// # Examples
887    ///
888    /// Basic usage:
889    ///
890    /// ```
891    /// let a = ["1", "two", "NaN", "four", "5"];
892    ///
893    /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
894    ///
895    /// assert_eq!(iter.next(), Some(1));
896    /// assert_eq!(iter.next(), Some(5));
897    /// assert_eq!(iter.next(), None);
898    /// ```
899    ///
900    /// Here's the same example, but with [`filter`] and [`map`]:
901    ///
902    /// ```
903    /// let a = ["1", "two", "NaN", "four", "5"];
904    /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
905    /// assert_eq!(iter.next(), Some(1));
906    /// assert_eq!(iter.next(), Some(5));
907    /// assert_eq!(iter.next(), None);
908    /// ```
909    #[inline]
910    #[stable(feature = "rust1", since = "1.0.0")]
911    fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
912    where
913        Self: Sized,
914        F: FnMut(Self::Item) -> Option<B>,
915    {
916        FilterMap::new(self, f)
917    }
918
919    /// Creates an iterator which gives the current iteration count as well as
920    /// the next value.
921    ///
922    /// The iterator returned yields pairs `(i, val)`, where `i` is the
923    /// current index of iteration and `val` is the value returned by the
924    /// iterator.
925    ///
926    /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
927    /// different sized integer, the [`zip`] function provides similar
928    /// functionality.
929    ///
930    /// # Overflow Behavior
931    ///
932    /// The method does no guarding against overflows, so enumerating more than
933    /// [`usize::MAX`] elements either produces the wrong result or panics. If
934    /// debug assertions are enabled, a panic is guaranteed.
935    ///
936    /// # Panics
937    ///
938    /// The returned iterator might panic if the to-be-returned index would
939    /// overflow a [`usize`].
940    ///
941    /// [`zip`]: Iterator::zip
942    ///
943    /// # Examples
944    ///
945    /// ```
946    /// let a = ['a', 'b', 'c'];
947    ///
948    /// let mut iter = a.iter().enumerate();
949    ///
950    /// assert_eq!(iter.next(), Some((0, &'a')));
951    /// assert_eq!(iter.next(), Some((1, &'b')));
952    /// assert_eq!(iter.next(), Some((2, &'c')));
953    /// assert_eq!(iter.next(), None);
954    /// ```
955    #[inline]
956    #[stable(feature = "rust1", since = "1.0.0")]
957    #[rustc_diagnostic_item = "enumerate_method"]
958    fn enumerate(self) -> Enumerate<Self>
959    where
960        Self: Sized,
961    {
962        Enumerate::new(self)
963    }
964
965    /// Creates an iterator which can use the [`peek`] and [`peek_mut`] methods
966    /// to look at the next element of the iterator without consuming it. See
967    /// their documentation for more information.
968    ///
969    /// Note that the underlying iterator is still advanced when [`peek`] or
970    /// [`peek_mut`] are called for the first time: In order to retrieve the
971    /// next element, [`next`] is called on the underlying iterator, hence any
972    /// side effects (i.e. anything other than fetching the next value) of
973    /// the [`next`] method will occur.
974    ///
975    ///
976    /// # Examples
977    ///
978    /// Basic usage:
979    ///
980    /// ```
981    /// let xs = [1, 2, 3];
982    ///
983    /// let mut iter = xs.iter().peekable();
984    ///
985    /// // peek() lets us see into the future
986    /// assert_eq!(iter.peek(), Some(&&1));
987    /// assert_eq!(iter.next(), Some(&1));
988    ///
989    /// assert_eq!(iter.next(), Some(&2));
990    ///
991    /// // we can peek() multiple times, the iterator won't advance
992    /// assert_eq!(iter.peek(), Some(&&3));
993    /// assert_eq!(iter.peek(), Some(&&3));
994    ///
995    /// assert_eq!(iter.next(), Some(&3));
996    ///
997    /// // after the iterator is finished, so is peek()
998    /// assert_eq!(iter.peek(), None);
999    /// assert_eq!(iter.next(), None);
1000    /// ```
1001    ///
1002    /// Using [`peek_mut`] to mutate the next item without advancing the
1003    /// iterator:
1004    ///
1005    /// ```
1006    /// let xs = [1, 2, 3];
1007    ///
1008    /// let mut iter = xs.iter().peekable();
1009    ///
1010    /// // `peek_mut()` lets us see into the future
1011    /// assert_eq!(iter.peek_mut(), Some(&mut &1));
1012    /// assert_eq!(iter.peek_mut(), Some(&mut &1));
1013    /// assert_eq!(iter.next(), Some(&1));
1014    ///
1015    /// if let Some(mut p) = iter.peek_mut() {
1016    ///     assert_eq!(*p, &2);
1017    ///     // put a value into the iterator
1018    ///     *p = &1000;
1019    /// }
1020    ///
1021    /// // The value reappears as the iterator continues
1022    /// assert_eq!(iter.collect::<Vec<_>>(), vec![&1000, &3]);
1023    /// ```
1024    /// [`peek`]: Peekable::peek
1025    /// [`peek_mut`]: Peekable::peek_mut
1026    /// [`next`]: Iterator::next
1027    #[inline]
1028    #[stable(feature = "rust1", since = "1.0.0")]
1029    fn peekable(self) -> Peekable<Self>
1030    where
1031        Self: Sized,
1032    {
1033        Peekable::new(self)
1034    }
1035
1036    /// Creates an iterator that [`skip`]s elements based on a predicate.
1037    ///
1038    /// [`skip`]: Iterator::skip
1039    ///
1040    /// `skip_while()` takes a closure as an argument. It will call this
1041    /// closure on each element of the iterator, and ignore elements
1042    /// until it returns `false`.
1043    ///
1044    /// After `false` is returned, `skip_while()`'s job is over, and the
1045    /// rest of the elements are yielded.
1046    ///
1047    /// # Examples
1048    ///
1049    /// Basic usage:
1050    ///
1051    /// ```
1052    /// let a = [-1i32, 0, 1];
1053    ///
1054    /// let mut iter = a.iter().skip_while(|x| x.is_negative());
1055    ///
1056    /// assert_eq!(iter.next(), Some(&0));
1057    /// assert_eq!(iter.next(), Some(&1));
1058    /// assert_eq!(iter.next(), None);
1059    /// ```
1060    ///
1061    /// Because the closure passed to `skip_while()` takes a reference, and many
1062    /// iterators iterate over references, this leads to a possibly confusing
1063    /// situation, where the type of the closure argument is a double reference:
1064    ///
1065    /// ```
1066    /// let a = [-1, 0, 1];
1067    ///
1068    /// let mut iter = a.iter().skip_while(|x| **x < 0); // need two *s!
1069    ///
1070    /// assert_eq!(iter.next(), Some(&0));
1071    /// assert_eq!(iter.next(), Some(&1));
1072    /// assert_eq!(iter.next(), None);
1073    /// ```
1074    ///
1075    /// Stopping after an initial `false`:
1076    ///
1077    /// ```
1078    /// let a = [-1, 0, 1, -2];
1079    ///
1080    /// let mut iter = a.iter().skip_while(|x| **x < 0);
1081    ///
1082    /// assert_eq!(iter.next(), Some(&0));
1083    /// assert_eq!(iter.next(), Some(&1));
1084    ///
1085    /// // while this would have been false, since we already got a false,
1086    /// // skip_while() isn't used any more
1087    /// assert_eq!(iter.next(), Some(&-2));
1088    ///
1089    /// assert_eq!(iter.next(), None);
1090    /// ```
1091    #[inline]
1092    #[doc(alias = "drop_while")]
1093    #[stable(feature = "rust1", since = "1.0.0")]
1094    fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1095    where
1096        Self: Sized,
1097        P: FnMut(&Self::Item) -> bool,
1098    {
1099        SkipWhile::new(self, predicate)
1100    }
1101
1102    /// Creates an iterator that yields elements based on a predicate.
1103    ///
1104    /// `take_while()` takes a closure as an argument. It will call this
1105    /// closure on each element of the iterator, and yield elements
1106    /// while it returns `true`.
1107    ///
1108    /// After `false` is returned, `take_while()`'s job is over, and the
1109    /// rest of the elements are ignored.
1110    ///
1111    /// # Examples
1112    ///
1113    /// Basic usage:
1114    ///
1115    /// ```
1116    /// let a = [-1i32, 0, 1];
1117    ///
1118    /// let mut iter = a.iter().take_while(|x| x.is_negative());
1119    ///
1120    /// assert_eq!(iter.next(), Some(&-1));
1121    /// assert_eq!(iter.next(), None);
1122    /// ```
1123    ///
1124    /// Because the closure passed to `take_while()` takes a reference, and many
1125    /// iterators iterate over references, this leads to a possibly confusing
1126    /// situation, where the type of the closure is a double reference:
1127    ///
1128    /// ```
1129    /// let a = [-1, 0, 1];
1130    ///
1131    /// let mut iter = a.iter().take_while(|x| **x < 0); // need two *s!
1132    ///
1133    /// assert_eq!(iter.next(), Some(&-1));
1134    /// assert_eq!(iter.next(), None);
1135    /// ```
1136    ///
1137    /// Stopping after an initial `false`:
1138    ///
1139    /// ```
1140    /// let a = [-1, 0, 1, -2];
1141    ///
1142    /// let mut iter = a.iter().take_while(|x| **x < 0);
1143    ///
1144    /// assert_eq!(iter.next(), Some(&-1));
1145    ///
1146    /// // We have more elements that are less than zero, but since we already
1147    /// // got a false, take_while() isn't used any more
1148    /// assert_eq!(iter.next(), None);
1149    /// ```
1150    ///
1151    /// Because `take_while()` needs to look at the value in order to see if it
1152    /// should be included or not, consuming iterators will see that it is
1153    /// removed:
1154    ///
1155    /// ```
1156    /// let a = [1, 2, 3, 4];
1157    /// let mut iter = a.iter();
1158    ///
1159    /// let result: Vec<i32> = iter.by_ref()
1160    ///                            .take_while(|n| **n != 3)
1161    ///                            .cloned()
1162    ///                            .collect();
1163    ///
1164    /// assert_eq!(result, &[1, 2]);
1165    ///
1166    /// let result: Vec<i32> = iter.cloned().collect();
1167    ///
1168    /// assert_eq!(result, &[4]);
1169    /// ```
1170    ///
1171    /// The `3` is no longer there, because it was consumed in order to see if
1172    /// the iteration should stop, but wasn't placed back into the iterator.
1173    #[inline]
1174    #[stable(feature = "rust1", since = "1.0.0")]
1175    fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1176    where
1177        Self: Sized,
1178        P: FnMut(&Self::Item) -> bool,
1179    {
1180        TakeWhile::new(self, predicate)
1181    }
1182
1183    /// Creates an iterator that both yields elements based on a predicate and maps.
1184    ///
1185    /// `map_while()` takes a closure as an argument. It will call this
1186    /// closure on each element of the iterator, and yield elements
1187    /// while it returns [`Some(_)`][`Some`].
1188    ///
1189    /// # Examples
1190    ///
1191    /// Basic usage:
1192    ///
1193    /// ```
1194    /// let a = [-1i32, 4, 0, 1];
1195    ///
1196    /// let mut iter = a.iter().map_while(|x| 16i32.checked_div(*x));
1197    ///
1198    /// assert_eq!(iter.next(), Some(-16));
1199    /// assert_eq!(iter.next(), Some(4));
1200    /// assert_eq!(iter.next(), None);
1201    /// ```
1202    ///
1203    /// Here's the same example, but with [`take_while`] and [`map`]:
1204    ///
1205    /// [`take_while`]: Iterator::take_while
1206    /// [`map`]: Iterator::map
1207    ///
1208    /// ```
1209    /// let a = [-1i32, 4, 0, 1];
1210    ///
1211    /// let mut iter = a.iter()
1212    ///                 .map(|x| 16i32.checked_div(*x))
1213    ///                 .take_while(|x| x.is_some())
1214    ///                 .map(|x| x.unwrap());
1215    ///
1216    /// assert_eq!(iter.next(), Some(-16));
1217    /// assert_eq!(iter.next(), Some(4));
1218    /// assert_eq!(iter.next(), None);
1219    /// ```
1220    ///
1221    /// Stopping after an initial [`None`]:
1222    ///
1223    /// ```
1224    /// let a = [0, 1, 2, -3, 4, 5, -6];
1225    ///
1226    /// let iter = a.iter().map_while(|x| u32::try_from(*x).ok());
1227    /// let vec = iter.collect::<Vec<_>>();
1228    ///
1229    /// // We have more elements which could fit in u32 (4, 5), but `map_while` returned `None` for `-3`
1230    /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
1231    /// assert_eq!(vec, vec![0, 1, 2]);
1232    /// ```
1233    ///
1234    /// Because `map_while()` needs to look at the value in order to see if it
1235    /// should be included or not, consuming iterators will see that it is
1236    /// removed:
1237    ///
1238    /// ```
1239    /// let a = [1, 2, -3, 4];
1240    /// let mut iter = a.iter();
1241    ///
1242    /// let result: Vec<u32> = iter.by_ref()
1243    ///                            .map_while(|n| u32::try_from(*n).ok())
1244    ///                            .collect();
1245    ///
1246    /// assert_eq!(result, &[1, 2]);
1247    ///
1248    /// let result: Vec<i32> = iter.cloned().collect();
1249    ///
1250    /// assert_eq!(result, &[4]);
1251    /// ```
1252    ///
1253    /// The `-3` is no longer there, because it was consumed in order to see if
1254    /// the iteration should stop, but wasn't placed back into the iterator.
1255    ///
1256    /// Note that unlike [`take_while`] this iterator is **not** fused.
1257    /// It is also not specified what this iterator returns after the first [`None`] is returned.
1258    /// If you need fused iterator, use [`fuse`].
1259    ///
1260    /// [`fuse`]: Iterator::fuse
1261    #[inline]
1262    #[stable(feature = "iter_map_while", since = "1.57.0")]
1263    fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1264    where
1265        Self: Sized,
1266        P: FnMut(Self::Item) -> Option<B>,
1267    {
1268        MapWhile::new(self, predicate)
1269    }
1270
1271    /// Creates an iterator that skips the first `n` elements.
1272    ///
1273    /// `skip(n)` skips elements until `n` elements are skipped or the end of the
1274    /// iterator is reached (whichever happens first). After that, all the remaining
1275    /// elements are yielded. In particular, if the original iterator is too short,
1276    /// then the returned iterator is empty.
1277    ///
1278    /// Rather than overriding this method directly, instead override the `nth` method.
1279    ///
1280    /// # Examples
1281    ///
1282    /// ```
1283    /// let a = [1, 2, 3];
1284    ///
1285    /// let mut iter = a.iter().skip(2);
1286    ///
1287    /// assert_eq!(iter.next(), Some(&3));
1288    /// assert_eq!(iter.next(), None);
1289    /// ```
1290    #[inline]
1291    #[stable(feature = "rust1", since = "1.0.0")]
1292    fn skip(self, n: usize) -> Skip<Self>
1293    where
1294        Self: Sized,
1295    {
1296        Skip::new(self, n)
1297    }
1298
1299    /// Creates an iterator that yields the first `n` elements, or fewer
1300    /// if the underlying iterator ends sooner.
1301    ///
1302    /// `take(n)` yields elements until `n` elements are yielded or the end of
1303    /// the iterator is reached (whichever happens first).
1304    /// The returned iterator is a prefix of length `n` if the original iterator
1305    /// contains at least `n` elements, otherwise it contains all of the
1306    /// (fewer than `n`) elements of the original iterator.
1307    ///
1308    /// # Examples
1309    ///
1310    /// Basic usage:
1311    ///
1312    /// ```
1313    /// let a = [1, 2, 3];
1314    ///
1315    /// let mut iter = a.iter().take(2);
1316    ///
1317    /// assert_eq!(iter.next(), Some(&1));
1318    /// assert_eq!(iter.next(), Some(&2));
1319    /// assert_eq!(iter.next(), None);
1320    /// ```
1321    ///
1322    /// `take()` is often used with an infinite iterator, to make it finite:
1323    ///
1324    /// ```
1325    /// let mut iter = (0..).take(3);
1326    ///
1327    /// assert_eq!(iter.next(), Some(0));
1328    /// assert_eq!(iter.next(), Some(1));
1329    /// assert_eq!(iter.next(), Some(2));
1330    /// assert_eq!(iter.next(), None);
1331    /// ```
1332    ///
1333    /// If less than `n` elements are available,
1334    /// `take` will limit itself to the size of the underlying iterator:
1335    ///
1336    /// ```
1337    /// let v = [1, 2];
1338    /// let mut iter = v.into_iter().take(5);
1339    /// assert_eq!(iter.next(), Some(1));
1340    /// assert_eq!(iter.next(), Some(2));
1341    /// assert_eq!(iter.next(), None);
1342    /// ```
1343    #[inline]
1344    #[stable(feature = "rust1", since = "1.0.0")]
1345    fn take(self, n: usize) -> Take<Self>
1346    where
1347        Self: Sized,
1348    {
1349        Take::new(self, n)
1350    }
1351
1352    /// An iterator adapter which, like [`fold`], holds internal state, but
1353    /// unlike [`fold`], produces a new iterator.
1354    ///
1355    /// [`fold`]: Iterator::fold
1356    ///
1357    /// `scan()` takes two arguments: an initial value which seeds the internal
1358    /// state, and a closure with two arguments, the first being a mutable
1359    /// reference to the internal state and the second an iterator element.
1360    /// The closure can assign to the internal state to share state between
1361    /// iterations.
1362    ///
1363    /// On iteration, the closure will be applied to each element of the
1364    /// iterator and the return value from the closure, an [`Option`], is
1365    /// returned by the `next` method. Thus the closure can return
1366    /// `Some(value)` to yield `value`, or `None` to end the iteration.
1367    ///
1368    /// # Examples
1369    ///
1370    /// ```
1371    /// let a = [1, 2, 3, 4];
1372    ///
1373    /// let mut iter = a.iter().scan(1, |state, &x| {
1374    ///     // each iteration, we'll multiply the state by the element ...
1375    ///     *state = *state * x;
1376    ///
1377    ///     // ... and terminate if the state exceeds 6
1378    ///     if *state > 6 {
1379    ///         return None;
1380    ///     }
1381    ///     // ... else yield the negation of the state
1382    ///     Some(-*state)
1383    /// });
1384    ///
1385    /// assert_eq!(iter.next(), Some(-1));
1386    /// assert_eq!(iter.next(), Some(-2));
1387    /// assert_eq!(iter.next(), Some(-6));
1388    /// assert_eq!(iter.next(), None);
1389    /// ```
1390    #[inline]
1391    #[stable(feature = "rust1", since = "1.0.0")]
1392    fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
1393    where
1394        Self: Sized,
1395        F: FnMut(&mut St, Self::Item) -> Option<B>,
1396    {
1397        Scan::new(self, initial_state, f)
1398    }
1399
1400    /// Creates an iterator that works like map, but flattens nested structure.
1401    ///
1402    /// The [`map`] adapter is very useful, but only when the closure
1403    /// argument produces values. If it produces an iterator instead, there's
1404    /// an extra layer of indirection. `flat_map()` will remove this extra layer
1405    /// on its own.
1406    ///
1407    /// You can think of `flat_map(f)` as the semantic equivalent
1408    /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1409    ///
1410    /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
1411    /// one item for each element, and `flat_map()`'s closure returns an
1412    /// iterator for each element.
1413    ///
1414    /// [`map`]: Iterator::map
1415    /// [`flatten`]: Iterator::flatten
1416    ///
1417    /// # Examples
1418    ///
1419    /// ```
1420    /// let words = ["alpha", "beta", "gamma"];
1421    ///
1422    /// // chars() returns an iterator
1423    /// let merged: String = words.iter()
1424    ///                           .flat_map(|s| s.chars())
1425    ///                           .collect();
1426    /// assert_eq!(merged, "alphabetagamma");
1427    /// ```
1428    #[inline]
1429    #[stable(feature = "rust1", since = "1.0.0")]
1430    fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
1431    where
1432        Self: Sized,
1433        U: IntoIterator,
1434        F: FnMut(Self::Item) -> U,
1435    {
1436        FlatMap::new(self, f)
1437    }
1438
1439    /// Creates an iterator that flattens nested structure.
1440    ///
1441    /// This is useful when you have an iterator of iterators or an iterator of
1442    /// things that can be turned into iterators and you want to remove one
1443    /// level of indirection.
1444    ///
1445    /// # Examples
1446    ///
1447    /// Basic usage:
1448    ///
1449    /// ```
1450    /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1451    /// let flattened = data.into_iter().flatten().collect::<Vec<u8>>();
1452    /// assert_eq!(flattened, &[1, 2, 3, 4, 5, 6]);
1453    /// ```
1454    ///
1455    /// Mapping and then flattening:
1456    ///
1457    /// ```
1458    /// let words = ["alpha", "beta", "gamma"];
1459    ///
1460    /// // chars() returns an iterator
1461    /// let merged: String = words.iter()
1462    ///                           .map(|s| s.chars())
1463    ///                           .flatten()
1464    ///                           .collect();
1465    /// assert_eq!(merged, "alphabetagamma");
1466    /// ```
1467    ///
1468    /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1469    /// in this case since it conveys intent more clearly:
1470    ///
1471    /// ```
1472    /// let words = ["alpha", "beta", "gamma"];
1473    ///
1474    /// // chars() returns an iterator
1475    /// let merged: String = words.iter()
1476    ///                           .flat_map(|s| s.chars())
1477    ///                           .collect();
1478    /// assert_eq!(merged, "alphabetagamma");
1479    /// ```
1480    ///
1481    /// Flattening works on any `IntoIterator` type, including `Option` and `Result`:
1482    ///
1483    /// ```
1484    /// let options = vec![Some(123), Some(321), None, Some(231)];
1485    /// let flattened_options: Vec<_> = options.into_iter().flatten().collect();
1486    /// assert_eq!(flattened_options, vec![123, 321, 231]);
1487    ///
1488    /// let results = vec![Ok(123), Ok(321), Err(456), Ok(231)];
1489    /// let flattened_results: Vec<_> = results.into_iter().flatten().collect();
1490    /// assert_eq!(flattened_results, vec![123, 321, 231]);
1491    /// ```
1492    ///
1493    /// Flattening only removes one level of nesting at a time:
1494    ///
1495    /// ```
1496    /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1497    ///
1498    /// let d2 = d3.iter().flatten().collect::<Vec<_>>();
1499    /// assert_eq!(d2, [&[1, 2], &[3, 4], &[5, 6], &[7, 8]]);
1500    ///
1501    /// let d1 = d3.iter().flatten().flatten().collect::<Vec<_>>();
1502    /// assert_eq!(d1, [&1, &2, &3, &4, &5, &6, &7, &8]);
1503    /// ```
1504    ///
1505    /// Here we see that `flatten()` does not perform a "deep" flatten.
1506    /// Instead, only one level of nesting is removed. That is, if you
1507    /// `flatten()` a three-dimensional array, the result will be
1508    /// two-dimensional and not one-dimensional. To get a one-dimensional
1509    /// structure, you have to `flatten()` again.
1510    ///
1511    /// [`flat_map()`]: Iterator::flat_map
1512    #[inline]
1513    #[stable(feature = "iterator_flatten", since = "1.29.0")]
1514    fn flatten(self) -> Flatten<Self>
1515    where
1516        Self: Sized,
1517        Self::Item: IntoIterator,
1518    {
1519        Flatten::new(self)
1520    }
1521
1522    /// Calls the given function `f` for each contiguous window of size `N` over
1523    /// `self` and returns an iterator over the outputs of `f`. Like [`slice::windows()`],
1524    /// the windows during mapping overlap as well.
1525    ///
1526    /// In the following example, the closure is called three times with the
1527    /// arguments `&['a', 'b']`, `&['b', 'c']` and `&['c', 'd']` respectively.
1528    ///
1529    /// ```
1530    /// #![feature(iter_map_windows)]
1531    ///
1532    /// let strings = "abcd".chars()
1533    ///     .map_windows(|[x, y]| format!("{}+{}", x, y))
1534    ///     .collect::<Vec<String>>();
1535    ///
1536    /// assert_eq!(strings, vec!["a+b", "b+c", "c+d"]);
1537    /// ```
1538    ///
1539    /// Note that the const parameter `N` is usually inferred by the
1540    /// destructured argument in the closure.
1541    ///
1542    /// The returned iterator yields 𝑘 − `N` + 1 items (where 𝑘 is the number of
1543    /// items yielded by `self`). If 𝑘 is less than `N`, this method yields an
1544    /// empty iterator.
1545    ///
1546    /// The returned iterator implements [`FusedIterator`], because once `self`
1547    /// returns `None`, even if it returns a `Some(T)` again in the next iterations,
1548    /// we cannot put it into a contiguous array buffer, and thus the returned iterator
1549    /// should be fused.
1550    ///
1551    /// [`slice::windows()`]: slice::windows
1552    /// [`FusedIterator`]: crate::iter::FusedIterator
1553    ///
1554    /// # Panics
1555    ///
1556    /// Panics if `N` is zero. This check will most probably get changed to a
1557    /// compile time error before this method gets stabilized.
1558    ///
1559    /// ```should_panic
1560    /// #![feature(iter_map_windows)]
1561    ///
1562    /// let iter = std::iter::repeat(0).map_windows(|&[]| ());
1563    /// ```
1564    ///
1565    /// # Examples
1566    ///
1567    /// Building the sums of neighboring numbers.
1568    ///
1569    /// ```
1570    /// #![feature(iter_map_windows)]
1571    ///
1572    /// let mut it = [1, 3, 8, 1].iter().map_windows(|&[a, b]| a + b);
1573    /// assert_eq!(it.next(), Some(4));  // 1 + 3
1574    /// assert_eq!(it.next(), Some(11)); // 3 + 8
1575    /// assert_eq!(it.next(), Some(9));  // 8 + 1
1576    /// assert_eq!(it.next(), None);
1577    /// ```
1578    ///
1579    /// Since the elements in the following example implement `Copy`, we can
1580    /// just copy the array and get an iterator over the windows.
1581    ///
1582    /// ```
1583    /// #![feature(iter_map_windows)]
1584    ///
1585    /// let mut it = "ferris".chars().map_windows(|w: &[_; 3]| *w);
1586    /// assert_eq!(it.next(), Some(['f', 'e', 'r']));
1587    /// assert_eq!(it.next(), Some(['e', 'r', 'r']));
1588    /// assert_eq!(it.next(), Some(['r', 'r', 'i']));
1589    /// assert_eq!(it.next(), Some(['r', 'i', 's']));
1590    /// assert_eq!(it.next(), None);
1591    /// ```
1592    ///
1593    /// You can also use this function to check the sortedness of an iterator.
1594    /// For the simple case, rather use [`Iterator::is_sorted`].
1595    ///
1596    /// ```
1597    /// #![feature(iter_map_windows)]
1598    ///
1599    /// let mut it = [0.5, 1.0, 3.5, 3.0, 8.5, 8.5, f32::NAN].iter()
1600    ///     .map_windows(|[a, b]| a <= b);
1601    ///
1602    /// assert_eq!(it.next(), Some(true));  // 0.5 <= 1.0
1603    /// assert_eq!(it.next(), Some(true));  // 1.0 <= 3.5
1604    /// assert_eq!(it.next(), Some(false)); // 3.5 <= 3.0
1605    /// assert_eq!(it.next(), Some(true));  // 3.0 <= 8.5
1606    /// assert_eq!(it.next(), Some(true));  // 8.5 <= 8.5
1607    /// assert_eq!(it.next(), Some(false)); // 8.5 <= NAN
1608    /// assert_eq!(it.next(), None);
1609    /// ```
1610    ///
1611    /// For non-fused iterators, they are fused after `map_windows`.
1612    ///
1613    /// ```
1614    /// #![feature(iter_map_windows)]
1615    ///
1616    /// #[derive(Default)]
1617    /// struct NonFusedIterator {
1618    ///     state: i32,
1619    /// }
1620    ///
1621    /// impl Iterator for NonFusedIterator {
1622    ///     type Item = i32;
1623    ///
1624    ///     fn next(&mut self) -> Option<i32> {
1625    ///         let val = self.state;
1626    ///         self.state = self.state + 1;
1627    ///
1628    ///         // yields `0..5` first, then only even numbers since `6..`.
1629    ///         if val < 5 || val % 2 == 0 {
1630    ///             Some(val)
1631    ///         } else {
1632    ///             None
1633    ///         }
1634    ///     }
1635    /// }
1636    ///
1637    ///
1638    /// let mut iter = NonFusedIterator::default();
1639    ///
1640    /// // yields 0..5 first.
1641    /// assert_eq!(iter.next(), Some(0));
1642    /// assert_eq!(iter.next(), Some(1));
1643    /// assert_eq!(iter.next(), Some(2));
1644    /// assert_eq!(iter.next(), Some(3));
1645    /// assert_eq!(iter.next(), Some(4));
1646    /// // then we can see our iterator going back and forth
1647    /// assert_eq!(iter.next(), None);
1648    /// assert_eq!(iter.next(), Some(6));
1649    /// assert_eq!(iter.next(), None);
1650    /// assert_eq!(iter.next(), Some(8));
1651    /// assert_eq!(iter.next(), None);
1652    ///
1653    /// // however, with `.map_windows()`, it is fused.
1654    /// let mut iter = NonFusedIterator::default()
1655    ///     .map_windows(|arr: &[_; 2]| *arr);
1656    ///
1657    /// assert_eq!(iter.next(), Some([0, 1]));
1658    /// assert_eq!(iter.next(), Some([1, 2]));
1659    /// assert_eq!(iter.next(), Some([2, 3]));
1660    /// assert_eq!(iter.next(), Some([3, 4]));
1661    /// assert_eq!(iter.next(), None);
1662    ///
1663    /// // it will always return `None` after the first time.
1664    /// assert_eq!(iter.next(), None);
1665    /// assert_eq!(iter.next(), None);
1666    /// assert_eq!(iter.next(), None);
1667    /// ```
1668    #[inline]
1669    #[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
1670    fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
1671    where
1672        Self: Sized,
1673        F: FnMut(&[Self::Item; N]) -> R,
1674    {
1675        MapWindows::new(self, f)
1676    }
1677
1678    /// Creates an iterator which ends after the first [`None`].
1679    ///
1680    /// After an iterator returns [`None`], future calls may or may not yield
1681    /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1682    /// [`None`] is given, it will always return [`None`] forever.
1683    ///
1684    /// Note that the [`Fuse`] wrapper is a no-op on iterators that implement
1685    /// the [`FusedIterator`] trait. `fuse()` may therefore behave incorrectly
1686    /// if the [`FusedIterator`] trait is improperly implemented.
1687    ///
1688    /// [`Some(T)`]: Some
1689    /// [`FusedIterator`]: crate::iter::FusedIterator
1690    ///
1691    /// # Examples
1692    ///
1693    /// ```
1694    /// // an iterator which alternates between Some and None
1695    /// struct Alternate {
1696    ///     state: i32,
1697    /// }
1698    ///
1699    /// impl Iterator for Alternate {
1700    ///     type Item = i32;
1701    ///
1702    ///     fn next(&mut self) -> Option<i32> {
1703    ///         let val = self.state;
1704    ///         self.state = self.state + 1;
1705    ///
1706    ///         // if it's even, Some(i32), else None
1707    ///         (val % 2 == 0).then_some(val)
1708    ///     }
1709    /// }
1710    ///
1711    /// let mut iter = Alternate { state: 0 };
1712    ///
1713    /// // we can see our iterator going back and forth
1714    /// assert_eq!(iter.next(), Some(0));
1715    /// assert_eq!(iter.next(), None);
1716    /// assert_eq!(iter.next(), Some(2));
1717    /// assert_eq!(iter.next(), None);
1718    ///
1719    /// // however, once we fuse it...
1720    /// let mut iter = iter.fuse();
1721    ///
1722    /// assert_eq!(iter.next(), Some(4));
1723    /// assert_eq!(iter.next(), None);
1724    ///
1725    /// // it will always return `None` after the first time.
1726    /// assert_eq!(iter.next(), None);
1727    /// assert_eq!(iter.next(), None);
1728    /// assert_eq!(iter.next(), None);
1729    /// ```
1730    #[inline]
1731    #[stable(feature = "rust1", since = "1.0.0")]
1732    fn fuse(self) -> Fuse<Self>
1733    where
1734        Self: Sized,
1735    {
1736        Fuse::new(self)
1737    }
1738
1739    /// Does something with each element of an iterator, passing the value on.
1740    ///
1741    /// When using iterators, you'll often chain several of them together.
1742    /// While working on such code, you might want to check out what's
1743    /// happening at various parts in the pipeline. To do that, insert
1744    /// a call to `inspect()`.
1745    ///
1746    /// It's more common for `inspect()` to be used as a debugging tool than to
1747    /// exist in your final code, but applications may find it useful in certain
1748    /// situations when errors need to be logged before being discarded.
1749    ///
1750    /// # Examples
1751    ///
1752    /// Basic usage:
1753    ///
1754    /// ```
1755    /// let a = [1, 4, 2, 3];
1756    ///
1757    /// // this iterator sequence is complex.
1758    /// let sum = a.iter()
1759    ///     .cloned()
1760    ///     .filter(|x| x % 2 == 0)
1761    ///     .fold(0, |sum, i| sum + i);
1762    ///
1763    /// println!("{sum}");
1764    ///
1765    /// // let's add some inspect() calls to investigate what's happening
1766    /// let sum = a.iter()
1767    ///     .cloned()
1768    ///     .inspect(|x| println!("about to filter: {x}"))
1769    ///     .filter(|x| x % 2 == 0)
1770    ///     .inspect(|x| println!("made it through filter: {x}"))
1771    ///     .fold(0, |sum, i| sum + i);
1772    ///
1773    /// println!("{sum}");
1774    /// ```
1775    ///
1776    /// This will print:
1777    ///
1778    /// ```text
1779    /// 6
1780    /// about to filter: 1
1781    /// about to filter: 4
1782    /// made it through filter: 4
1783    /// about to filter: 2
1784    /// made it through filter: 2
1785    /// about to filter: 3
1786    /// 6
1787    /// ```
1788    ///
1789    /// Logging errors before discarding them:
1790    ///
1791    /// ```
1792    /// let lines = ["1", "2", "a"];
1793    ///
1794    /// let sum: i32 = lines
1795    ///     .iter()
1796    ///     .map(|line| line.parse::<i32>())
1797    ///     .inspect(|num| {
1798    ///         if let Err(ref e) = *num {
1799    ///             println!("Parsing error: {e}");
1800    ///         }
1801    ///     })
1802    ///     .filter_map(Result::ok)
1803    ///     .sum();
1804    ///
1805    /// println!("Sum: {sum}");
1806    /// ```
1807    ///
1808    /// This will print:
1809    ///
1810    /// ```text
1811    /// Parsing error: invalid digit found in string
1812    /// Sum: 3
1813    /// ```
1814    #[inline]
1815    #[stable(feature = "rust1", since = "1.0.0")]
1816    fn inspect<F>(self, f: F) -> Inspect<Self, F>
1817    where
1818        Self: Sized,
1819        F: FnMut(&Self::Item),
1820    {
1821        Inspect::new(self, f)
1822    }
1823
1824    /// Creates a "by reference" adapter for this instance of `Iterator`.
1825    ///
1826    /// Consuming method calls (direct or indirect calls to `next`)
1827    /// on the "by reference" adapter will consume the original iterator,
1828    /// but ownership-taking methods (those with a `self` parameter)
1829    /// only take ownership of the "by reference" iterator.
1830    ///
1831    /// This is useful for applying ownership-taking methods
1832    /// (such as `take` in the example below)
1833    /// without giving up ownership of the original iterator,
1834    /// so you can use the original iterator afterwards.
1835    ///
1836    /// Uses [impl<I: Iterator + ?Sized> Iterator for &mut I { type Item = I::Item; ...}](https://doc.rust-lang.org/nightly/std/iter/trait.Iterator.html#impl-Iterator-for-%26mut+I).
1837    ///
1838    /// # Examples
1839    ///
1840    /// ```
1841    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1842    ///
1843    /// // Take the first two words.
1844    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1845    /// assert_eq!(hello_world, vec!["hello", "world"]);
1846    ///
1847    /// // Collect the rest of the words.
1848    /// // We can only do this because we used `by_ref` earlier.
1849    /// let of_rust: Vec<_> = words.collect();
1850    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1851    /// ```
1852    #[stable(feature = "rust1", since = "1.0.0")]
1853    fn by_ref(&mut self) -> &mut Self
1854    where
1855        Self: Sized,
1856    {
1857        self
1858    }
1859
1860    /// Transforms an iterator into a collection.
1861    ///
1862    /// `collect()` can take anything iterable, and turn it into a relevant
1863    /// collection. This is one of the more powerful methods in the standard
1864    /// library, used in a variety of contexts.
1865    ///
1866    /// The most basic pattern in which `collect()` is used is to turn one
1867    /// collection into another. You take a collection, call [`iter`] on it,
1868    /// do a bunch of transformations, and then `collect()` at the end.
1869    ///
1870    /// `collect()` can also create instances of types that are not typical
1871    /// collections. For example, a [`String`] can be built from [`char`]s,
1872    /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
1873    /// into `Result<Collection<T>, E>`. See the examples below for more.
1874    ///
1875    /// Because `collect()` is so general, it can cause problems with type
1876    /// inference. As such, `collect()` is one of the few times you'll see
1877    /// the syntax affectionately known as the 'turbofish': `::<>`. This
1878    /// helps the inference algorithm understand specifically which collection
1879    /// you're trying to collect into.
1880    ///
1881    /// # Examples
1882    ///
1883    /// Basic usage:
1884    ///
1885    /// ```
1886    /// let a = [1, 2, 3];
1887    ///
1888    /// let doubled: Vec<i32> = a.iter()
1889    ///                          .map(|&x| x * 2)
1890    ///                          .collect();
1891    ///
1892    /// assert_eq!(vec![2, 4, 6], doubled);
1893    /// ```
1894    ///
1895    /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1896    /// we could collect into, for example, a [`VecDeque<T>`] instead:
1897    ///
1898    /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1899    ///
1900    /// ```
1901    /// use std::collections::VecDeque;
1902    ///
1903    /// let a = [1, 2, 3];
1904    ///
1905    /// let doubled: VecDeque<i32> = a.iter().map(|&x| x * 2).collect();
1906    ///
1907    /// assert_eq!(2, doubled[0]);
1908    /// assert_eq!(4, doubled[1]);
1909    /// assert_eq!(6, doubled[2]);
1910    /// ```
1911    ///
1912    /// Using the 'turbofish' instead of annotating `doubled`:
1913    ///
1914    /// ```
1915    /// let a = [1, 2, 3];
1916    ///
1917    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
1918    ///
1919    /// assert_eq!(vec![2, 4, 6], doubled);
1920    /// ```
1921    ///
1922    /// Because `collect()` only cares about what you're collecting into, you can
1923    /// still use a partial type hint, `_`, with the turbofish:
1924    ///
1925    /// ```
1926    /// let a = [1, 2, 3];
1927    ///
1928    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
1929    ///
1930    /// assert_eq!(vec![2, 4, 6], doubled);
1931    /// ```
1932    ///
1933    /// Using `collect()` to make a [`String`]:
1934    ///
1935    /// ```
1936    /// let chars = ['g', 'd', 'k', 'k', 'n'];
1937    ///
1938    /// let hello: String = chars.iter()
1939    ///     .map(|&x| x as u8)
1940    ///     .map(|x| (x + 1) as char)
1941    ///     .collect();
1942    ///
1943    /// assert_eq!("hello", hello);
1944    /// ```
1945    ///
1946    /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
1947    /// see if any of them failed:
1948    ///
1949    /// ```
1950    /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
1951    ///
1952    /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect();
1953    ///
1954    /// // gives us the first error
1955    /// assert_eq!(Err("nope"), result);
1956    ///
1957    /// let results = [Ok(1), Ok(3)];
1958    ///
1959    /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect();
1960    ///
1961    /// // gives us the list of answers
1962    /// assert_eq!(Ok(vec![1, 3]), result);
1963    /// ```
1964    ///
1965    /// [`iter`]: Iterator::next
1966    /// [`String`]: ../../std/string/struct.String.html
1967    /// [`char`]: type@char
1968    #[inline]
1969    #[stable(feature = "rust1", since = "1.0.0")]
1970    #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
1971    #[rustc_diagnostic_item = "iterator_collect_fn"]
1972    fn collect<B: FromIterator<Self::Item>>(self) -> B
1973    where
1974        Self: Sized,
1975    {
1976        // This is too aggressive to turn on for everything all the time, but PR#137908
1977        // accidentally noticed that some rustc iterators had malformed `size_hint`s,
1978        // so this will help catch such things in debug-assertions-std runners,
1979        // even if users won't actually ever see it.
1980        if cfg!(debug_assertions) {
1981            let hint = self.size_hint();
1982            assert!(hint.1.is_none_or(|high| high >= hint.0), "Malformed size_hint {hint:?}");
1983        }
1984
1985        FromIterator::from_iter(self)
1986    }
1987
1988    /// Fallibly transforms an iterator into a collection, short circuiting if
1989    /// a failure is encountered.
1990    ///
1991    /// `try_collect()` is a variation of [`collect()`][`collect`] that allows fallible
1992    /// conversions during collection. Its main use case is simplifying conversions from
1993    /// iterators yielding [`Option<T>`][`Option`] into `Option<Collection<T>>`, or similarly for other [`Try`]
1994    /// types (e.g. [`Result`]).
1995    ///
1996    /// Importantly, `try_collect()` doesn't require that the outer [`Try`] type also implements [`FromIterator`];
1997    /// only the inner type produced on `Try::Output` must implement it. Concretely,
1998    /// this means that collecting into `ControlFlow<_, Vec<i32>>` is valid because `Vec<i32>` implements
1999    /// [`FromIterator`], even though [`ControlFlow`] doesn't.
2000    ///
2001    /// Also, if a failure is encountered during `try_collect()`, the iterator is still valid and
2002    /// may continue to be used, in which case it will continue iterating starting after the element that
2003    /// triggered the failure. See the last example below for an example of how this works.
2004    ///
2005    /// # Examples
2006    /// Successfully collecting an iterator of `Option<i32>` into `Option<Vec<i32>>`:
2007    /// ```
2008    /// #![feature(iterator_try_collect)]
2009    ///
2010    /// let u = vec![Some(1), Some(2), Some(3)];
2011    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2012    /// assert_eq!(v, Some(vec![1, 2, 3]));
2013    /// ```
2014    ///
2015    /// Failing to collect in the same way:
2016    /// ```
2017    /// #![feature(iterator_try_collect)]
2018    ///
2019    /// let u = vec![Some(1), Some(2), None, Some(3)];
2020    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2021    /// assert_eq!(v, None);
2022    /// ```
2023    ///
2024    /// A similar example, but with `Result`:
2025    /// ```
2026    /// #![feature(iterator_try_collect)]
2027    ///
2028    /// let u: Vec<Result<i32, ()>> = vec![Ok(1), Ok(2), Ok(3)];
2029    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2030    /// assert_eq!(v, Ok(vec![1, 2, 3]));
2031    ///
2032    /// let u = vec![Ok(1), Ok(2), Err(()), Ok(3)];
2033    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2034    /// assert_eq!(v, Err(()));
2035    /// ```
2036    ///
2037    /// Finally, even [`ControlFlow`] works, despite the fact that it
2038    /// doesn't implement [`FromIterator`]. Note also that the iterator can
2039    /// continue to be used, even if a failure is encountered:
2040    ///
2041    /// ```
2042    /// #![feature(iterator_try_collect)]
2043    ///
2044    /// use core::ops::ControlFlow::{Break, Continue};
2045    ///
2046    /// let u = [Continue(1), Continue(2), Break(3), Continue(4), Continue(5)];
2047    /// let mut it = u.into_iter();
2048    ///
2049    /// let v = it.try_collect::<Vec<_>>();
2050    /// assert_eq!(v, Break(3));
2051    ///
2052    /// let v = it.try_collect::<Vec<_>>();
2053    /// assert_eq!(v, Continue(vec![4, 5]));
2054    /// ```
2055    ///
2056    /// [`collect`]: Iterator::collect
2057    #[inline]
2058    #[unstable(feature = "iterator_try_collect", issue = "94047")]
2059    fn try_collect<B>(&mut self) -> ChangeOutputType<Self::Item, B>
2060    where
2061        Self: Sized,
2062        Self::Item: Try<Residual: Residual<B>>,
2063        B: FromIterator<<Self::Item as Try>::Output>,
2064    {
2065        try_process(ByRefSized(self), |i| i.collect())
2066    }
2067
2068    /// Collects all the items from an iterator into a collection.
2069    ///
2070    /// This method consumes the iterator and adds all its items to the
2071    /// passed collection. The collection is then returned, so the call chain
2072    /// can be continued.
2073    ///
2074    /// This is useful when you already have a collection and want to add
2075    /// the iterator items to it.
2076    ///
2077    /// This method is a convenience method to call [Extend::extend](trait.Extend.html),
2078    /// but instead of being called on a collection, it's called on an iterator.
2079    ///
2080    /// # Examples
2081    ///
2082    /// Basic usage:
2083    ///
2084    /// ```
2085    /// #![feature(iter_collect_into)]
2086    ///
2087    /// let a = [1, 2, 3];
2088    /// let mut vec: Vec::<i32> = vec![0, 1];
2089    ///
2090    /// a.iter().map(|&x| x * 2).collect_into(&mut vec);
2091    /// a.iter().map(|&x| x * 10).collect_into(&mut vec);
2092    ///
2093    /// assert_eq!(vec, vec![0, 1, 2, 4, 6, 10, 20, 30]);
2094    /// ```
2095    ///
2096    /// `Vec` can have a manual set capacity to avoid reallocating it:
2097    ///
2098    /// ```
2099    /// #![feature(iter_collect_into)]
2100    ///
2101    /// let a = [1, 2, 3];
2102    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2103    ///
2104    /// a.iter().map(|&x| x * 2).collect_into(&mut vec);
2105    /// a.iter().map(|&x| x * 10).collect_into(&mut vec);
2106    ///
2107    /// assert_eq!(6, vec.capacity());
2108    /// assert_eq!(vec, vec![2, 4, 6, 10, 20, 30]);
2109    /// ```
2110    ///
2111    /// The returned mutable reference can be used to continue the call chain:
2112    ///
2113    /// ```
2114    /// #![feature(iter_collect_into)]
2115    ///
2116    /// let a = [1, 2, 3];
2117    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2118    ///
2119    /// let count = a.iter().collect_into(&mut vec).iter().count();
2120    ///
2121    /// assert_eq!(count, vec.len());
2122    /// assert_eq!(vec, vec![1, 2, 3]);
2123    ///
2124    /// let count = a.iter().collect_into(&mut vec).iter().count();
2125    ///
2126    /// assert_eq!(count, vec.len());
2127    /// assert_eq!(vec, vec![1, 2, 3, 1, 2, 3]);
2128    /// ```
2129    #[inline]
2130    #[unstable(feature = "iter_collect_into", reason = "new API", issue = "94780")]
2131    fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
2132    where
2133        Self: Sized,
2134    {
2135        collection.extend(self);
2136        collection
2137    }
2138
2139    /// Consumes an iterator, creating two collections from it.
2140    ///
2141    /// The predicate passed to `partition()` can return `true`, or `false`.
2142    /// `partition()` returns a pair, all of the elements for which it returned
2143    /// `true`, and all of the elements for which it returned `false`.
2144    ///
2145    /// See also [`is_partitioned()`] and [`partition_in_place()`].
2146    ///
2147    /// [`is_partitioned()`]: Iterator::is_partitioned
2148    /// [`partition_in_place()`]: Iterator::partition_in_place
2149    ///
2150    /// # Examples
2151    ///
2152    /// ```
2153    /// let a = [1, 2, 3];
2154    ///
2155    /// let (even, odd): (Vec<_>, Vec<_>) = a
2156    ///     .into_iter()
2157    ///     .partition(|n| n % 2 == 0);
2158    ///
2159    /// assert_eq!(even, vec![2]);
2160    /// assert_eq!(odd, vec![1, 3]);
2161    /// ```
2162    #[stable(feature = "rust1", since = "1.0.0")]
2163    fn partition<B, F>(self, f: F) -> (B, B)
2164    where
2165        Self: Sized,
2166        B: Default + Extend<Self::Item>,
2167        F: FnMut(&Self::Item) -> bool,
2168    {
2169        #[inline]
2170        fn extend<'a, T, B: Extend<T>>(
2171            mut f: impl FnMut(&T) -> bool + 'a,
2172            left: &'a mut B,
2173            right: &'a mut B,
2174        ) -> impl FnMut((), T) + 'a {
2175            move |(), x| {
2176                if f(&x) {
2177                    left.extend_one(x);
2178                } else {
2179                    right.extend_one(x);
2180                }
2181            }
2182        }
2183
2184        let mut left: B = Default::default();
2185        let mut right: B = Default::default();
2186
2187        self.fold((), extend(f, &mut left, &mut right));
2188
2189        (left, right)
2190    }
2191
2192    /// Reorders the elements of this iterator *in-place* according to the given predicate,
2193    /// such that all those that return `true` precede all those that return `false`.
2194    /// Returns the number of `true` elements found.
2195    ///
2196    /// The relative order of partitioned items is not maintained.
2197    ///
2198    /// # Current implementation
2199    ///
2200    /// The current algorithm tries to find the first element for which the predicate evaluates
2201    /// to false and the last element for which it evaluates to true, and repeatedly swaps them.
2202    ///
2203    /// Time complexity: *O*(*n*)
2204    ///
2205    /// See also [`is_partitioned()`] and [`partition()`].
2206    ///
2207    /// [`is_partitioned()`]: Iterator::is_partitioned
2208    /// [`partition()`]: Iterator::partition
2209    ///
2210    /// # Examples
2211    ///
2212    /// ```
2213    /// #![feature(iter_partition_in_place)]
2214    ///
2215    /// let mut a = [1, 2, 3, 4, 5, 6, 7];
2216    ///
2217    /// // Partition in-place between evens and odds
2218    /// let i = a.iter_mut().partition_in_place(|&n| n % 2 == 0);
2219    ///
2220    /// assert_eq!(i, 3);
2221    /// assert!(a[..i].iter().all(|&n| n % 2 == 0)); // evens
2222    /// assert!(a[i..].iter().all(|&n| n % 2 == 1)); // odds
2223    /// ```
2224    #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
2225    fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
2226    where
2227        Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
2228        P: FnMut(&T) -> bool,
2229    {
2230        // FIXME: should we worry about the count overflowing? The only way to have more than
2231        // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
2232
2233        // These closure "factory" functions exist to avoid genericity in `Self`.
2234
2235        #[inline]
2236        fn is_false<'a, T>(
2237            predicate: &'a mut impl FnMut(&T) -> bool,
2238            true_count: &'a mut usize,
2239        ) -> impl FnMut(&&mut T) -> bool + 'a {
2240            move |x| {
2241                let p = predicate(&**x);
2242                *true_count += p as usize;
2243                !p
2244            }
2245        }
2246
2247        #[inline]
2248        fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
2249            move |x| predicate(&**x)
2250        }
2251
2252        // Repeatedly find the first `false` and swap it with the last `true`.
2253        let mut true_count = 0;
2254        while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
2255            if let Some(tail) = self.rfind(is_true(predicate)) {
2256                crate::mem::swap(head, tail);
2257                true_count += 1;
2258            } else {
2259                break;
2260            }
2261        }
2262        true_count
2263    }
2264
2265    /// Checks if the elements of this iterator are partitioned according to the given predicate,
2266    /// such that all those that return `true` precede all those that return `false`.
2267    ///
2268    /// See also [`partition()`] and [`partition_in_place()`].
2269    ///
2270    /// [`partition()`]: Iterator::partition
2271    /// [`partition_in_place()`]: Iterator::partition_in_place
2272    ///
2273    /// # Examples
2274    ///
2275    /// ```
2276    /// #![feature(iter_is_partitioned)]
2277    ///
2278    /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
2279    /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
2280    /// ```
2281    #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
2282    fn is_partitioned<P>(mut self, mut predicate: P) -> bool
2283    where
2284        Self: Sized,
2285        P: FnMut(Self::Item) -> bool,
2286    {
2287        // Either all items test `true`, or the first clause stops at `false`
2288        // and we check that there are no more `true` items after that.
2289        self.all(&mut predicate) || !self.any(predicate)
2290    }
2291
2292    /// An iterator method that applies a function as long as it returns
2293    /// successfully, producing a single, final value.
2294    ///
2295    /// `try_fold()` takes two arguments: an initial value, and a closure with
2296    /// two arguments: an 'accumulator', and an element. The closure either
2297    /// returns successfully, with the value that the accumulator should have
2298    /// for the next iteration, or it returns failure, with an error value that
2299    /// is propagated back to the caller immediately (short-circuiting).
2300    ///
2301    /// The initial value is the value the accumulator will have on the first
2302    /// call. If applying the closure succeeded against every element of the
2303    /// iterator, `try_fold()` returns the final accumulator as success.
2304    ///
2305    /// Folding is useful whenever you have a collection of something, and want
2306    /// to produce a single value from it.
2307    ///
2308    /// # Note to Implementors
2309    ///
2310    /// Several of the other (forward) methods have default implementations in
2311    /// terms of this one, so try to implement this explicitly if it can
2312    /// do something better than the default `for` loop implementation.
2313    ///
2314    /// In particular, try to have this call `try_fold()` on the internal parts
2315    /// from which this iterator is composed. If multiple calls are needed,
2316    /// the `?` operator may be convenient for chaining the accumulator value
2317    /// along, but beware any invariants that need to be upheld before those
2318    /// early returns. This is a `&mut self` method, so iteration needs to be
2319    /// resumable after hitting an error here.
2320    ///
2321    /// # Examples
2322    ///
2323    /// Basic usage:
2324    ///
2325    /// ```
2326    /// let a = [1, 2, 3];
2327    ///
2328    /// // the checked sum of all of the elements of the array
2329    /// let sum = a.iter().try_fold(0i8, |acc, &x| acc.checked_add(x));
2330    ///
2331    /// assert_eq!(sum, Some(6));
2332    /// ```
2333    ///
2334    /// Short-circuiting:
2335    ///
2336    /// ```
2337    /// let a = [10, 20, 30, 100, 40, 50];
2338    /// let mut it = a.iter();
2339    ///
2340    /// // This sum overflows when adding the 100 element
2341    /// let sum = it.try_fold(0i8, |acc, &x| acc.checked_add(x));
2342    /// assert_eq!(sum, None);
2343    ///
2344    /// // Because it short-circuited, the remaining elements are still
2345    /// // available through the iterator.
2346    /// assert_eq!(it.len(), 2);
2347    /// assert_eq!(it.next(), Some(&40));
2348    /// ```
2349    ///
2350    /// While you cannot `break` from a closure, the [`ControlFlow`] type allows
2351    /// a similar idea:
2352    ///
2353    /// ```
2354    /// use std::ops::ControlFlow;
2355    ///
2356    /// let triangular = (1..30).try_fold(0_i8, |prev, x| {
2357    ///     if let Some(next) = prev.checked_add(x) {
2358    ///         ControlFlow::Continue(next)
2359    ///     } else {
2360    ///         ControlFlow::Break(prev)
2361    ///     }
2362    /// });
2363    /// assert_eq!(triangular, ControlFlow::Break(120));
2364    ///
2365    /// let triangular = (1..30).try_fold(0_u64, |prev, x| {
2366    ///     if let Some(next) = prev.checked_add(x) {
2367    ///         ControlFlow::Continue(next)
2368    ///     } else {
2369    ///         ControlFlow::Break(prev)
2370    ///     }
2371    /// });
2372    /// assert_eq!(triangular, ControlFlow::Continue(435));
2373    /// ```
2374    #[inline]
2375    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2376    fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
2377    where
2378        Self: Sized,
2379        F: FnMut(B, Self::Item) -> R,
2380        R: Try<Output = B>,
2381    {
2382        let mut accum = init;
2383        while let Some(x) = self.next() {
2384            accum = f(accum, x)?;
2385        }
2386        try { accum }
2387    }
2388
2389    /// An iterator method that applies a fallible function to each item in the
2390    /// iterator, stopping at the first error and returning that error.
2391    ///
2392    /// This can also be thought of as the fallible form of [`for_each()`]
2393    /// or as the stateless version of [`try_fold()`].
2394    ///
2395    /// [`for_each()`]: Iterator::for_each
2396    /// [`try_fold()`]: Iterator::try_fold
2397    ///
2398    /// # Examples
2399    ///
2400    /// ```
2401    /// use std::fs::rename;
2402    /// use std::io::{stdout, Write};
2403    /// use std::path::Path;
2404    ///
2405    /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
2406    ///
2407    /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{x}"));
2408    /// assert!(res.is_ok());
2409    ///
2410    /// let mut it = data.iter().cloned();
2411    /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
2412    /// assert!(res.is_err());
2413    /// // It short-circuited, so the remaining items are still in the iterator:
2414    /// assert_eq!(it.next(), Some("stale_bread.json"));
2415    /// ```
2416    ///
2417    /// The [`ControlFlow`] type can be used with this method for the situations
2418    /// in which you'd use `break` and `continue` in a normal loop:
2419    ///
2420    /// ```
2421    /// use std::ops::ControlFlow;
2422    ///
2423    /// let r = (2..100).try_for_each(|x| {
2424    ///     if 323 % x == 0 {
2425    ///         return ControlFlow::Break(x)
2426    ///     }
2427    ///
2428    ///     ControlFlow::Continue(())
2429    /// });
2430    /// assert_eq!(r, ControlFlow::Break(17));
2431    /// ```
2432    #[inline]
2433    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2434    fn try_for_each<F, R>(&mut self, f: F) -> R
2435    where
2436        Self: Sized,
2437        F: FnMut(Self::Item) -> R,
2438        R: Try<Output = ()>,
2439    {
2440        #[inline]
2441        fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
2442            move |(), x| f(x)
2443        }
2444
2445        self.try_fold((), call(f))
2446    }
2447
2448    /// Folds every element into an accumulator by applying an operation,
2449    /// returning the final result.
2450    ///
2451    /// `fold()` takes two arguments: an initial value, and a closure with two
2452    /// arguments: an 'accumulator', and an element. The closure returns the value that
2453    /// the accumulator should have for the next iteration.
2454    ///
2455    /// The initial value is the value the accumulator will have on the first
2456    /// call.
2457    ///
2458    /// After applying this closure to every element of the iterator, `fold()`
2459    /// returns the accumulator.
2460    ///
2461    /// This operation is sometimes called 'reduce' or 'inject'.
2462    ///
2463    /// Folding is useful whenever you have a collection of something, and want
2464    /// to produce a single value from it.
2465    ///
2466    /// Note: `fold()`, and similar methods that traverse the entire iterator,
2467    /// might not terminate for infinite iterators, even on traits for which a
2468    /// result is determinable in finite time.
2469    ///
2470    /// Note: [`reduce()`] can be used to use the first element as the initial
2471    /// value, if the accumulator type and item type is the same.
2472    ///
2473    /// Note: `fold()` combines elements in a *left-associative* fashion. For associative
2474    /// operators like `+`, the order the elements are combined in is not important, but for non-associative
2475    /// operators like `-` the order will affect the final result.
2476    /// For a *right-associative* version of `fold()`, see [`DoubleEndedIterator::rfold()`].
2477    ///
2478    /// # Note to Implementors
2479    ///
2480    /// Several of the other (forward) methods have default implementations in
2481    /// terms of this one, so try to implement this explicitly if it can
2482    /// do something better than the default `for` loop implementation.
2483    ///
2484    /// In particular, try to have this call `fold()` on the internal parts
2485    /// from which this iterator is composed.
2486    ///
2487    /// # Examples
2488    ///
2489    /// Basic usage:
2490    ///
2491    /// ```
2492    /// let a = [1, 2, 3];
2493    ///
2494    /// // the sum of all of the elements of the array
2495    /// let sum = a.iter().fold(0, |acc, x| acc + x);
2496    ///
2497    /// assert_eq!(sum, 6);
2498    /// ```
2499    ///
2500    /// Let's walk through each step of the iteration here:
2501    ///
2502    /// | element | acc | x | result |
2503    /// |---------|-----|---|--------|
2504    /// |         | 0   |   |        |
2505    /// | 1       | 0   | 1 | 1      |
2506    /// | 2       | 1   | 2 | 3      |
2507    /// | 3       | 3   | 3 | 6      |
2508    ///
2509    /// And so, our final result, `6`.
2510    ///
2511    /// This example demonstrates the left-associative nature of `fold()`:
2512    /// it builds a string, starting with an initial value
2513    /// and continuing with each element from the front until the back:
2514    ///
2515    /// ```
2516    /// let numbers = [1, 2, 3, 4, 5];
2517    ///
2518    /// let zero = "0".to_string();
2519    ///
2520    /// let result = numbers.iter().fold(zero, |acc, &x| {
2521    ///     format!("({acc} + {x})")
2522    /// });
2523    ///
2524    /// assert_eq!(result, "(((((0 + 1) + 2) + 3) + 4) + 5)");
2525    /// ```
2526    /// It's common for people who haven't used iterators a lot to
2527    /// use a `for` loop with a list of things to build up a result. Those
2528    /// can be turned into `fold()`s:
2529    ///
2530    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
2531    ///
2532    /// ```
2533    /// let numbers = [1, 2, 3, 4, 5];
2534    ///
2535    /// let mut result = 0;
2536    ///
2537    /// // for loop:
2538    /// for i in &numbers {
2539    ///     result = result + i;
2540    /// }
2541    ///
2542    /// // fold:
2543    /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
2544    ///
2545    /// // they're the same
2546    /// assert_eq!(result, result2);
2547    /// ```
2548    ///
2549    /// [`reduce()`]: Iterator::reduce
2550    #[doc(alias = "inject", alias = "foldl")]
2551    #[inline]
2552    #[stable(feature = "rust1", since = "1.0.0")]
2553    fn fold<B, F>(mut self, init: B, mut f: F) -> B
2554    where
2555        Self: Sized,
2556        F: FnMut(B, Self::Item) -> B,
2557    {
2558        let mut accum = init;
2559        while let Some(x) = self.next() {
2560            accum = f(accum, x);
2561        }
2562        accum
2563    }
2564
2565    /// Reduces the elements to a single one, by repeatedly applying a reducing
2566    /// operation.
2567    ///
2568    /// If the iterator is empty, returns [`None`]; otherwise, returns the
2569    /// result of the reduction.
2570    ///
2571    /// The reducing function is a closure with two arguments: an 'accumulator', and an element.
2572    /// For iterators with at least one element, this is the same as [`fold()`]
2573    /// with the first element of the iterator as the initial accumulator value, folding
2574    /// every subsequent element into it.
2575    ///
2576    /// [`fold()`]: Iterator::fold
2577    ///
2578    /// # Example
2579    ///
2580    /// ```
2581    /// let reduced: i32 = (1..10).reduce(|acc, e| acc + e).unwrap_or(0);
2582    /// assert_eq!(reduced, 45);
2583    ///
2584    /// // Which is equivalent to doing it with `fold`:
2585    /// let folded: i32 = (1..10).fold(0, |acc, e| acc + e);
2586    /// assert_eq!(reduced, folded);
2587    /// ```
2588    #[inline]
2589    #[stable(feature = "iterator_fold_self", since = "1.51.0")]
2590    fn reduce<F>(mut self, f: F) -> Option<Self::Item>
2591    where
2592        Self: Sized,
2593        F: FnMut(Self::Item, Self::Item) -> Self::Item,
2594    {
2595        let first = self.next()?;
2596        Some(self.fold(first, f))
2597    }
2598
2599    /// Reduces the elements to a single one by repeatedly applying a reducing operation. If the
2600    /// closure returns a failure, the failure is propagated back to the caller immediately.
2601    ///
2602    /// The return type of this method depends on the return type of the closure. If the closure
2603    /// returns `Result<Self::Item, E>`, then this function will return `Result<Option<Self::Item>,
2604    /// E>`. If the closure returns `Option<Self::Item>`, then this function will return
2605    /// `Option<Option<Self::Item>>`.
2606    ///
2607    /// When called on an empty iterator, this function will return either `Some(None)` or
2608    /// `Ok(None)` depending on the type of the provided closure.
2609    ///
2610    /// For iterators with at least one element, this is essentially the same as calling
2611    /// [`try_fold()`] with the first element of the iterator as the initial accumulator value.
2612    ///
2613    /// [`try_fold()`]: Iterator::try_fold
2614    ///
2615    /// # Examples
2616    ///
2617    /// Safely calculate the sum of a series of numbers:
2618    ///
2619    /// ```
2620    /// #![feature(iterator_try_reduce)]
2621    ///
2622    /// let numbers: Vec<usize> = vec![10, 20, 5, 23, 0];
2623    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2624    /// assert_eq!(sum, Some(Some(58)));
2625    /// ```
2626    ///
2627    /// Determine when a reduction short circuited:
2628    ///
2629    /// ```
2630    /// #![feature(iterator_try_reduce)]
2631    ///
2632    /// let numbers = vec![1, 2, 3, usize::MAX, 4, 5];
2633    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2634    /// assert_eq!(sum, None);
2635    /// ```
2636    ///
2637    /// Determine when a reduction was not performed because there are no elements:
2638    ///
2639    /// ```
2640    /// #![feature(iterator_try_reduce)]
2641    ///
2642    /// let numbers: Vec<usize> = Vec::new();
2643    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2644    /// assert_eq!(sum, Some(None));
2645    /// ```
2646    ///
2647    /// Use a [`Result`] instead of an [`Option`]:
2648    ///
2649    /// ```
2650    /// #![feature(iterator_try_reduce)]
2651    ///
2652    /// let numbers = vec!["1", "2", "3", "4", "5"];
2653    /// let max: Result<Option<_>, <usize as std::str::FromStr>::Err> =
2654    ///     numbers.into_iter().try_reduce(|x, y| {
2655    ///         if x.parse::<usize>()? > y.parse::<usize>()? { Ok(x) } else { Ok(y) }
2656    ///     });
2657    /// assert_eq!(max, Ok(Some("5")));
2658    /// ```
2659    #[inline]
2660    #[unstable(feature = "iterator_try_reduce", reason = "new API", issue = "87053")]
2661    fn try_reduce<R>(
2662        &mut self,
2663        f: impl FnMut(Self::Item, Self::Item) -> R,
2664    ) -> ChangeOutputType<R, Option<R::Output>>
2665    where
2666        Self: Sized,
2667        R: Try<Output = Self::Item, Residual: Residual<Option<Self::Item>>>,
2668    {
2669        let first = match self.next() {
2670            Some(i) => i,
2671            None => return Try::from_output(None),
2672        };
2673
2674        match self.try_fold(first, f).branch() {
2675            ControlFlow::Break(r) => FromResidual::from_residual(r),
2676            ControlFlow::Continue(i) => Try::from_output(Some(i)),
2677        }
2678    }
2679
2680    /// Tests if every element of the iterator matches a predicate.
2681    ///
2682    /// `all()` takes a closure that returns `true` or `false`. It applies
2683    /// this closure to each element of the iterator, and if they all return
2684    /// `true`, then so does `all()`. If any of them return `false`, it
2685    /// returns `false`.
2686    ///
2687    /// `all()` is short-circuiting; in other words, it will stop processing
2688    /// as soon as it finds a `false`, given that no matter what else happens,
2689    /// the result will also be `false`.
2690    ///
2691    /// An empty iterator returns `true`.
2692    ///
2693    /// # Examples
2694    ///
2695    /// Basic usage:
2696    ///
2697    /// ```
2698    /// let a = [1, 2, 3];
2699    ///
2700    /// assert!(a.iter().all(|&x| x > 0));
2701    ///
2702    /// assert!(!a.iter().all(|&x| x > 2));
2703    /// ```
2704    ///
2705    /// Stopping at the first `false`:
2706    ///
2707    /// ```
2708    /// let a = [1, 2, 3];
2709    ///
2710    /// let mut iter = a.iter();
2711    ///
2712    /// assert!(!iter.all(|&x| x != 2));
2713    ///
2714    /// // we can still use `iter`, as there are more elements.
2715    /// assert_eq!(iter.next(), Some(&3));
2716    /// ```
2717    #[inline]
2718    #[stable(feature = "rust1", since = "1.0.0")]
2719    fn all<F>(&mut self, f: F) -> bool
2720    where
2721        Self: Sized,
2722        F: FnMut(Self::Item) -> bool,
2723    {
2724        #[inline]
2725        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2726            move |(), x| {
2727                if f(x) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
2728            }
2729        }
2730        self.try_fold((), check(f)) == ControlFlow::Continue(())
2731    }
2732
2733    /// Tests if any element of the iterator matches a predicate.
2734    ///
2735    /// `any()` takes a closure that returns `true` or `false`. It applies
2736    /// this closure to each element of the iterator, and if any of them return
2737    /// `true`, then so does `any()`. If they all return `false`, it
2738    /// returns `false`.
2739    ///
2740    /// `any()` is short-circuiting; in other words, it will stop processing
2741    /// as soon as it finds a `true`, given that no matter what else happens,
2742    /// the result will also be `true`.
2743    ///
2744    /// An empty iterator returns `false`.
2745    ///
2746    /// # Examples
2747    ///
2748    /// Basic usage:
2749    ///
2750    /// ```
2751    /// let a = [1, 2, 3];
2752    ///
2753    /// assert!(a.iter().any(|&x| x > 0));
2754    ///
2755    /// assert!(!a.iter().any(|&x| x > 5));
2756    /// ```
2757    ///
2758    /// Stopping at the first `true`:
2759    ///
2760    /// ```
2761    /// let a = [1, 2, 3];
2762    ///
2763    /// let mut iter = a.iter();
2764    ///
2765    /// assert!(iter.any(|&x| x != 2));
2766    ///
2767    /// // we can still use `iter`, as there are more elements.
2768    /// assert_eq!(iter.next(), Some(&2));
2769    /// ```
2770    #[inline]
2771    #[stable(feature = "rust1", since = "1.0.0")]
2772    fn any<F>(&mut self, f: F) -> bool
2773    where
2774        Self: Sized,
2775        F: FnMut(Self::Item) -> bool,
2776    {
2777        #[inline]
2778        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2779            move |(), x| {
2780                if f(x) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) }
2781            }
2782        }
2783
2784        self.try_fold((), check(f)) == ControlFlow::Break(())
2785    }
2786
2787    /// Searches for an element of an iterator that satisfies a predicate.
2788    ///
2789    /// `find()` takes a closure that returns `true` or `false`. It applies
2790    /// this closure to each element of the iterator, and if any of them return
2791    /// `true`, then `find()` returns [`Some(element)`]. If they all return
2792    /// `false`, it returns [`None`].
2793    ///
2794    /// `find()` is short-circuiting; in other words, it will stop processing
2795    /// as soon as the closure returns `true`.
2796    ///
2797    /// Because `find()` takes a reference, and many iterators iterate over
2798    /// references, this leads to a possibly confusing situation where the
2799    /// argument is a double reference. You can see this effect in the
2800    /// examples below, with `&&x`.
2801    ///
2802    /// If you need the index of the element, see [`position()`].
2803    ///
2804    /// [`Some(element)`]: Some
2805    /// [`position()`]: Iterator::position
2806    ///
2807    /// # Examples
2808    ///
2809    /// Basic usage:
2810    ///
2811    /// ```
2812    /// let a = [1, 2, 3];
2813    ///
2814    /// assert_eq!(a.iter().find(|&&x| x == 2), Some(&2));
2815    ///
2816    /// assert_eq!(a.iter().find(|&&x| x == 5), None);
2817    /// ```
2818    ///
2819    /// Stopping at the first `true`:
2820    ///
2821    /// ```
2822    /// let a = [1, 2, 3];
2823    ///
2824    /// let mut iter = a.iter();
2825    ///
2826    /// assert_eq!(iter.find(|&&x| x == 2), Some(&2));
2827    ///
2828    /// // we can still use `iter`, as there are more elements.
2829    /// assert_eq!(iter.next(), Some(&3));
2830    /// ```
2831    ///
2832    /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
2833    #[inline]
2834    #[stable(feature = "rust1", since = "1.0.0")]
2835    fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
2836    where
2837        Self: Sized,
2838        P: FnMut(&Self::Item) -> bool,
2839    {
2840        #[inline]
2841        fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
2842            move |(), x| {
2843                if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::Continue(()) }
2844            }
2845        }
2846
2847        self.try_fold((), check(predicate)).break_value()
2848    }
2849
2850    /// Applies function to the elements of iterator and returns
2851    /// the first non-none result.
2852    ///
2853    /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2854    ///
2855    /// # Examples
2856    ///
2857    /// ```
2858    /// let a = ["lol", "NaN", "2", "5"];
2859    ///
2860    /// let first_number = a.iter().find_map(|s| s.parse().ok());
2861    ///
2862    /// assert_eq!(first_number, Some(2));
2863    /// ```
2864    #[inline]
2865    #[stable(feature = "iterator_find_map", since = "1.30.0")]
2866    fn find_map<B, F>(&mut self, f: F) -> Option<B>
2867    where
2868        Self: Sized,
2869        F: FnMut(Self::Item) -> Option<B>,
2870    {
2871        #[inline]
2872        fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
2873            move |(), x| match f(x) {
2874                Some(x) => ControlFlow::Break(x),
2875                None => ControlFlow::Continue(()),
2876            }
2877        }
2878
2879        self.try_fold((), check(f)).break_value()
2880    }
2881
2882    /// Applies function to the elements of iterator and returns
2883    /// the first true result or the first error.
2884    ///
2885    /// The return type of this method depends on the return type of the closure.
2886    /// If you return `Result<bool, E>` from the closure, you'll get a `Result<Option<Self::Item>, E>`.
2887    /// If you return `Option<bool>` from the closure, you'll get an `Option<Option<Self::Item>>`.
2888    ///
2889    /// # Examples
2890    ///
2891    /// ```
2892    /// #![feature(try_find)]
2893    ///
2894    /// let a = ["1", "2", "lol", "NaN", "5"];
2895    ///
2896    /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
2897    ///     Ok(s.parse::<i32>()?  == search)
2898    /// };
2899    ///
2900    /// let result = a.iter().try_find(|&&s| is_my_num(s, 2));
2901    /// assert_eq!(result, Ok(Some(&"2")));
2902    ///
2903    /// let result = a.iter().try_find(|&&s| is_my_num(s, 5));
2904    /// assert!(result.is_err());
2905    /// ```
2906    ///
2907    /// This also supports other types which implement [`Try`], not just [`Result`].
2908    ///
2909    /// ```
2910    /// #![feature(try_find)]
2911    ///
2912    /// use std::num::NonZero;
2913    ///
2914    /// let a = [3, 5, 7, 4, 9, 0, 11u32];
2915    /// let result = a.iter().try_find(|&&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2916    /// assert_eq!(result, Some(Some(&4)));
2917    /// let result = a.iter().take(3).try_find(|&&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2918    /// assert_eq!(result, Some(None));
2919    /// let result = a.iter().rev().try_find(|&&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2920    /// assert_eq!(result, None);
2921    /// ```
2922    #[inline]
2923    #[unstable(feature = "try_find", reason = "new API", issue = "63178")]
2924    fn try_find<R>(
2925        &mut self,
2926        f: impl FnMut(&Self::Item) -> R,
2927    ) -> ChangeOutputType<R, Option<Self::Item>>
2928    where
2929        Self: Sized,
2930        R: Try<Output = bool, Residual: Residual<Option<Self::Item>>>,
2931    {
2932        #[inline]
2933        fn check<I, V, R>(
2934            mut f: impl FnMut(&I) -> V,
2935        ) -> impl FnMut((), I) -> ControlFlow<R::TryType>
2936        where
2937            V: Try<Output = bool, Residual = R>,
2938            R: Residual<Option<I>>,
2939        {
2940            move |(), x| match f(&x).branch() {
2941                ControlFlow::Continue(false) => ControlFlow::Continue(()),
2942                ControlFlow::Continue(true) => ControlFlow::Break(Try::from_output(Some(x))),
2943                ControlFlow::Break(r) => ControlFlow::Break(FromResidual::from_residual(r)),
2944            }
2945        }
2946
2947        match self.try_fold((), check(f)) {
2948            ControlFlow::Break(x) => x,
2949            ControlFlow::Continue(()) => Try::from_output(None),
2950        }
2951    }
2952
2953    /// Searches for an element in an iterator, returning its index.
2954    ///
2955    /// `position()` takes a closure that returns `true` or `false`. It applies
2956    /// this closure to each element of the iterator, and if one of them
2957    /// returns `true`, then `position()` returns [`Some(index)`]. If all of
2958    /// them return `false`, it returns [`None`].
2959    ///
2960    /// `position()` is short-circuiting; in other words, it will stop
2961    /// processing as soon as it finds a `true`.
2962    ///
2963    /// # Overflow Behavior
2964    ///
2965    /// The method does no guarding against overflows, so if there are more
2966    /// than [`usize::MAX`] non-matching elements, it either produces the wrong
2967    /// result or panics. If debug assertions are enabled, a panic is
2968    /// guaranteed.
2969    ///
2970    /// # Panics
2971    ///
2972    /// This function might panic if the iterator has more than `usize::MAX`
2973    /// non-matching elements.
2974    ///
2975    /// [`Some(index)`]: Some
2976    ///
2977    /// # Examples
2978    ///
2979    /// Basic usage:
2980    ///
2981    /// ```
2982    /// let a = [1, 2, 3];
2983    ///
2984    /// assert_eq!(a.iter().position(|&x| x == 2), Some(1));
2985    ///
2986    /// assert_eq!(a.iter().position(|&x| x == 5), None);
2987    /// ```
2988    ///
2989    /// Stopping at the first `true`:
2990    ///
2991    /// ```
2992    /// let a = [1, 2, 3, 4];
2993    ///
2994    /// let mut iter = a.iter();
2995    ///
2996    /// assert_eq!(iter.position(|&x| x >= 2), Some(1));
2997    ///
2998    /// // we can still use `iter`, as there are more elements.
2999    /// assert_eq!(iter.next(), Some(&3));
3000    ///
3001    /// // The returned index depends on iterator state
3002    /// assert_eq!(iter.position(|&x| x == 4), Some(0));
3003    ///
3004    /// ```
3005    #[inline]
3006    #[stable(feature = "rust1", since = "1.0.0")]
3007    fn position<P>(&mut self, predicate: P) -> Option<usize>
3008    where
3009        Self: Sized,
3010        P: FnMut(Self::Item) -> bool,
3011    {
3012        #[inline]
3013        fn check<'a, T>(
3014            mut predicate: impl FnMut(T) -> bool + 'a,
3015            acc: &'a mut usize,
3016        ) -> impl FnMut((), T) -> ControlFlow<usize, ()> + 'a {
3017            #[rustc_inherit_overflow_checks]
3018            move |_, x| {
3019                if predicate(x) {
3020                    ControlFlow::Break(*acc)
3021                } else {
3022                    *acc += 1;
3023                    ControlFlow::Continue(())
3024                }
3025            }
3026        }
3027
3028        let mut acc = 0;
3029        self.try_fold((), check(predicate, &mut acc)).break_value()
3030    }
3031
3032    /// Searches for an element in an iterator from the right, returning its
3033    /// index.
3034    ///
3035    /// `rposition()` takes a closure that returns `true` or `false`. It applies
3036    /// this closure to each element of the iterator, starting from the end,
3037    /// and if one of them returns `true`, then `rposition()` returns
3038    /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
3039    ///
3040    /// `rposition()` is short-circuiting; in other words, it will stop
3041    /// processing as soon as it finds a `true`.
3042    ///
3043    /// [`Some(index)`]: Some
3044    ///
3045    /// # Examples
3046    ///
3047    /// Basic usage:
3048    ///
3049    /// ```
3050    /// let a = [1, 2, 3];
3051    ///
3052    /// assert_eq!(a.iter().rposition(|&x| x == 3), Some(2));
3053    ///
3054    /// assert_eq!(a.iter().rposition(|&x| x == 5), None);
3055    /// ```
3056    ///
3057    /// Stopping at the first `true`:
3058    ///
3059    /// ```
3060    /// let a = [-1, 2, 3, 4];
3061    ///
3062    /// let mut iter = a.iter();
3063    ///
3064    /// assert_eq!(iter.rposition(|&x| x >= 2), Some(3));
3065    ///
3066    /// // we can still use `iter`, as there are more elements.
3067    /// assert_eq!(iter.next(), Some(&-1));
3068    /// assert_eq!(iter.next_back(), Some(&3));
3069    /// ```
3070    #[inline]
3071    #[stable(feature = "rust1", since = "1.0.0")]
3072    fn rposition<P>(&mut self, predicate: P) -> Option<usize>
3073    where
3074        P: FnMut(Self::Item) -> bool,
3075        Self: Sized + ExactSizeIterator + DoubleEndedIterator,
3076    {
3077        // No need for an overflow check here, because `ExactSizeIterator`
3078        // implies that the number of elements fits into a `usize`.
3079        #[inline]
3080        fn check<T>(
3081            mut predicate: impl FnMut(T) -> bool,
3082        ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
3083            move |i, x| {
3084                let i = i - 1;
3085                if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
3086            }
3087        }
3088
3089        let n = self.len();
3090        self.try_rfold(n, check(predicate)).break_value()
3091    }
3092
3093    /// Returns the maximum element of an iterator.
3094    ///
3095    /// If several elements are equally maximum, the last element is
3096    /// returned. If the iterator is empty, [`None`] is returned.
3097    ///
3098    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3099    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3100    /// ```
3101    /// assert_eq!(
3102    ///     [2.4, f32::NAN, 1.3]
3103    ///         .into_iter()
3104    ///         .reduce(f32::max)
3105    ///         .unwrap_or(0.),
3106    ///     2.4
3107    /// );
3108    /// ```
3109    ///
3110    /// # Examples
3111    ///
3112    /// ```
3113    /// let a = [1, 2, 3];
3114    /// let b: Vec<u32> = Vec::new();
3115    ///
3116    /// assert_eq!(a.iter().max(), Some(&3));
3117    /// assert_eq!(b.iter().max(), None);
3118    /// ```
3119    #[inline]
3120    #[stable(feature = "rust1", since = "1.0.0")]
3121    fn max(self) -> Option<Self::Item>
3122    where
3123        Self: Sized,
3124        Self::Item: Ord,
3125    {
3126        self.max_by(Ord::cmp)
3127    }
3128
3129    /// Returns the minimum element of an iterator.
3130    ///
3131    /// If several elements are equally minimum, the first element is returned.
3132    /// If the iterator is empty, [`None`] is returned.
3133    ///
3134    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3135    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3136    /// ```
3137    /// assert_eq!(
3138    ///     [2.4, f32::NAN, 1.3]
3139    ///         .into_iter()
3140    ///         .reduce(f32::min)
3141    ///         .unwrap_or(0.),
3142    ///     1.3
3143    /// );
3144    /// ```
3145    ///
3146    /// # Examples
3147    ///
3148    /// ```
3149    /// let a = [1, 2, 3];
3150    /// let b: Vec<u32> = Vec::new();
3151    ///
3152    /// assert_eq!(a.iter().min(), Some(&1));
3153    /// assert_eq!(b.iter().min(), None);
3154    /// ```
3155    #[inline]
3156    #[stable(feature = "rust1", since = "1.0.0")]
3157    fn min(self) -> Option<Self::Item>
3158    where
3159        Self: Sized,
3160        Self::Item: Ord,
3161    {
3162        self.min_by(Ord::cmp)
3163    }
3164
3165    /// Returns the element that gives the maximum value from the
3166    /// specified function.
3167    ///
3168    /// If several elements are equally maximum, the last element is
3169    /// returned. If the iterator is empty, [`None`] is returned.
3170    ///
3171    /// # Examples
3172    ///
3173    /// ```
3174    /// let a = [-3_i32, 0, 1, 5, -10];
3175    /// assert_eq!(*a.iter().max_by_key(|x| x.abs()).unwrap(), -10);
3176    /// ```
3177    #[inline]
3178    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3179    fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3180    where
3181        Self: Sized,
3182        F: FnMut(&Self::Item) -> B,
3183    {
3184        #[inline]
3185        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3186            move |x| (f(&x), x)
3187        }
3188
3189        #[inline]
3190        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3191            x_p.cmp(y_p)
3192        }
3193
3194        let (_, x) = self.map(key(f)).max_by(compare)?;
3195        Some(x)
3196    }
3197
3198    /// Returns the element that gives the maximum value with respect to the
3199    /// specified comparison function.
3200    ///
3201    /// If several elements are equally maximum, the last element is
3202    /// returned. If the iterator is empty, [`None`] is returned.
3203    ///
3204    /// # Examples
3205    ///
3206    /// ```
3207    /// let a = [-3_i32, 0, 1, 5, -10];
3208    /// assert_eq!(*a.iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
3209    /// ```
3210    #[inline]
3211    #[stable(feature = "iter_max_by", since = "1.15.0")]
3212    fn max_by<F>(self, compare: F) -> Option<Self::Item>
3213    where
3214        Self: Sized,
3215        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3216    {
3217        #[inline]
3218        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3219            move |x, y| cmp::max_by(x, y, &mut compare)
3220        }
3221
3222        self.reduce(fold(compare))
3223    }
3224
3225    /// Returns the element that gives the minimum value from the
3226    /// specified function.
3227    ///
3228    /// If several elements are equally minimum, the first element is
3229    /// returned. If the iterator is empty, [`None`] is returned.
3230    ///
3231    /// # Examples
3232    ///
3233    /// ```
3234    /// let a = [-3_i32, 0, 1, 5, -10];
3235    /// assert_eq!(*a.iter().min_by_key(|x| x.abs()).unwrap(), 0);
3236    /// ```
3237    #[inline]
3238    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3239    fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3240    where
3241        Self: Sized,
3242        F: FnMut(&Self::Item) -> B,
3243    {
3244        #[inline]
3245        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3246            move |x| (f(&x), x)
3247        }
3248
3249        #[inline]
3250        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3251            x_p.cmp(y_p)
3252        }
3253
3254        let (_, x) = self.map(key(f)).min_by(compare)?;
3255        Some(x)
3256    }
3257
3258    /// Returns the element that gives the minimum value with respect to the
3259    /// specified comparison function.
3260    ///
3261    /// If several elements are equally minimum, the first element is
3262    /// returned. If the iterator is empty, [`None`] is returned.
3263    ///
3264    /// # Examples
3265    ///
3266    /// ```
3267    /// let a = [-3_i32, 0, 1, 5, -10];
3268    /// assert_eq!(*a.iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
3269    /// ```
3270    #[inline]
3271    #[stable(feature = "iter_min_by", since = "1.15.0")]
3272    fn min_by<F>(self, compare: F) -> Option<Self::Item>
3273    where
3274        Self: Sized,
3275        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3276    {
3277        #[inline]
3278        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3279            move |x, y| cmp::min_by(x, y, &mut compare)
3280        }
3281
3282        self.reduce(fold(compare))
3283    }
3284
3285    /// Reverses an iterator's direction.
3286    ///
3287    /// Usually, iterators iterate from left to right. After using `rev()`,
3288    /// an iterator will instead iterate from right to left.
3289    ///
3290    /// This is only possible if the iterator has an end, so `rev()` only
3291    /// works on [`DoubleEndedIterator`]s.
3292    ///
3293    /// # Examples
3294    ///
3295    /// ```
3296    /// let a = [1, 2, 3];
3297    ///
3298    /// let mut iter = a.iter().rev();
3299    ///
3300    /// assert_eq!(iter.next(), Some(&3));
3301    /// assert_eq!(iter.next(), Some(&2));
3302    /// assert_eq!(iter.next(), Some(&1));
3303    ///
3304    /// assert_eq!(iter.next(), None);
3305    /// ```
3306    #[inline]
3307    #[doc(alias = "reverse")]
3308    #[stable(feature = "rust1", since = "1.0.0")]
3309    fn rev(self) -> Rev<Self>
3310    where
3311        Self: Sized + DoubleEndedIterator,
3312    {
3313        Rev::new(self)
3314    }
3315
3316    /// Converts an iterator of pairs into a pair of containers.
3317    ///
3318    /// `unzip()` consumes an entire iterator of pairs, producing two
3319    /// collections: one from the left elements of the pairs, and one
3320    /// from the right elements.
3321    ///
3322    /// This function is, in some sense, the opposite of [`zip`].
3323    ///
3324    /// [`zip`]: Iterator::zip
3325    ///
3326    /// # Examples
3327    ///
3328    /// ```
3329    /// let a = [(1, 2), (3, 4), (5, 6)];
3330    ///
3331    /// let (left, right): (Vec<_>, Vec<_>) = a.iter().cloned().unzip();
3332    ///
3333    /// assert_eq!(left, [1, 3, 5]);
3334    /// assert_eq!(right, [2, 4, 6]);
3335    ///
3336    /// // you can also unzip multiple nested tuples at once
3337    /// let a = [(1, (2, 3)), (4, (5, 6))];
3338    ///
3339    /// let (x, (y, z)): (Vec<_>, (Vec<_>, Vec<_>)) = a.iter().cloned().unzip();
3340    /// assert_eq!(x, [1, 4]);
3341    /// assert_eq!(y, [2, 5]);
3342    /// assert_eq!(z, [3, 6]);
3343    /// ```
3344    #[stable(feature = "rust1", since = "1.0.0")]
3345    fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
3346    where
3347        FromA: Default + Extend<A>,
3348        FromB: Default + Extend<B>,
3349        Self: Sized + Iterator<Item = (A, B)>,
3350    {
3351        let mut unzipped: (FromA, FromB) = Default::default();
3352        unzipped.extend(self);
3353        unzipped
3354    }
3355
3356    /// Creates an iterator which copies all of its elements.
3357    ///
3358    /// This is useful when you have an iterator over `&T`, but you need an
3359    /// iterator over `T`.
3360    ///
3361    /// # Examples
3362    ///
3363    /// ```
3364    /// let a = [1, 2, 3];
3365    ///
3366    /// let v_copied: Vec<_> = a.iter().copied().collect();
3367    ///
3368    /// // copied is the same as .map(|&x| x)
3369    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3370    ///
3371    /// assert_eq!(v_copied, vec![1, 2, 3]);
3372    /// assert_eq!(v_map, vec![1, 2, 3]);
3373    /// ```
3374    #[stable(feature = "iter_copied", since = "1.36.0")]
3375    #[rustc_diagnostic_item = "iter_copied"]
3376    fn copied<'a, T: 'a>(self) -> Copied<Self>
3377    where
3378        Self: Sized + Iterator<Item = &'a T>,
3379        T: Copy,
3380    {
3381        Copied::new(self)
3382    }
3383
3384    /// Creates an iterator which [`clone`]s all of its elements.
3385    ///
3386    /// This is useful when you have an iterator over `&T`, but you need an
3387    /// iterator over `T`.
3388    ///
3389    /// There is no guarantee whatsoever about the `clone` method actually
3390    /// being called *or* optimized away. So code should not depend on
3391    /// either.
3392    ///
3393    /// [`clone`]: Clone::clone
3394    ///
3395    /// # Examples
3396    ///
3397    /// Basic usage:
3398    ///
3399    /// ```
3400    /// let a = [1, 2, 3];
3401    ///
3402    /// let v_cloned: Vec<_> = a.iter().cloned().collect();
3403    ///
3404    /// // cloned is the same as .map(|&x| x), for integers
3405    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3406    ///
3407    /// assert_eq!(v_cloned, vec![1, 2, 3]);
3408    /// assert_eq!(v_map, vec![1, 2, 3]);
3409    /// ```
3410    ///
3411    /// To get the best performance, try to clone late:
3412    ///
3413    /// ```
3414    /// let a = [vec![0_u8, 1, 2], vec![3, 4], vec![23]];
3415    /// // don't do this:
3416    /// let slower: Vec<_> = a.iter().cloned().filter(|s| s.len() == 1).collect();
3417    /// assert_eq!(&[vec![23]], &slower[..]);
3418    /// // instead call `cloned` late
3419    /// let faster: Vec<_> = a.iter().filter(|s| s.len() == 1).cloned().collect();
3420    /// assert_eq!(&[vec![23]], &faster[..]);
3421    /// ```
3422    #[stable(feature = "rust1", since = "1.0.0")]
3423    #[rustc_diagnostic_item = "iter_cloned"]
3424    fn cloned<'a, T: 'a>(self) -> Cloned<Self>
3425    where
3426        Self: Sized + Iterator<Item = &'a T>,
3427        T: Clone,
3428    {
3429        Cloned::new(self)
3430    }
3431
3432    /// Repeats an iterator endlessly.
3433    ///
3434    /// Instead of stopping at [`None`], the iterator will instead start again,
3435    /// from the beginning. After iterating again, it will start at the
3436    /// beginning again. And again. And again. Forever. Note that in case the
3437    /// original iterator is empty, the resulting iterator will also be empty.
3438    ///
3439    /// # Examples
3440    ///
3441    /// ```
3442    /// let a = [1, 2, 3];
3443    ///
3444    /// let mut it = a.iter().cycle();
3445    ///
3446    /// assert_eq!(it.next(), Some(&1));
3447    /// assert_eq!(it.next(), Some(&2));
3448    /// assert_eq!(it.next(), Some(&3));
3449    /// assert_eq!(it.next(), Some(&1));
3450    /// assert_eq!(it.next(), Some(&2));
3451    /// assert_eq!(it.next(), Some(&3));
3452    /// assert_eq!(it.next(), Some(&1));
3453    /// ```
3454    #[stable(feature = "rust1", since = "1.0.0")]
3455    #[inline]
3456    fn cycle(self) -> Cycle<Self>
3457    where
3458        Self: Sized + Clone,
3459    {
3460        Cycle::new(self)
3461    }
3462
3463    /// Returns an iterator over `N` elements of the iterator at a time.
3464    ///
3465    /// The chunks do not overlap. If `N` does not divide the length of the
3466    /// iterator, then the last up to `N-1` elements will be omitted and can be
3467    /// retrieved from the [`.into_remainder()`][ArrayChunks::into_remainder]
3468    /// function of the iterator.
3469    ///
3470    /// # Panics
3471    ///
3472    /// Panics if `N` is zero.
3473    ///
3474    /// # Examples
3475    ///
3476    /// Basic usage:
3477    ///
3478    /// ```
3479    /// #![feature(iter_array_chunks)]
3480    ///
3481    /// let mut iter = "lorem".chars().array_chunks();
3482    /// assert_eq!(iter.next(), Some(['l', 'o']));
3483    /// assert_eq!(iter.next(), Some(['r', 'e']));
3484    /// assert_eq!(iter.next(), None);
3485    /// assert_eq!(iter.into_remainder().unwrap().as_slice(), &['m']);
3486    /// ```
3487    ///
3488    /// ```
3489    /// #![feature(iter_array_chunks)]
3490    ///
3491    /// let data = [1, 1, 2, -2, 6, 0, 3, 1];
3492    /// //          ^-----^  ^------^
3493    /// for [x, y, z] in data.iter().array_chunks() {
3494    ///     assert_eq!(x + y + z, 4);
3495    /// }
3496    /// ```
3497    #[track_caller]
3498    #[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "100450")]
3499    fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
3500    where
3501        Self: Sized,
3502    {
3503        ArrayChunks::new(self)
3504    }
3505
3506    /// Sums the elements of an iterator.
3507    ///
3508    /// Takes each element, adds them together, and returns the result.
3509    ///
3510    /// An empty iterator returns the *additive identity* ("zero") of the type,
3511    /// which is `0` for integers and `-0.0` for floats.
3512    ///
3513    /// `sum()` can be used to sum any type implementing [`Sum`][`core::iter::Sum`],
3514    /// including [`Option`][`Option::sum`] and [`Result`][`Result::sum`].
3515    ///
3516    /// # Panics
3517    ///
3518    /// When calling `sum()` and a primitive integer type is being returned, this
3519    /// method will panic if the computation overflows and debug assertions are
3520    /// enabled.
3521    ///
3522    /// # Examples
3523    ///
3524    /// ```
3525    /// let a = [1, 2, 3];
3526    /// let sum: i32 = a.iter().sum();
3527    ///
3528    /// assert_eq!(sum, 6);
3529    ///
3530    /// let b: Vec<f32> = vec![];
3531    /// let sum: f32 = b.iter().sum();
3532    /// assert_eq!(sum, -0.0_f32);
3533    /// ```
3534    #[stable(feature = "iter_arith", since = "1.11.0")]
3535    fn sum<S>(self) -> S
3536    where
3537        Self: Sized,
3538        S: Sum<Self::Item>,
3539    {
3540        Sum::sum(self)
3541    }
3542
3543    /// Iterates over the entire iterator, multiplying all the elements
3544    ///
3545    /// An empty iterator returns the one value of the type.
3546    ///
3547    /// `product()` can be used to multiply any type implementing [`Product`][`core::iter::Product`],
3548    /// including [`Option`][`Option::product`] and [`Result`][`Result::product`].
3549    ///
3550    /// # Panics
3551    ///
3552    /// When calling `product()` and a primitive integer type is being returned,
3553    /// method will panic if the computation overflows and debug assertions are
3554    /// enabled.
3555    ///
3556    /// # Examples
3557    ///
3558    /// ```
3559    /// fn factorial(n: u32) -> u32 {
3560    ///     (1..=n).product()
3561    /// }
3562    /// assert_eq!(factorial(0), 1);
3563    /// assert_eq!(factorial(1), 1);
3564    /// assert_eq!(factorial(5), 120);
3565    /// ```
3566    #[stable(feature = "iter_arith", since = "1.11.0")]
3567    fn product<P>(self) -> P
3568    where
3569        Self: Sized,
3570        P: Product<Self::Item>,
3571    {
3572        Product::product(self)
3573    }
3574
3575    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3576    /// of another.
3577    ///
3578    /// # Examples
3579    ///
3580    /// ```
3581    /// use std::cmp::Ordering;
3582    ///
3583    /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
3584    /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
3585    /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
3586    /// ```
3587    #[stable(feature = "iter_order", since = "1.5.0")]
3588    fn cmp<I>(self, other: I) -> Ordering
3589    where
3590        I: IntoIterator<Item = Self::Item>,
3591        Self::Item: Ord,
3592        Self: Sized,
3593    {
3594        self.cmp_by(other, |x, y| x.cmp(&y))
3595    }
3596
3597    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3598    /// of another with respect to the specified comparison function.
3599    ///
3600    /// # Examples
3601    ///
3602    /// ```
3603    /// #![feature(iter_order_by)]
3604    ///
3605    /// use std::cmp::Ordering;
3606    ///
3607    /// let xs = [1, 2, 3, 4];
3608    /// let ys = [1, 4, 9, 16];
3609    ///
3610    /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| x.cmp(&y)), Ordering::Less);
3611    /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| (x * x).cmp(&y)), Ordering::Equal);
3612    /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| (2 * x).cmp(&y)), Ordering::Greater);
3613    /// ```
3614    #[unstable(feature = "iter_order_by", issue = "64295")]
3615    fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
3616    where
3617        Self: Sized,
3618        I: IntoIterator,
3619        F: FnMut(Self::Item, I::Item) -> Ordering,
3620    {
3621        #[inline]
3622        fn compare<X, Y, F>(mut cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Ordering>
3623        where
3624            F: FnMut(X, Y) -> Ordering,
3625        {
3626            move |x, y| match cmp(x, y) {
3627                Ordering::Equal => ControlFlow::Continue(()),
3628                non_eq => ControlFlow::Break(non_eq),
3629            }
3630        }
3631
3632        match iter_compare(self, other.into_iter(), compare(cmp)) {
3633            ControlFlow::Continue(ord) => ord,
3634            ControlFlow::Break(ord) => ord,
3635        }
3636    }
3637
3638    /// [Lexicographically](Ord#lexicographical-comparison) compares the [`PartialOrd`] elements of
3639    /// this [`Iterator`] with those of another. The comparison works like short-circuit
3640    /// evaluation, returning a result without comparing the remaining elements.
3641    /// As soon as an order can be determined, the evaluation stops and a result is returned.
3642    ///
3643    /// # Examples
3644    ///
3645    /// ```
3646    /// use std::cmp::Ordering;
3647    ///
3648    /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
3649    /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
3650    /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
3651    /// ```
3652    ///
3653    /// For floating-point numbers, NaN does not have a total order and will result
3654    /// in `None` when compared:
3655    ///
3656    /// ```
3657    /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
3658    /// ```
3659    ///
3660    /// The results are determined by the order of evaluation.
3661    ///
3662    /// ```
3663    /// use std::cmp::Ordering;
3664    ///
3665    /// assert_eq!([1.0, f64::NAN].iter().partial_cmp([2.0, f64::NAN].iter()), Some(Ordering::Less));
3666    /// assert_eq!([2.0, f64::NAN].iter().partial_cmp([1.0, f64::NAN].iter()), Some(Ordering::Greater));
3667    /// assert_eq!([f64::NAN, 1.0].iter().partial_cmp([f64::NAN, 2.0].iter()), None);
3668    /// ```
3669    ///
3670    #[stable(feature = "iter_order", since = "1.5.0")]
3671    fn partial_cmp<I>(self, other: I) -> Option<Ordering>
3672    where
3673        I: IntoIterator,
3674        Self::Item: PartialOrd<I::Item>,
3675        Self: Sized,
3676    {
3677        self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
3678    }
3679
3680    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3681    /// of another with respect to the specified comparison function.
3682    ///
3683    /// # Examples
3684    ///
3685    /// ```
3686    /// #![feature(iter_order_by)]
3687    ///
3688    /// use std::cmp::Ordering;
3689    ///
3690    /// let xs = [1.0, 2.0, 3.0, 4.0];
3691    /// let ys = [1.0, 4.0, 9.0, 16.0];
3692    ///
3693    /// assert_eq!(
3694    ///     xs.iter().partial_cmp_by(&ys, |&x, &y| x.partial_cmp(&y)),
3695    ///     Some(Ordering::Less)
3696    /// );
3697    /// assert_eq!(
3698    ///     xs.iter().partial_cmp_by(&ys, |&x, &y| (x * x).partial_cmp(&y)),
3699    ///     Some(Ordering::Equal)
3700    /// );
3701    /// assert_eq!(
3702    ///     xs.iter().partial_cmp_by(&ys, |&x, &y| (2.0 * x).partial_cmp(&y)),
3703    ///     Some(Ordering::Greater)
3704    /// );
3705    /// ```
3706    #[unstable(feature = "iter_order_by", issue = "64295")]
3707    fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
3708    where
3709        Self: Sized,
3710        I: IntoIterator,
3711        F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
3712    {
3713        #[inline]
3714        fn compare<X, Y, F>(mut partial_cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Option<Ordering>>
3715        where
3716            F: FnMut(X, Y) -> Option<Ordering>,
3717        {
3718            move |x, y| match partial_cmp(x, y) {
3719                Some(Ordering::Equal) => ControlFlow::Continue(()),
3720                non_eq => ControlFlow::Break(non_eq),
3721            }
3722        }
3723
3724        match iter_compare(self, other.into_iter(), compare(partial_cmp)) {
3725            ControlFlow::Continue(ord) => Some(ord),
3726            ControlFlow::Break(ord) => ord,
3727        }
3728    }
3729
3730    /// Determines if the elements of this [`Iterator`] are equal to those of
3731    /// another.
3732    ///
3733    /// # Examples
3734    ///
3735    /// ```
3736    /// assert_eq!([1].iter().eq([1].iter()), true);
3737    /// assert_eq!([1].iter().eq([1, 2].iter()), false);
3738    /// ```
3739    #[stable(feature = "iter_order", since = "1.5.0")]
3740    fn eq<I>(self, other: I) -> bool
3741    where
3742        I: IntoIterator,
3743        Self::Item: PartialEq<I::Item>,
3744        Self: Sized,
3745    {
3746        self.eq_by(other, |x, y| x == y)
3747    }
3748
3749    /// Determines if the elements of this [`Iterator`] are equal to those of
3750    /// another with respect to the specified equality function.
3751    ///
3752    /// # Examples
3753    ///
3754    /// ```
3755    /// #![feature(iter_order_by)]
3756    ///
3757    /// let xs = [1, 2, 3, 4];
3758    /// let ys = [1, 4, 9, 16];
3759    ///
3760    /// assert!(xs.iter().eq_by(&ys, |&x, &y| x * x == y));
3761    /// ```
3762    #[unstable(feature = "iter_order_by", issue = "64295")]
3763    fn eq_by<I, F>(self, other: I, eq: F) -> bool
3764    where
3765        Self: Sized,
3766        I: IntoIterator,
3767        F: FnMut(Self::Item, I::Item) -> bool,
3768    {
3769        #[inline]
3770        fn compare<X, Y, F>(mut eq: F) -> impl FnMut(X, Y) -> ControlFlow<()>
3771        where
3772            F: FnMut(X, Y) -> bool,
3773        {
3774            move |x, y| {
3775                if eq(x, y) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
3776            }
3777        }
3778
3779        match iter_compare(self, other.into_iter(), compare(eq)) {
3780            ControlFlow::Continue(ord) => ord == Ordering::Equal,
3781            ControlFlow::Break(()) => false,
3782        }
3783    }
3784
3785    /// Determines if the elements of this [`Iterator`] are not equal to those of
3786    /// another.
3787    ///
3788    /// # Examples
3789    ///
3790    /// ```
3791    /// assert_eq!([1].iter().ne([1].iter()), false);
3792    /// assert_eq!([1].iter().ne([1, 2].iter()), true);
3793    /// ```
3794    #[stable(feature = "iter_order", since = "1.5.0")]
3795    fn ne<I>(self, other: I) -> bool
3796    where
3797        I: IntoIterator,
3798        Self::Item: PartialEq<I::Item>,
3799        Self: Sized,
3800    {
3801        !self.eq(other)
3802    }
3803
3804    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3805    /// less than those of another.
3806    ///
3807    /// # Examples
3808    ///
3809    /// ```
3810    /// assert_eq!([1].iter().lt([1].iter()), false);
3811    /// assert_eq!([1].iter().lt([1, 2].iter()), true);
3812    /// assert_eq!([1, 2].iter().lt([1].iter()), false);
3813    /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
3814    /// ```
3815    #[stable(feature = "iter_order", since = "1.5.0")]
3816    fn lt<I>(self, other: I) -> bool
3817    where
3818        I: IntoIterator,
3819        Self::Item: PartialOrd<I::Item>,
3820        Self: Sized,
3821    {
3822        self.partial_cmp(other) == Some(Ordering::Less)
3823    }
3824
3825    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3826    /// less or equal to those of another.
3827    ///
3828    /// # Examples
3829    ///
3830    /// ```
3831    /// assert_eq!([1].iter().le([1].iter()), true);
3832    /// assert_eq!([1].iter().le([1, 2].iter()), true);
3833    /// assert_eq!([1, 2].iter().le([1].iter()), false);
3834    /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
3835    /// ```
3836    #[stable(feature = "iter_order", since = "1.5.0")]
3837    fn le<I>(self, other: I) -> bool
3838    where
3839        I: IntoIterator,
3840        Self::Item: PartialOrd<I::Item>,
3841        Self: Sized,
3842    {
3843        matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
3844    }
3845
3846    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3847    /// greater than those of another.
3848    ///
3849    /// # Examples
3850    ///
3851    /// ```
3852    /// assert_eq!([1].iter().gt([1].iter()), false);
3853    /// assert_eq!([1].iter().gt([1, 2].iter()), false);
3854    /// assert_eq!([1, 2].iter().gt([1].iter()), true);
3855    /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
3856    /// ```
3857    #[stable(feature = "iter_order", since = "1.5.0")]
3858    fn gt<I>(self, other: I) -> bool
3859    where
3860        I: IntoIterator,
3861        Self::Item: PartialOrd<I::Item>,
3862        Self: Sized,
3863    {
3864        self.partial_cmp(other) == Some(Ordering::Greater)
3865    }
3866
3867    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3868    /// greater than or equal to those of another.
3869    ///
3870    /// # Examples
3871    ///
3872    /// ```
3873    /// assert_eq!([1].iter().ge([1].iter()), true);
3874    /// assert_eq!([1].iter().ge([1, 2].iter()), false);
3875    /// assert_eq!([1, 2].iter().ge([1].iter()), true);
3876    /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
3877    /// ```
3878    #[stable(feature = "iter_order", since = "1.5.0")]
3879    fn ge<I>(self, other: I) -> bool
3880    where
3881        I: IntoIterator,
3882        Self::Item: PartialOrd<I::Item>,
3883        Self: Sized,
3884    {
3885        matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
3886    }
3887
3888    /// Checks if the elements of this iterator are sorted.
3889    ///
3890    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
3891    /// iterator yields exactly zero or one element, `true` is returned.
3892    ///
3893    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
3894    /// implies that this function returns `false` if any two consecutive items are not
3895    /// comparable.
3896    ///
3897    /// # Examples
3898    ///
3899    /// ```
3900    /// assert!([1, 2, 2, 9].iter().is_sorted());
3901    /// assert!(![1, 3, 2, 4].iter().is_sorted());
3902    /// assert!([0].iter().is_sorted());
3903    /// assert!(std::iter::empty::<i32>().is_sorted());
3904    /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
3905    /// ```
3906    #[inline]
3907    #[stable(feature = "is_sorted", since = "1.82.0")]
3908    fn is_sorted(self) -> bool
3909    where
3910        Self: Sized,
3911        Self::Item: PartialOrd,
3912    {
3913        self.is_sorted_by(|a, b| a <= b)
3914    }
3915
3916    /// Checks if the elements of this iterator are sorted using the given comparator function.
3917    ///
3918    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
3919    /// function to determine whether two elements are to be considered in sorted order.
3920    ///
3921    /// # Examples
3922    ///
3923    /// ```
3924    /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a <= b));
3925    /// assert!(![1, 2, 2, 9].iter().is_sorted_by(|a, b| a < b));
3926    ///
3927    /// assert!([0].iter().is_sorted_by(|a, b| true));
3928    /// assert!([0].iter().is_sorted_by(|a, b| false));
3929    ///
3930    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| false));
3931    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| true));
3932    /// ```
3933    #[stable(feature = "is_sorted", since = "1.82.0")]
3934    fn is_sorted_by<F>(mut self, compare: F) -> bool
3935    where
3936        Self: Sized,
3937        F: FnMut(&Self::Item, &Self::Item) -> bool,
3938    {
3939        #[inline]
3940        fn check<'a, T>(
3941            last: &'a mut T,
3942            mut compare: impl FnMut(&T, &T) -> bool + 'a,
3943        ) -> impl FnMut(T) -> bool + 'a {
3944            move |curr| {
3945                if !compare(&last, &curr) {
3946                    return false;
3947                }
3948                *last = curr;
3949                true
3950            }
3951        }
3952
3953        let mut last = match self.next() {
3954            Some(e) => e,
3955            None => return true,
3956        };
3957
3958        self.all(check(&mut last, compare))
3959    }
3960
3961    /// Checks if the elements of this iterator are sorted using the given key extraction
3962    /// function.
3963    ///
3964    /// Instead of comparing the iterator's elements directly, this function compares the keys of
3965    /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
3966    /// its documentation for more information.
3967    ///
3968    /// [`is_sorted`]: Iterator::is_sorted
3969    ///
3970    /// # Examples
3971    ///
3972    /// ```
3973    /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
3974    /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
3975    /// ```
3976    #[inline]
3977    #[stable(feature = "is_sorted", since = "1.82.0")]
3978    fn is_sorted_by_key<F, K>(self, f: F) -> bool
3979    where
3980        Self: Sized,
3981        F: FnMut(Self::Item) -> K,
3982        K: PartialOrd,
3983    {
3984        self.map(f).is_sorted()
3985    }
3986
3987    /// See [TrustedRandomAccess][super::super::TrustedRandomAccess]
3988    // The unusual name is to avoid name collisions in method resolution
3989    // see #76479.
3990    #[inline]
3991    #[doc(hidden)]
3992    #[unstable(feature = "trusted_random_access", issue = "none")]
3993    unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
3994    where
3995        Self: TrustedRandomAccessNoCoerce,
3996    {
3997        unreachable!("Always specialized");
3998    }
3999}
4000
4001/// Compares two iterators element-wise using the given function.
4002///
4003/// If `ControlFlow::Continue(())` is returned from the function, the comparison moves on to the next
4004/// elements of both iterators. Returning `ControlFlow::Break(x)` short-circuits the iteration and
4005/// returns `ControlFlow::Break(x)`. If one of the iterators runs out of elements,
4006/// `ControlFlow::Continue(ord)` is returned where `ord` is the result of comparing the lengths of
4007/// the iterators.
4008///
4009/// Isolates the logic shared by ['cmp_by'](Iterator::cmp_by),
4010/// ['partial_cmp_by'](Iterator::partial_cmp_by), and ['eq_by'](Iterator::eq_by).
4011#[inline]
4012fn iter_compare<A, B, F, T>(mut a: A, mut b: B, f: F) -> ControlFlow<T, Ordering>
4013where
4014    A: Iterator,
4015    B: Iterator,
4016    F: FnMut(A::Item, B::Item) -> ControlFlow<T>,
4017{
4018    #[inline]
4019    fn compare<'a, B, X, T>(
4020        b: &'a mut B,
4021        mut f: impl FnMut(X, B::Item) -> ControlFlow<T> + 'a,
4022    ) -> impl FnMut(X) -> ControlFlow<ControlFlow<T, Ordering>> + 'a
4023    where
4024        B: Iterator,
4025    {
4026        move |x| match b.next() {
4027            None => ControlFlow::Break(ControlFlow::Continue(Ordering::Greater)),
4028            Some(y) => f(x, y).map_break(ControlFlow::Break),
4029        }
4030    }
4031
4032    match a.try_for_each(compare(&mut b, f)) {
4033        ControlFlow::Continue(()) => ControlFlow::Continue(match b.next() {
4034            None => Ordering::Equal,
4035            Some(_) => Ordering::Less,
4036        }),
4037        ControlFlow::Break(x) => x,
4038    }
4039}
4040
4041/// Implements `Iterator` for mutable references to iterators, such as those produced by [`Iterator::by_ref`].
4042///
4043/// This implementation passes all method calls on to the original iterator.
4044#[stable(feature = "rust1", since = "1.0.0")]
4045impl<I: Iterator + ?Sized> Iterator for &mut I {
4046    type Item = I::Item;
4047    #[inline]
4048    fn next(&mut self) -> Option<I::Item> {
4049        (**self).next()
4050    }
4051    fn size_hint(&self) -> (usize, Option<usize>) {
4052        (**self).size_hint()
4053    }
4054    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
4055        (**self).advance_by(n)
4056    }
4057    fn nth(&mut self, n: usize) -> Option<Self::Item> {
4058        (**self).nth(n)
4059    }
4060    fn fold<B, F>(self, init: B, f: F) -> B
4061    where
4062        F: FnMut(B, Self::Item) -> B,
4063    {
4064        self.spec_fold(init, f)
4065    }
4066    fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4067    where
4068        F: FnMut(B, Self::Item) -> R,
4069        R: Try<Output = B>,
4070    {
4071        self.spec_try_fold(init, f)
4072    }
4073}
4074
4075/// Helper trait to specialize `fold` and `try_fold` for `&mut I where I: Sized`
4076trait IteratorRefSpec: Iterator {
4077    fn spec_fold<B, F>(self, init: B, f: F) -> B
4078    where
4079        F: FnMut(B, Self::Item) -> B;
4080
4081    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4082    where
4083        F: FnMut(B, Self::Item) -> R,
4084        R: Try<Output = B>;
4085}
4086
4087impl<I: Iterator + ?Sized> IteratorRefSpec for &mut I {
4088    default fn spec_fold<B, F>(self, init: B, mut f: F) -> B
4089    where
4090        F: FnMut(B, Self::Item) -> B,
4091    {
4092        let mut accum = init;
4093        while let Some(x) = self.next() {
4094            accum = f(accum, x);
4095        }
4096        accum
4097    }
4098
4099    default fn spec_try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
4100    where
4101        F: FnMut(B, Self::Item) -> R,
4102        R: Try<Output = B>,
4103    {
4104        let mut accum = init;
4105        while let Some(x) = self.next() {
4106            accum = f(accum, x)?;
4107        }
4108        try { accum }
4109    }
4110}
4111
4112impl<I: Iterator> IteratorRefSpec for &mut I {
4113    impl_fold_via_try_fold! { spec_fold -> spec_try_fold }
4114
4115    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4116    where
4117        F: FnMut(B, Self::Item) -> R,
4118        R: Try<Output = B>,
4119    {
4120        (**self).try_fold(init, f)
4121    }
4122}
Лучший частный хостинг