std/io/mod.rs
1//! Traits, helpers, and type definitions for core I/O functionality.
2//!
3//! The `std::io` module contains a number of common things you'll need
4//! when doing input and output. The most core part of this module is
5//! the [`Read`] and [`Write`] traits, which provide the
6//! most general interface for reading and writing input and output.
7//!
8//! ## Read and Write
9//!
10//! Because they are traits, [`Read`] and [`Write`] are implemented by a number
11//! of other types, and you can implement them for your types too. As such,
12//! you'll see a few different types of I/O throughout the documentation in
13//! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec<T>`]s. For
14//! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on
15//! [`File`]s:
16//!
17//! ```no_run
18//! use std::io;
19//! use std::io::prelude::*;
20//! use std::fs::File;
21//!
22//! fn main() -> io::Result<()> {
23//! let mut f = File::open("foo.txt")?;
24//! let mut buffer = [0; 10];
25//!
26//! // read up to 10 bytes
27//! let n = f.read(&mut buffer)?;
28//!
29//! println!("The bytes: {:?}", &buffer[..n]);
30//! Ok(())
31//! }
32//! ```
33//!
34//! [`Read`] and [`Write`] are so important, implementors of the two traits have a
35//! nickname: readers and writers. So you'll sometimes see 'a reader' instead
36//! of 'a type that implements the [`Read`] trait'. Much easier!
37//!
38//! ## Seek and BufRead
39//!
40//! Beyond that, there are two important traits that are provided: [`Seek`]
41//! and [`BufRead`]. Both of these build on top of a reader to control
42//! how the reading happens. [`Seek`] lets you control where the next byte is
43//! coming from:
44//!
45//! ```no_run
46//! use std::io;
47//! use std::io::prelude::*;
48//! use std::io::SeekFrom;
49//! use std::fs::File;
50//!
51//! fn main() -> io::Result<()> {
52//! let mut f = File::open("foo.txt")?;
53//! let mut buffer = [0; 10];
54//!
55//! // skip to the last 10 bytes of the file
56//! f.seek(SeekFrom::End(-10))?;
57//!
58//! // read up to 10 bytes
59//! let n = f.read(&mut buffer)?;
60//!
61//! println!("The bytes: {:?}", &buffer[..n]);
62//! Ok(())
63//! }
64//! ```
65//!
66//! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but
67//! to show it off, we'll need to talk about buffers in general. Keep reading!
68//!
69//! ## BufReader and BufWriter
70//!
71//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
72//! making near-constant calls to the operating system. To help with this,
73//! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap
74//! readers and writers. The wrapper uses a buffer, reducing the number of
75//! calls and providing nicer methods for accessing exactly what you want.
76//!
77//! For example, [`BufReader`] works with the [`BufRead`] trait to add extra
78//! methods to any reader:
79//!
80//! ```no_run
81//! use std::io;
82//! use std::io::prelude::*;
83//! use std::io::BufReader;
84//! use std::fs::File;
85//!
86//! fn main() -> io::Result<()> {
87//! let f = File::open("foo.txt")?;
88//! let mut reader = BufReader::new(f);
89//! let mut buffer = String::new();
90//!
91//! // read a line into buffer
92//! reader.read_line(&mut buffer)?;
93//!
94//! println!("{buffer}");
95//! Ok(())
96//! }
97//! ```
98//!
99//! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
100//! to [`write`][`Write::write`]:
101//!
102//! ```no_run
103//! use std::io;
104//! use std::io::prelude::*;
105//! use std::io::BufWriter;
106//! use std::fs::File;
107//!
108//! fn main() -> io::Result<()> {
109//! let f = File::create("foo.txt")?;
110//! {
111//! let mut writer = BufWriter::new(f);
112//!
113//! // write a byte to the buffer
114//! writer.write(&[42])?;
115//!
116//! } // the buffer is flushed once writer goes out of scope
117//!
118//! Ok(())
119//! }
120//! ```
121//!
122//! ## Standard input and output
123//!
124//! A very common source of input is standard input:
125//!
126//! ```no_run
127//! use std::io;
128//!
129//! fn main() -> io::Result<()> {
130//! let mut input = String::new();
131//!
132//! io::stdin().read_line(&mut input)?;
133//!
134//! println!("You typed: {}", input.trim());
135//! Ok(())
136//! }
137//! ```
138//!
139//! Note that you cannot use the [`?` operator] in functions that do not return
140//! a [`Result<T, E>`][`Result`]. Instead, you can call [`.unwrap()`]
141//! or `match` on the return value to catch any possible errors:
142//!
143//! ```no_run
144//! use std::io;
145//!
146//! let mut input = String::new();
147//!
148//! io::stdin().read_line(&mut input).unwrap();
149//! ```
150//!
151//! And a very common source of output is standard output:
152//!
153//! ```no_run
154//! use std::io;
155//! use std::io::prelude::*;
156//!
157//! fn main() -> io::Result<()> {
158//! io::stdout().write(&[42])?;
159//! Ok(())
160//! }
161//! ```
162//!
163//! Of course, using [`io::stdout`] directly is less common than something like
164//! [`println!`].
165//!
166//! ## Iterator types
167//!
168//! A large number of the structures provided by `std::io` are for various
169//! ways of iterating over I/O. For example, [`Lines`] is used to split over
170//! lines:
171//!
172//! ```no_run
173//! use std::io;
174//! use std::io::prelude::*;
175//! use std::io::BufReader;
176//! use std::fs::File;
177//!
178//! fn main() -> io::Result<()> {
179//! let f = File::open("foo.txt")?;
180//! let reader = BufReader::new(f);
181//!
182//! for line in reader.lines() {
183//! println!("{}", line?);
184//! }
185//! Ok(())
186//! }
187//! ```
188//!
189//! ## Functions
190//!
191//! There are a number of [functions][functions-list] that offer access to various
192//! features. For example, we can use three of these functions to copy everything
193//! from standard input to standard output:
194//!
195//! ```no_run
196//! use std::io;
197//!
198//! fn main() -> io::Result<()> {
199//! io::copy(&mut io::stdin(), &mut io::stdout())?;
200//! Ok(())
201//! }
202//! ```
203//!
204//! [functions-list]: #functions-1
205//!
206//! ## io::Result
207//!
208//! Last, but certainly not least, is [`io::Result`]. This type is used
209//! as the return type of many `std::io` functions that can cause an error, and
210//! can be returned from your own functions as well. Many of the examples in this
211//! module use the [`?` operator]:
212//!
213//! ```
214//! use std::io;
215//!
216//! fn read_input() -> io::Result<()> {
217//! let mut input = String::new();
218//!
219//! io::stdin().read_line(&mut input)?;
220//!
221//! println!("You typed: {}", input.trim());
222//!
223//! Ok(())
224//! }
225//! ```
226//!
227//! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very
228//! common type for functions which don't have a 'real' return value, but do want to
229//! return errors if they happen. In this case, the only purpose of this function is
230//! to read the line and print it, so we use `()`.
231//!
232//! ## Platform-specific behavior
233//!
234//! Many I/O functions throughout the standard library are documented to indicate
235//! what various library or syscalls they are delegated to. This is done to help
236//! applications both understand what's happening under the hood as well as investigate
237//! any possibly unclear semantics. Note, however, that this is informative, not a binding
238//! contract. The implementation of many of these functions are subject to change over
239//! time and may call fewer or more syscalls/library functions.
240//!
241//! ## I/O Safety
242//!
243//! Rust follows an I/O safety discipline that is comparable to its memory safety discipline. This
244//! means that file descriptors can be *exclusively owned*. (Here, "file descriptor" is meant to
245//! subsume similar concepts that exist across a wide range of operating systems even if they might
246//! use a different name, such as "handle".) An exclusively owned file descriptor is one that no
247//! other code is allowed to access in any way, but the owner is allowed to access and even close
248//! it any time. A type that owns its file descriptor should usually close it in its `drop`
249//! function. Types like [`File`] own their file descriptor. Similarly, file descriptors
250//! can be *borrowed*, granting the temporary right to perform operations on this file descriptor.
251//! This indicates that the file descriptor will not be closed for the lifetime of the borrow, but
252//! it does *not* imply any right to close this file descriptor, since it will likely be owned by
253//! someone else.
254//!
255//! The platform-specific parts of the Rust standard library expose types that reflect these
256//! concepts, see [`os::unix`] and [`os::windows`].
257//!
258//! To uphold I/O safety, it is crucial that no code acts on file descriptors it does not own or
259//! borrow, and no code closes file descriptors it does not own. In other words, a safe function
260//! that takes a regular integer, treats it as a file descriptor, and acts on it, is *unsound*.
261//!
262//! Not upholding I/O safety and acting on a file descriptor without proof of ownership can lead to
263//! misbehavior and even Undefined Behavior in code that relies on ownership of its file
264//! descriptors: a closed file descriptor could be re-allocated, so the original owner of that file
265//! descriptor is now working on the wrong file. Some code might even rely on fully encapsulating
266//! its file descriptors with no operations being performed by any other part of the program.
267//!
268//! Note that exclusive ownership of a file descriptor does *not* imply exclusive ownership of the
269//! underlying kernel object that the file descriptor references (also called "open file description" on
270//! some operating systems). File descriptors basically work like [`Arc`]: when you receive an owned
271//! file descriptor, you cannot know whether there are any other file descriptors that reference the
272//! same kernel object. However, when you create a new kernel object, you know that you are holding
273//! the only reference to it. Just be careful not to lend it to anyone, since they can obtain a
274//! clone and then you can no longer know what the reference count is! In that sense, [`OwnedFd`] is
275//! like `Arc` and [`BorrowedFd<'a>`] is like `&'a Arc` (and similar for the Windows types). In
276//! particular, given a `BorrowedFd<'a>`, you are not allowed to close the file descriptor -- just
277//! like how, given a `&'a Arc`, you are not allowed to decrement the reference count and
278//! potentially free the underlying object. There is no equivalent to `Box` for file descriptors in
279//! the standard library (that would be a type that guarantees that the reference count is `1`),
280//! however, it would be possible for a crate to define a type with those semantics.
281//!
282//! [`File`]: crate::fs::File
283//! [`TcpStream`]: crate::net::TcpStream
284//! [`io::stdout`]: stdout
285//! [`io::Result`]: self::Result
286//! [`?` operator]: ../../book/appendix-02-operators.html
287//! [`Result`]: crate::result::Result
288//! [`.unwrap()`]: crate::result::Result::unwrap
289//! [`os::unix`]: ../os/unix/io/index.html
290//! [`os::windows`]: ../os/windows/io/index.html
291//! [`OwnedFd`]: ../os/fd/struct.OwnedFd.html
292//! [`BorrowedFd<'a>`]: ../os/fd/struct.BorrowedFd.html
293//! [`Arc`]: crate::sync::Arc
294
295#![stable(feature = "rust1", since = "1.0.0")]
296
297#[cfg(test)]
298mod tests;
299
300#[unstable(feature = "read_buf", issue = "78485")]
301pub use core::io::{BorrowedBuf, BorrowedCursor};
302use core::slice::memchr;
303
304#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
305pub use self::buffered::WriterPanicked;
306#[unstable(feature = "raw_os_error_ty", issue = "107792")]
307pub use self::error::RawOsError;
308#[doc(hidden)]
309#[unstable(feature = "io_const_error_internals", issue = "none")]
310pub use self::error::SimpleMessage;
311#[unstable(feature = "io_const_error", issue = "133448")]
312pub use self::error::const_error;
313#[stable(feature = "anonymous_pipe", since = "CURRENT_RUSTC_VERSION")]
314pub use self::pipe::{PipeReader, PipeWriter, pipe};
315#[stable(feature = "is_terminal", since = "1.70.0")]
316pub use self::stdio::IsTerminal;
317pub(crate) use self::stdio::attempt_print_to_stderr;
318#[unstable(feature = "print_internals", issue = "none")]
319#[doc(hidden)]
320pub use self::stdio::{_eprint, _print};
321#[unstable(feature = "internal_output_capture", issue = "none")]
322#[doc(no_inline, hidden)]
323pub use self::stdio::{set_output_capture, try_set_output_capture};
324#[stable(feature = "rust1", since = "1.0.0")]
325pub use self::{
326 buffered::{BufReader, BufWriter, IntoInnerError, LineWriter},
327 copy::copy,
328 cursor::Cursor,
329 error::{Error, ErrorKind, Result},
330 stdio::{Stderr, StderrLock, Stdin, StdinLock, Stdout, StdoutLock, stderr, stdin, stdout},
331 util::{Empty, Repeat, Sink, empty, repeat, sink},
332};
333use crate::mem::take;
334use crate::ops::{Deref, DerefMut};
335use crate::{cmp, fmt, slice, str, sys};
336
337mod buffered;
338pub(crate) mod copy;
339mod cursor;
340mod error;
341mod impls;
342mod pipe;
343pub mod prelude;
344mod stdio;
345mod util;
346
347const DEFAULT_BUF_SIZE: usize = crate::sys::io::DEFAULT_BUF_SIZE;
348
349pub(crate) use stdio::cleanup;
350
351struct Guard<'a> {
352 buf: &'a mut Vec<u8>,
353 len: usize,
354}
355
356impl Drop for Guard<'_> {
357 fn drop(&mut self) {
358 unsafe {
359 self.buf.set_len(self.len);
360 }
361 }
362}
363
364// Several `read_to_string` and `read_line` methods in the standard library will
365// append data into a `String` buffer, but we need to be pretty careful when
366// doing this. The implementation will just call `.as_mut_vec()` and then
367// delegate to a byte-oriented reading method, but we must ensure that when
368// returning we never leave `buf` in a state such that it contains invalid UTF-8
369// in its bounds.
370//
371// To this end, we use an RAII guard (to protect against panics) which updates
372// the length of the string when it is dropped. This guard initially truncates
373// the string to the prior length and only after we've validated that the
374// new contents are valid UTF-8 do we allow it to set a longer length.
375//
376// The unsafety in this function is twofold:
377//
378// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
379// checks.
380// 2. We're passing a raw buffer to the function `f`, and it is expected that
381// the function only *appends* bytes to the buffer. We'll get undefined
382// behavior if existing bytes are overwritten to have non-UTF-8 data.
383pub(crate) unsafe fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
384where
385 F: FnOnce(&mut Vec<u8>) -> Result<usize>,
386{
387 let mut g = Guard { len: buf.len(), buf: unsafe { buf.as_mut_vec() } };
388 let ret = f(g.buf);
389
390 // SAFETY: the caller promises to only append data to `buf`
391 let appended = unsafe { g.buf.get_unchecked(g.len..) };
392 if str::from_utf8(appended).is_err() {
393 ret.and_then(|_| Err(Error::INVALID_UTF8))
394 } else {
395 g.len = g.buf.len();
396 ret
397 }
398}
399
400// Here we must serve many masters with conflicting goals:
401//
402// - avoid allocating unless necessary
403// - avoid overallocating if we know the exact size (#89165)
404// - avoid passing large buffers to readers that always initialize the free capacity if they perform short reads (#23815, #23820)
405// - pass large buffers to readers that do not initialize the spare capacity. this can amortize per-call overheads
406// - and finally pass not-too-small and not-too-large buffers to Windows read APIs because they manage to suffer from both problems
407// at the same time, i.e. small reads suffer from syscall overhead, all reads incur costs proportional to buffer size (#110650)
408//
409pub(crate) fn default_read_to_end<R: Read + ?Sized>(
410 r: &mut R,
411 buf: &mut Vec<u8>,
412 size_hint: Option<usize>,
413) -> Result<usize> {
414 let start_len = buf.len();
415 let start_cap = buf.capacity();
416 // Optionally limit the maximum bytes read on each iteration.
417 // This adds an arbitrary fiddle factor to allow for more data than we expect.
418 let mut max_read_size = size_hint
419 .and_then(|s| s.checked_add(1024)?.checked_next_multiple_of(DEFAULT_BUF_SIZE))
420 .unwrap_or(DEFAULT_BUF_SIZE);
421
422 let mut initialized = 0; // Extra initialized bytes from previous loop iteration
423
424 const PROBE_SIZE: usize = 32;
425
426 fn small_probe_read<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
427 let mut probe = [0u8; PROBE_SIZE];
428
429 loop {
430 match r.read(&mut probe) {
431 Ok(n) => {
432 // there is no way to recover from allocation failure here
433 // because the data has already been read.
434 buf.extend_from_slice(&probe[..n]);
435 return Ok(n);
436 }
437 Err(ref e) if e.is_interrupted() => continue,
438 Err(e) => return Err(e),
439 }
440 }
441 }
442
443 // avoid inflating empty/small vecs before we have determined that there's anything to read
444 if (size_hint.is_none() || size_hint == Some(0)) && buf.capacity() - buf.len() < PROBE_SIZE {
445 let read = small_probe_read(r, buf)?;
446
447 if read == 0 {
448 return Ok(0);
449 }
450 }
451
452 let mut consecutive_short_reads = 0;
453
454 loop {
455 if buf.len() == buf.capacity() && buf.capacity() == start_cap {
456 // The buffer might be an exact fit. Let's read into a probe buffer
457 // and see if it returns `Ok(0)`. If so, we've avoided an
458 // unnecessary doubling of the capacity. But if not, append the
459 // probe buffer to the primary buffer and let its capacity grow.
460 let read = small_probe_read(r, buf)?;
461
462 if read == 0 {
463 return Ok(buf.len() - start_len);
464 }
465 }
466
467 if buf.len() == buf.capacity() {
468 // buf is full, need more space
469 buf.try_reserve(PROBE_SIZE)?;
470 }
471
472 let mut spare = buf.spare_capacity_mut();
473 let buf_len = cmp::min(spare.len(), max_read_size);
474 spare = &mut spare[..buf_len];
475 let mut read_buf: BorrowedBuf<'_> = spare.into();
476
477 // SAFETY: These bytes were initialized but not filled in the previous loop
478 unsafe {
479 read_buf.set_init(initialized);
480 }
481
482 let mut cursor = read_buf.unfilled();
483 let result = loop {
484 match r.read_buf(cursor.reborrow()) {
485 Err(e) if e.is_interrupted() => continue,
486 // Do not stop now in case of error: we might have received both data
487 // and an error
488 res => break res,
489 }
490 };
491
492 let unfilled_but_initialized = cursor.init_ref().len();
493 let bytes_read = cursor.written();
494 let was_fully_initialized = read_buf.init_len() == buf_len;
495
496 // SAFETY: BorrowedBuf's invariants mean this much memory is initialized.
497 unsafe {
498 let new_len = bytes_read + buf.len();
499 buf.set_len(new_len);
500 }
501
502 // Now that all data is pushed to the vector, we can fail without data loss
503 result?;
504
505 if bytes_read == 0 {
506 return Ok(buf.len() - start_len);
507 }
508
509 if bytes_read < buf_len {
510 consecutive_short_reads += 1;
511 } else {
512 consecutive_short_reads = 0;
513 }
514
515 // store how much was initialized but not filled
516 initialized = unfilled_but_initialized;
517
518 // Use heuristics to determine the max read size if no initial size hint was provided
519 if size_hint.is_none() {
520 // The reader is returning short reads but it doesn't call ensure_init().
521 // In that case we no longer need to restrict read sizes to avoid
522 // initialization costs.
523 // When reading from disk we usually don't get any short reads except at EOF.
524 // So we wait for at least 2 short reads before uncapping the read buffer;
525 // this helps with the Windows issue.
526 if !was_fully_initialized && consecutive_short_reads > 1 {
527 max_read_size = usize::MAX;
528 }
529
530 // we have passed a larger buffer than previously and the
531 // reader still hasn't returned a short read
532 if buf_len >= max_read_size && bytes_read == buf_len {
533 max_read_size = max_read_size.saturating_mul(2);
534 }
535 }
536 }
537}
538
539pub(crate) fn default_read_to_string<R: Read + ?Sized>(
540 r: &mut R,
541 buf: &mut String,
542 size_hint: Option<usize>,
543) -> Result<usize> {
544 // Note that we do *not* call `r.read_to_end()` here. We are passing
545 // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
546 // method to fill it up. An arbitrary implementation could overwrite the
547 // entire contents of the vector, not just append to it (which is what
548 // we are expecting).
549 //
550 // To prevent extraneously checking the UTF-8-ness of the entire buffer
551 // we pass it to our hardcoded `default_read_to_end` implementation which
552 // we know is guaranteed to only read data into the end of the buffer.
553 unsafe { append_to_string(buf, |b| default_read_to_end(r, b, size_hint)) }
554}
555
556pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
557where
558 F: FnOnce(&mut [u8]) -> Result<usize>,
559{
560 let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
561 read(buf)
562}
563
564pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
565where
566 F: FnOnce(&[u8]) -> Result<usize>,
567{
568 let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
569 write(buf)
570}
571
572pub(crate) fn default_read_exact<R: Read + ?Sized>(this: &mut R, mut buf: &mut [u8]) -> Result<()> {
573 while !buf.is_empty() {
574 match this.read(buf) {
575 Ok(0) => break,
576 Ok(n) => {
577 buf = &mut buf[n..];
578 }
579 Err(ref e) if e.is_interrupted() => {}
580 Err(e) => return Err(e),
581 }
582 }
583 if !buf.is_empty() { Err(Error::READ_EXACT_EOF) } else { Ok(()) }
584}
585
586pub(crate) fn default_read_buf<F>(read: F, mut cursor: BorrowedCursor<'_>) -> Result<()>
587where
588 F: FnOnce(&mut [u8]) -> Result<usize>,
589{
590 let n = read(cursor.ensure_init().init_mut())?;
591 cursor.advance(n);
592 Ok(())
593}
594
595pub(crate) fn default_read_buf_exact<R: Read + ?Sized>(
596 this: &mut R,
597 mut cursor: BorrowedCursor<'_>,
598) -> Result<()> {
599 while cursor.capacity() > 0 {
600 let prev_written = cursor.written();
601 match this.read_buf(cursor.reborrow()) {
602 Ok(()) => {}
603 Err(e) if e.is_interrupted() => continue,
604 Err(e) => return Err(e),
605 }
606
607 if cursor.written() == prev_written {
608 return Err(Error::READ_EXACT_EOF);
609 }
610 }
611
612 Ok(())
613}
614
615pub(crate) fn default_write_fmt<W: Write + ?Sized>(
616 this: &mut W,
617 args: fmt::Arguments<'_>,
618) -> Result<()> {
619 // Create a shim which translates a `Write` to a `fmt::Write` and saves off
620 // I/O errors, instead of discarding them.
621 struct Adapter<'a, T: ?Sized + 'a> {
622 inner: &'a mut T,
623 error: Result<()>,
624 }
625
626 impl<T: Write + ?Sized> fmt::Write for Adapter<'_, T> {
627 fn write_str(&mut self, s: &str) -> fmt::Result {
628 match self.inner.write_all(s.as_bytes()) {
629 Ok(()) => Ok(()),
630 Err(e) => {
631 self.error = Err(e);
632 Err(fmt::Error)
633 }
634 }
635 }
636 }
637
638 let mut output = Adapter { inner: this, error: Ok(()) };
639 match fmt::write(&mut output, args) {
640 Ok(()) => Ok(()),
641 Err(..) => {
642 // Check whether the error came from the underlying `Write`.
643 if output.error.is_err() {
644 output.error
645 } else {
646 // This shouldn't happen: the underlying stream did not error,
647 // but somehow the formatter still errored?
648 panic!(
649 "a formatting trait implementation returned an error when the underlying stream did not"
650 );
651 }
652 }
653 }
654}
655
656/// The `Read` trait allows for reading bytes from a source.
657///
658/// Implementors of the `Read` trait are called 'readers'.
659///
660/// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
661/// will attempt to pull bytes from this source into a provided buffer. A
662/// number of other methods are implemented in terms of [`read()`], giving
663/// implementors a number of ways to read bytes while only needing to implement
664/// a single method.
665///
666/// Readers are intended to be composable with one another. Many implementors
667/// throughout [`std::io`] take and provide types which implement the `Read`
668/// trait.
669///
670/// Please note that each call to [`read()`] may involve a system call, and
671/// therefore, using something that implements [`BufRead`], such as
672/// [`BufReader`], will be more efficient.
673///
674/// Repeated calls to the reader use the same cursor, so for example
675/// calling `read_to_end` twice on a [`File`] will only return the file's
676/// contents once. It's recommended to first call `rewind()` in that case.
677///
678/// # Examples
679///
680/// [`File`]s implement `Read`:
681///
682/// ```no_run
683/// use std::io;
684/// use std::io::prelude::*;
685/// use std::fs::File;
686///
687/// fn main() -> io::Result<()> {
688/// let mut f = File::open("foo.txt")?;
689/// let mut buffer = [0; 10];
690///
691/// // read up to 10 bytes
692/// f.read(&mut buffer)?;
693///
694/// let mut buffer = Vec::new();
695/// // read the whole file
696/// f.read_to_end(&mut buffer)?;
697///
698/// // read into a String, so that you don't need to do the conversion.
699/// let mut buffer = String::new();
700/// f.read_to_string(&mut buffer)?;
701///
702/// // and more! See the other methods for more details.
703/// Ok(())
704/// }
705/// ```
706///
707/// Read from [`&str`] because [`&[u8]`][prim@slice] implements `Read`:
708///
709/// ```no_run
710/// # use std::io;
711/// use std::io::prelude::*;
712///
713/// fn main() -> io::Result<()> {
714/// let mut b = "This string will be read".as_bytes();
715/// let mut buffer = [0; 10];
716///
717/// // read up to 10 bytes
718/// b.read(&mut buffer)?;
719///
720/// // etc... it works exactly as a File does!
721/// Ok(())
722/// }
723/// ```
724///
725/// [`read()`]: Read::read
726/// [`&str`]: prim@str
727/// [`std::io`]: self
728/// [`File`]: crate::fs::File
729#[stable(feature = "rust1", since = "1.0.0")]
730#[doc(notable_trait)]
731#[cfg_attr(not(test), rustc_diagnostic_item = "IoRead")]
732pub trait Read {
733 /// Pull some bytes from this source into the specified buffer, returning
734 /// how many bytes were read.
735 ///
736 /// This function does not provide any guarantees about whether it blocks
737 /// waiting for data, but if an object needs to block for a read and cannot,
738 /// it will typically signal this via an [`Err`] return value.
739 ///
740 /// If the return value of this method is [`Ok(n)`], then implementations must
741 /// guarantee that `0 <= n <= buf.len()`. A nonzero `n` value indicates
742 /// that the buffer `buf` has been filled in with `n` bytes of data from this
743 /// source. If `n` is `0`, then it can indicate one of two scenarios:
744 ///
745 /// 1. This reader has reached its "end of file" and will likely no longer
746 /// be able to produce bytes. Note that this does not mean that the
747 /// reader will *always* no longer be able to produce bytes. As an example,
748 /// on Linux, this method will call the `recv` syscall for a [`TcpStream`],
749 /// where returning zero indicates the connection was shut down correctly. While
750 /// for [`File`], it is possible to reach the end of file and get zero as result,
751 /// but if more data is appended to the file, future calls to `read` will return
752 /// more data.
753 /// 2. The buffer specified was 0 bytes in length.
754 ///
755 /// It is not an error if the returned value `n` is smaller than the buffer size,
756 /// even when the reader is not at the end of the stream yet.
757 /// This may happen for example because fewer bytes are actually available right now
758 /// (e. g. being close to end-of-file) or because read() was interrupted by a signal.
759 ///
760 /// As this trait is safe to implement, callers in unsafe code cannot rely on
761 /// `n <= buf.len()` for safety.
762 /// Extra care needs to be taken when `unsafe` functions are used to access the read bytes.
763 /// Callers have to ensure that no unchecked out-of-bounds accesses are possible even if
764 /// `n > buf.len()`.
765 ///
766 /// *Implementations* of this method can make no assumptions about the contents of `buf` when
767 /// this function is called. It is recommended that implementations only write data to `buf`
768 /// instead of reading its contents.
769 ///
770 /// Correspondingly, however, *callers* of this method in unsafe code must not assume
771 /// any guarantees about how the implementation uses `buf`. The trait is safe to implement,
772 /// so it is possible that the code that's supposed to write to the buffer might also read
773 /// from it. It is your responsibility to make sure that `buf` is initialized
774 /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
775 /// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
776 ///
777 /// [`MaybeUninit<T>`]: crate::mem::MaybeUninit
778 ///
779 /// # Errors
780 ///
781 /// If this function encounters any form of I/O or other error, an error
782 /// variant will be returned. If an error is returned then it must be
783 /// guaranteed that no bytes were read.
784 ///
785 /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
786 /// operation should be retried if there is nothing else to do.
787 ///
788 /// # Examples
789 ///
790 /// [`File`]s implement `Read`:
791 ///
792 /// [`Ok(n)`]: Ok
793 /// [`File`]: crate::fs::File
794 /// [`TcpStream`]: crate::net::TcpStream
795 ///
796 /// ```no_run
797 /// use std::io;
798 /// use std::io::prelude::*;
799 /// use std::fs::File;
800 ///
801 /// fn main() -> io::Result<()> {
802 /// let mut f = File::open("foo.txt")?;
803 /// let mut buffer = [0; 10];
804 ///
805 /// // read up to 10 bytes
806 /// let n = f.read(&mut buffer[..])?;
807 ///
808 /// println!("The bytes: {:?}", &buffer[..n]);
809 /// Ok(())
810 /// }
811 /// ```
812 #[stable(feature = "rust1", since = "1.0.0")]
813 fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
814
815 /// Like `read`, except that it reads into a slice of buffers.
816 ///
817 /// Data is copied to fill each buffer in order, with the final buffer
818 /// written to possibly being only partially filled. This method must
819 /// behave equivalently to a single call to `read` with concatenated
820 /// buffers.
821 ///
822 /// The default implementation calls `read` with either the first nonempty
823 /// buffer provided, or an empty one if none exists.
824 #[stable(feature = "iovec", since = "1.36.0")]
825 fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
826 default_read_vectored(|b| self.read(b), bufs)
827 }
828
829 /// Determines if this `Read`er has an efficient `read_vectored`
830 /// implementation.
831 ///
832 /// If a `Read`er does not override the default `read_vectored`
833 /// implementation, code using it may want to avoid the method all together
834 /// and coalesce writes into a single buffer for higher performance.
835 ///
836 /// The default implementation returns `false`.
837 #[unstable(feature = "can_vector", issue = "69941")]
838 fn is_read_vectored(&self) -> bool {
839 false
840 }
841
842 /// Reads all bytes until EOF in this source, placing them into `buf`.
843 ///
844 /// All bytes read from this source will be appended to the specified buffer
845 /// `buf`. This function will continuously call [`read()`] to append more data to
846 /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
847 /// non-[`ErrorKind::Interrupted`] kind.
848 ///
849 /// If successful, this function will return the total number of bytes read.
850 ///
851 /// # Errors
852 ///
853 /// If this function encounters an error of the kind
854 /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
855 /// will continue.
856 ///
857 /// If any other read error is encountered then this function immediately
858 /// returns. Any bytes which have already been read will be appended to
859 /// `buf`.
860 ///
861 /// # Examples
862 ///
863 /// [`File`]s implement `Read`:
864 ///
865 /// [`read()`]: Read::read
866 /// [`Ok(0)`]: Ok
867 /// [`File`]: crate::fs::File
868 ///
869 /// ```no_run
870 /// use std::io;
871 /// use std::io::prelude::*;
872 /// use std::fs::File;
873 ///
874 /// fn main() -> io::Result<()> {
875 /// let mut f = File::open("foo.txt")?;
876 /// let mut buffer = Vec::new();
877 ///
878 /// // read the whole file
879 /// f.read_to_end(&mut buffer)?;
880 /// Ok(())
881 /// }
882 /// ```
883 ///
884 /// (See also the [`std::fs::read`] convenience function for reading from a
885 /// file.)
886 ///
887 /// [`std::fs::read`]: crate::fs::read
888 ///
889 /// ## Implementing `read_to_end`
890 ///
891 /// When implementing the `io::Read` trait, it is recommended to allocate
892 /// memory using [`Vec::try_reserve`]. However, this behavior is not guaranteed
893 /// by all implementations, and `read_to_end` may not handle out-of-memory
894 /// situations gracefully.
895 ///
896 /// ```no_run
897 /// # use std::io::{self, BufRead};
898 /// # struct Example { example_datasource: io::Empty } impl Example {
899 /// # fn get_some_data_for_the_example(&self) -> &'static [u8] { &[] }
900 /// fn read_to_end(&mut self, dest_vec: &mut Vec<u8>) -> io::Result<usize> {
901 /// let initial_vec_len = dest_vec.len();
902 /// loop {
903 /// let src_buf = self.example_datasource.fill_buf()?;
904 /// if src_buf.is_empty() {
905 /// break;
906 /// }
907 /// dest_vec.try_reserve(src_buf.len())?;
908 /// dest_vec.extend_from_slice(src_buf);
909 ///
910 /// // Any irreversible side effects should happen after `try_reserve` succeeds,
911 /// // to avoid losing data on allocation error.
912 /// let read = src_buf.len();
913 /// self.example_datasource.consume(read);
914 /// }
915 /// Ok(dest_vec.len() - initial_vec_len)
916 /// }
917 /// # }
918 /// ```
919 ///
920 /// [`Vec::try_reserve`]: crate::vec::Vec::try_reserve
921 #[stable(feature = "rust1", since = "1.0.0")]
922 fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
923 default_read_to_end(self, buf, None)
924 }
925
926 /// Reads all bytes until EOF in this source, appending them to `buf`.
927 ///
928 /// If successful, this function returns the number of bytes which were read
929 /// and appended to `buf`.
930 ///
931 /// # Errors
932 ///
933 /// If the data in this stream is *not* valid UTF-8 then an error is
934 /// returned and `buf` is unchanged.
935 ///
936 /// See [`read_to_end`] for other error semantics.
937 ///
938 /// [`read_to_end`]: Read::read_to_end
939 ///
940 /// # Examples
941 ///
942 /// [`File`]s implement `Read`:
943 ///
944 /// [`File`]: crate::fs::File
945 ///
946 /// ```no_run
947 /// use std::io;
948 /// use std::io::prelude::*;
949 /// use std::fs::File;
950 ///
951 /// fn main() -> io::Result<()> {
952 /// let mut f = File::open("foo.txt")?;
953 /// let mut buffer = String::new();
954 ///
955 /// f.read_to_string(&mut buffer)?;
956 /// Ok(())
957 /// }
958 /// ```
959 ///
960 /// (See also the [`std::fs::read_to_string`] convenience function for
961 /// reading from a file.)
962 ///
963 /// [`std::fs::read_to_string`]: crate::fs::read_to_string
964 #[stable(feature = "rust1", since = "1.0.0")]
965 fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
966 default_read_to_string(self, buf, None)
967 }
968
969 /// Reads the exact number of bytes required to fill `buf`.
970 ///
971 /// This function reads as many bytes as necessary to completely fill the
972 /// specified buffer `buf`.
973 ///
974 /// *Implementations* of this method can make no assumptions about the contents of `buf` when
975 /// this function is called. It is recommended that implementations only write data to `buf`
976 /// instead of reading its contents. The documentation on [`read`] has a more detailed
977 /// explanation of this subject.
978 ///
979 /// # Errors
980 ///
981 /// If this function encounters an error of the kind
982 /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
983 /// will continue.
984 ///
985 /// If this function encounters an "end of file" before completely filling
986 /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
987 /// The contents of `buf` are unspecified in this case.
988 ///
989 /// If any other read error is encountered then this function immediately
990 /// returns. The contents of `buf` are unspecified in this case.
991 ///
992 /// If this function returns an error, it is unspecified how many bytes it
993 /// has read, but it will never read more than would be necessary to
994 /// completely fill the buffer.
995 ///
996 /// # Examples
997 ///
998 /// [`File`]s implement `Read`:
999 ///
1000 /// [`read`]: Read::read
1001 /// [`File`]: crate::fs::File
1002 ///
1003 /// ```no_run
1004 /// use std::io;
1005 /// use std::io::prelude::*;
1006 /// use std::fs::File;
1007 ///
1008 /// fn main() -> io::Result<()> {
1009 /// let mut f = File::open("foo.txt")?;
1010 /// let mut buffer = [0; 10];
1011 ///
1012 /// // read exactly 10 bytes
1013 /// f.read_exact(&mut buffer)?;
1014 /// Ok(())
1015 /// }
1016 /// ```
1017 #[stable(feature = "read_exact", since = "1.6.0")]
1018 fn read_exact(&mut self, buf: &mut [u8]) -> Result<()> {
1019 default_read_exact(self, buf)
1020 }
1021
1022 /// Pull some bytes from this source into the specified buffer.
1023 ///
1024 /// This is equivalent to the [`read`](Read::read) method, except that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
1025 /// with uninitialized buffers. The new data will be appended to any existing contents of `buf`.
1026 ///
1027 /// The default implementation delegates to `read`.
1028 ///
1029 /// This method makes it possible to return both data and an error but it is advised against.
1030 #[unstable(feature = "read_buf", issue = "78485")]
1031 fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<()> {
1032 default_read_buf(|b| self.read(b), buf)
1033 }
1034
1035 /// Reads the exact number of bytes required to fill `cursor`.
1036 ///
1037 /// This is similar to the [`read_exact`](Read::read_exact) method, except
1038 /// that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
1039 /// with uninitialized buffers.
1040 ///
1041 /// # Errors
1042 ///
1043 /// If this function encounters an error of the kind [`ErrorKind::Interrupted`]
1044 /// then the error is ignored and the operation will continue.
1045 ///
1046 /// If this function encounters an "end of file" before completely filling
1047 /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
1048 ///
1049 /// If any other read error is encountered then this function immediately
1050 /// returns.
1051 ///
1052 /// If this function returns an error, all bytes read will be appended to `cursor`.
1053 #[unstable(feature = "read_buf", issue = "78485")]
1054 fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<()> {
1055 default_read_buf_exact(self, cursor)
1056 }
1057
1058 /// Creates a "by reference" adaptor for this instance of `Read`.
1059 ///
1060 /// The returned adapter also implements `Read` and will simply borrow this
1061 /// current reader.
1062 ///
1063 /// # Examples
1064 ///
1065 /// [`File`]s implement `Read`:
1066 ///
1067 /// [`File`]: crate::fs::File
1068 ///
1069 /// ```no_run
1070 /// use std::io;
1071 /// use std::io::Read;
1072 /// use std::fs::File;
1073 ///
1074 /// fn main() -> io::Result<()> {
1075 /// let mut f = File::open("foo.txt")?;
1076 /// let mut buffer = Vec::new();
1077 /// let mut other_buffer = Vec::new();
1078 ///
1079 /// {
1080 /// let reference = f.by_ref();
1081 ///
1082 /// // read at most 5 bytes
1083 /// reference.take(5).read_to_end(&mut buffer)?;
1084 ///
1085 /// } // drop our &mut reference so we can use f again
1086 ///
1087 /// // original file still usable, read the rest
1088 /// f.read_to_end(&mut other_buffer)?;
1089 /// Ok(())
1090 /// }
1091 /// ```
1092 #[stable(feature = "rust1", since = "1.0.0")]
1093 fn by_ref(&mut self) -> &mut Self
1094 where
1095 Self: Sized,
1096 {
1097 self
1098 }
1099
1100 /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
1101 ///
1102 /// The returned type implements [`Iterator`] where the [`Item`] is
1103 /// <code>[Result]<[u8], [io::Error]></code>.
1104 /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
1105 /// otherwise. EOF is mapped to returning [`None`] from this iterator.
1106 ///
1107 /// The default implementation calls `read` for each byte,
1108 /// which can be very inefficient for data that's not in memory,
1109 /// such as [`File`]. Consider using a [`BufReader`] in such cases.
1110 ///
1111 /// # Examples
1112 ///
1113 /// [`File`]s implement `Read`:
1114 ///
1115 /// [`Item`]: Iterator::Item
1116 /// [`File`]: crate::fs::File "fs::File"
1117 /// [Result]: crate::result::Result "Result"
1118 /// [io::Error]: self::Error "io::Error"
1119 ///
1120 /// ```no_run
1121 /// use std::io;
1122 /// use std::io::prelude::*;
1123 /// use std::io::BufReader;
1124 /// use std::fs::File;
1125 ///
1126 /// fn main() -> io::Result<()> {
1127 /// let f = BufReader::new(File::open("foo.txt")?);
1128 ///
1129 /// for byte in f.bytes() {
1130 /// println!("{}", byte?);
1131 /// }
1132 /// Ok(())
1133 /// }
1134 /// ```
1135 #[stable(feature = "rust1", since = "1.0.0")]
1136 fn bytes(self) -> Bytes<Self>
1137 where
1138 Self: Sized,
1139 {
1140 Bytes { inner: self }
1141 }
1142
1143 /// Creates an adapter which will chain this stream with another.
1144 ///
1145 /// The returned `Read` instance will first read all bytes from this object
1146 /// until EOF is encountered. Afterwards the output is equivalent to the
1147 /// output of `next`.
1148 ///
1149 /// # Examples
1150 ///
1151 /// [`File`]s implement `Read`:
1152 ///
1153 /// [`File`]: crate::fs::File
1154 ///
1155 /// ```no_run
1156 /// use std::io;
1157 /// use std::io::prelude::*;
1158 /// use std::fs::File;
1159 ///
1160 /// fn main() -> io::Result<()> {
1161 /// let f1 = File::open("foo.txt")?;
1162 /// let f2 = File::open("bar.txt")?;
1163 ///
1164 /// let mut handle = f1.chain(f2);
1165 /// let mut buffer = String::new();
1166 ///
1167 /// // read the value into a String. We could use any Read method here,
1168 /// // this is just one example.
1169 /// handle.read_to_string(&mut buffer)?;
1170 /// Ok(())
1171 /// }
1172 /// ```
1173 #[stable(feature = "rust1", since = "1.0.0")]
1174 fn chain<R: Read>(self, next: R) -> Chain<Self, R>
1175 where
1176 Self: Sized,
1177 {
1178 Chain { first: self, second: next, done_first: false }
1179 }
1180
1181 /// Creates an adapter which will read at most `limit` bytes from it.
1182 ///
1183 /// This function returns a new instance of `Read` which will read at most
1184 /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
1185 /// read errors will not count towards the number of bytes read and future
1186 /// calls to [`read()`] may succeed.
1187 ///
1188 /// # Examples
1189 ///
1190 /// [`File`]s implement `Read`:
1191 ///
1192 /// [`File`]: crate::fs::File
1193 /// [`Ok(0)`]: Ok
1194 /// [`read()`]: Read::read
1195 ///
1196 /// ```no_run
1197 /// use std::io;
1198 /// use std::io::prelude::*;
1199 /// use std::fs::File;
1200 ///
1201 /// fn main() -> io::Result<()> {
1202 /// let f = File::open("foo.txt")?;
1203 /// let mut buffer = [0; 5];
1204 ///
1205 /// // read at most five bytes
1206 /// let mut handle = f.take(5);
1207 ///
1208 /// handle.read(&mut buffer)?;
1209 /// Ok(())
1210 /// }
1211 /// ```
1212 #[stable(feature = "rust1", since = "1.0.0")]
1213 fn take(self, limit: u64) -> Take<Self>
1214 where
1215 Self: Sized,
1216 {
1217 Take { inner: self, limit }
1218 }
1219}
1220
1221/// Reads all bytes from a [reader][Read] into a new [`String`].
1222///
1223/// This is a convenience function for [`Read::read_to_string`]. Using this
1224/// function avoids having to create a variable first and provides more type
1225/// safety since you can only get the buffer out if there were no errors. (If you
1226/// use [`Read::read_to_string`] you have to remember to check whether the read
1227/// succeeded because otherwise your buffer will be empty or only partially full.)
1228///
1229/// # Performance
1230///
1231/// The downside of this function's increased ease of use and type safety is
1232/// that it gives you less control over performance. For example, you can't
1233/// pre-allocate memory like you can using [`String::with_capacity`] and
1234/// [`Read::read_to_string`]. Also, you can't re-use the buffer if an error
1235/// occurs while reading.
1236///
1237/// In many cases, this function's performance will be adequate and the ease of use
1238/// and type safety tradeoffs will be worth it. However, there are cases where you
1239/// need more control over performance, and in those cases you should definitely use
1240/// [`Read::read_to_string`] directly.
1241///
1242/// Note that in some special cases, such as when reading files, this function will
1243/// pre-allocate memory based on the size of the input it is reading. In those
1244/// cases, the performance should be as good as if you had used
1245/// [`Read::read_to_string`] with a manually pre-allocated buffer.
1246///
1247/// # Errors
1248///
1249/// This function forces you to handle errors because the output (the `String`)
1250/// is wrapped in a [`Result`]. See [`Read::read_to_string`] for the errors
1251/// that can occur. If any error occurs, you will get an [`Err`], so you
1252/// don't have to worry about your buffer being empty or partially full.
1253///
1254/// # Examples
1255///
1256/// ```no_run
1257/// # use std::io;
1258/// fn main() -> io::Result<()> {
1259/// let stdin = io::read_to_string(io::stdin())?;
1260/// println!("Stdin was:");
1261/// println!("{stdin}");
1262/// Ok(())
1263/// }
1264/// ```
1265#[stable(feature = "io_read_to_string", since = "1.65.0")]
1266pub fn read_to_string<R: Read>(mut reader: R) -> Result<String> {
1267 let mut buf = String::new();
1268 reader.read_to_string(&mut buf)?;
1269 Ok(buf)
1270}
1271
1272/// A buffer type used with `Read::read_vectored`.
1273///
1274/// It is semantically a wrapper around a `&mut [u8]`, but is guaranteed to be
1275/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1276/// Windows.
1277#[stable(feature = "iovec", since = "1.36.0")]
1278#[repr(transparent)]
1279pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);
1280
1281#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1282unsafe impl<'a> Send for IoSliceMut<'a> {}
1283
1284#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1285unsafe impl<'a> Sync for IoSliceMut<'a> {}
1286
1287#[stable(feature = "iovec", since = "1.36.0")]
1288impl<'a> fmt::Debug for IoSliceMut<'a> {
1289 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1290 fmt::Debug::fmt(self.0.as_slice(), fmt)
1291 }
1292}
1293
1294impl<'a> IoSliceMut<'a> {
1295 /// Creates a new `IoSliceMut` wrapping a byte slice.
1296 ///
1297 /// # Panics
1298 ///
1299 /// Panics on Windows if the slice is larger than 4GB.
1300 #[stable(feature = "iovec", since = "1.36.0")]
1301 #[inline]
1302 pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
1303 IoSliceMut(sys::io::IoSliceMut::new(buf))
1304 }
1305
1306 /// Advance the internal cursor of the slice.
1307 ///
1308 /// Also see [`IoSliceMut::advance_slices`] to advance the cursors of
1309 /// multiple buffers.
1310 ///
1311 /// # Panics
1312 ///
1313 /// Panics when trying to advance beyond the end of the slice.
1314 ///
1315 /// # Examples
1316 ///
1317 /// ```
1318 /// use std::io::IoSliceMut;
1319 /// use std::ops::Deref;
1320 ///
1321 /// let mut data = [1; 8];
1322 /// let mut buf = IoSliceMut::new(&mut data);
1323 ///
1324 /// // Mark 3 bytes as read.
1325 /// buf.advance(3);
1326 /// assert_eq!(buf.deref(), [1; 5].as_ref());
1327 /// ```
1328 #[stable(feature = "io_slice_advance", since = "1.81.0")]
1329 #[inline]
1330 pub fn advance(&mut self, n: usize) {
1331 self.0.advance(n)
1332 }
1333
1334 /// Advance a slice of slices.
1335 ///
1336 /// Shrinks the slice to remove any `IoSliceMut`s that are fully advanced over.
1337 /// If the cursor ends up in the middle of an `IoSliceMut`, it is modified
1338 /// to start at that cursor.
1339 ///
1340 /// For example, if we have a slice of two 8-byte `IoSliceMut`s, and we advance by 10 bytes,
1341 /// the result will only include the second `IoSliceMut`, advanced by 2 bytes.
1342 ///
1343 /// # Panics
1344 ///
1345 /// Panics when trying to advance beyond the end of the slices.
1346 ///
1347 /// # Examples
1348 ///
1349 /// ```
1350 /// use std::io::IoSliceMut;
1351 /// use std::ops::Deref;
1352 ///
1353 /// let mut buf1 = [1; 8];
1354 /// let mut buf2 = [2; 16];
1355 /// let mut buf3 = [3; 8];
1356 /// let mut bufs = &mut [
1357 /// IoSliceMut::new(&mut buf1),
1358 /// IoSliceMut::new(&mut buf2),
1359 /// IoSliceMut::new(&mut buf3),
1360 /// ][..];
1361 ///
1362 /// // Mark 10 bytes as read.
1363 /// IoSliceMut::advance_slices(&mut bufs, 10);
1364 /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1365 /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1366 /// ```
1367 #[stable(feature = "io_slice_advance", since = "1.81.0")]
1368 #[inline]
1369 pub fn advance_slices(bufs: &mut &mut [IoSliceMut<'a>], n: usize) {
1370 // Number of buffers to remove.
1371 let mut remove = 0;
1372 // Remaining length before reaching n.
1373 let mut left = n;
1374 for buf in bufs.iter() {
1375 if let Some(remainder) = left.checked_sub(buf.len()) {
1376 left = remainder;
1377 remove += 1;
1378 } else {
1379 break;
1380 }
1381 }
1382
1383 *bufs = &mut take(bufs)[remove..];
1384 if bufs.is_empty() {
1385 assert!(left == 0, "advancing io slices beyond their length");
1386 } else {
1387 bufs[0].advance(left);
1388 }
1389 }
1390
1391 /// Get the underlying bytes as a mutable slice with the original lifetime.
1392 ///
1393 /// # Examples
1394 ///
1395 /// ```
1396 /// #![feature(io_slice_as_bytes)]
1397 /// use std::io::IoSliceMut;
1398 ///
1399 /// let mut data = *b"abcdef";
1400 /// let io_slice = IoSliceMut::new(&mut data);
1401 /// io_slice.into_slice()[0] = b'A';
1402 ///
1403 /// assert_eq!(&data, b"Abcdef");
1404 /// ```
1405 #[unstable(feature = "io_slice_as_bytes", issue = "132818")]
1406 pub const fn into_slice(self) -> &'a mut [u8] {
1407 self.0.into_slice()
1408 }
1409}
1410
1411#[stable(feature = "iovec", since = "1.36.0")]
1412impl<'a> Deref for IoSliceMut<'a> {
1413 type Target = [u8];
1414
1415 #[inline]
1416 fn deref(&self) -> &[u8] {
1417 self.0.as_slice()
1418 }
1419}
1420
1421#[stable(feature = "iovec", since = "1.36.0")]
1422impl<'a> DerefMut for IoSliceMut<'a> {
1423 #[inline]
1424 fn deref_mut(&mut self) -> &mut [u8] {
1425 self.0.as_mut_slice()
1426 }
1427}
1428
1429/// A buffer type used with `Write::write_vectored`.
1430///
1431/// It is semantically a wrapper around a `&[u8]`, but is guaranteed to be
1432/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1433/// Windows.
1434#[stable(feature = "iovec", since = "1.36.0")]
1435#[derive(Copy, Clone)]
1436#[repr(transparent)]
1437pub struct IoSlice<'a>(sys::io::IoSlice<'a>);
1438
1439#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1440unsafe impl<'a> Send for IoSlice<'a> {}
1441
1442#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1443unsafe impl<'a> Sync for IoSlice<'a> {}
1444
1445#[stable(feature = "iovec", since = "1.36.0")]
1446impl<'a> fmt::Debug for IoSlice<'a> {
1447 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1448 fmt::Debug::fmt(self.0.as_slice(), fmt)
1449 }
1450}
1451
1452impl<'a> IoSlice<'a> {
1453 /// Creates a new `IoSlice` wrapping a byte slice.
1454 ///
1455 /// # Panics
1456 ///
1457 /// Panics on Windows if the slice is larger than 4GB.
1458 #[stable(feature = "iovec", since = "1.36.0")]
1459 #[must_use]
1460 #[inline]
1461 pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
1462 IoSlice(sys::io::IoSlice::new(buf))
1463 }
1464
1465 /// Advance the internal cursor of the slice.
1466 ///
1467 /// Also see [`IoSlice::advance_slices`] to advance the cursors of multiple
1468 /// buffers.
1469 ///
1470 /// # Panics
1471 ///
1472 /// Panics when trying to advance beyond the end of the slice.
1473 ///
1474 /// # Examples
1475 ///
1476 /// ```
1477 /// use std::io::IoSlice;
1478 /// use std::ops::Deref;
1479 ///
1480 /// let data = [1; 8];
1481 /// let mut buf = IoSlice::new(&data);
1482 ///
1483 /// // Mark 3 bytes as read.
1484 /// buf.advance(3);
1485 /// assert_eq!(buf.deref(), [1; 5].as_ref());
1486 /// ```
1487 #[stable(feature = "io_slice_advance", since = "1.81.0")]
1488 #[inline]
1489 pub fn advance(&mut self, n: usize) {
1490 self.0.advance(n)
1491 }
1492
1493 /// Advance a slice of slices.
1494 ///
1495 /// Shrinks the slice to remove any `IoSlice`s that are fully advanced over.
1496 /// If the cursor ends up in the middle of an `IoSlice`, it is modified
1497 /// to start at that cursor.
1498 ///
1499 /// For example, if we have a slice of two 8-byte `IoSlice`s, and we advance by 10 bytes,
1500 /// the result will only include the second `IoSlice`, advanced by 2 bytes.
1501 ///
1502 /// # Panics
1503 ///
1504 /// Panics when trying to advance beyond the end of the slices.
1505 ///
1506 /// # Examples
1507 ///
1508 /// ```
1509 /// use std::io::IoSlice;
1510 /// use std::ops::Deref;
1511 ///
1512 /// let buf1 = [1; 8];
1513 /// let buf2 = [2; 16];
1514 /// let buf3 = [3; 8];
1515 /// let mut bufs = &mut [
1516 /// IoSlice::new(&buf1),
1517 /// IoSlice::new(&buf2),
1518 /// IoSlice::new(&buf3),
1519 /// ][..];
1520 ///
1521 /// // Mark 10 bytes as written.
1522 /// IoSlice::advance_slices(&mut bufs, 10);
1523 /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1524 /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1525 #[stable(feature = "io_slice_advance", since = "1.81.0")]
1526 #[inline]
1527 pub fn advance_slices(bufs: &mut &mut [IoSlice<'a>], n: usize) {
1528 // Number of buffers to remove.
1529 let mut remove = 0;
1530 // Remaining length before reaching n. This prevents overflow
1531 // that could happen if the length of slices in `bufs` were instead
1532 // accumulated. Those slice may be aliased and, if they are large
1533 // enough, their added length may overflow a `usize`.
1534 let mut left = n;
1535 for buf in bufs.iter() {
1536 if let Some(remainder) = left.checked_sub(buf.len()) {
1537 left = remainder;
1538 remove += 1;
1539 } else {
1540 break;
1541 }
1542 }
1543
1544 *bufs = &mut take(bufs)[remove..];
1545 if bufs.is_empty() {
1546 assert!(left == 0, "advancing io slices beyond their length");
1547 } else {
1548 bufs[0].advance(left);
1549 }
1550 }
1551
1552 /// Get the underlying bytes as a slice with the original lifetime.
1553 ///
1554 /// This doesn't borrow from `self`, so is less restrictive than calling
1555 /// `.deref()`, which does.
1556 ///
1557 /// # Examples
1558 ///
1559 /// ```
1560 /// #![feature(io_slice_as_bytes)]
1561 /// use std::io::IoSlice;
1562 ///
1563 /// let data = b"abcdef";
1564 ///
1565 /// let mut io_slice = IoSlice::new(data);
1566 /// let tail = &io_slice.as_slice()[3..];
1567 ///
1568 /// // This works because `tail` doesn't borrow `io_slice`
1569 /// io_slice = IoSlice::new(tail);
1570 ///
1571 /// assert_eq!(io_slice.as_slice(), b"def");
1572 /// ```
1573 #[unstable(feature = "io_slice_as_bytes", issue = "132818")]
1574 pub const fn as_slice(self) -> &'a [u8] {
1575 self.0.as_slice()
1576 }
1577}
1578
1579#[stable(feature = "iovec", since = "1.36.0")]
1580impl<'a> Deref for IoSlice<'a> {
1581 type Target = [u8];
1582
1583 #[inline]
1584 fn deref(&self) -> &[u8] {
1585 self.0.as_slice()
1586 }
1587}
1588
1589/// A trait for objects which are byte-oriented sinks.
1590///
1591/// Implementors of the `Write` trait are sometimes called 'writers'.
1592///
1593/// Writers are defined by two required methods, [`write`] and [`flush`]:
1594///
1595/// * The [`write`] method will attempt to write some data into the object,
1596/// returning how many bytes were successfully written.
1597///
1598/// * The [`flush`] method is useful for adapters and explicit buffers
1599/// themselves for ensuring that all buffered data has been pushed out to the
1600/// 'true sink'.
1601///
1602/// Writers are intended to be composable with one another. Many implementors
1603/// throughout [`std::io`] take and provide types which implement the `Write`
1604/// trait.
1605///
1606/// [`write`]: Write::write
1607/// [`flush`]: Write::flush
1608/// [`std::io`]: self
1609///
1610/// # Examples
1611///
1612/// ```no_run
1613/// use std::io::prelude::*;
1614/// use std::fs::File;
1615///
1616/// fn main() -> std::io::Result<()> {
1617/// let data = b"some bytes";
1618///
1619/// let mut pos = 0;
1620/// let mut buffer = File::create("foo.txt")?;
1621///
1622/// while pos < data.len() {
1623/// let bytes_written = buffer.write(&data[pos..])?;
1624/// pos += bytes_written;
1625/// }
1626/// Ok(())
1627/// }
1628/// ```
1629///
1630/// The trait also provides convenience methods like [`write_all`], which calls
1631/// `write` in a loop until its entire input has been written.
1632///
1633/// [`write_all`]: Write::write_all
1634#[stable(feature = "rust1", since = "1.0.0")]
1635#[doc(notable_trait)]
1636#[cfg_attr(not(test), rustc_diagnostic_item = "IoWrite")]
1637pub trait Write {
1638 /// Writes a buffer into this writer, returning how many bytes were written.
1639 ///
1640 /// This function will attempt to write the entire contents of `buf`, but
1641 /// the entire write might not succeed, or the write may also generate an
1642 /// error. Typically, a call to `write` represents one attempt to write to
1643 /// any wrapped object.
1644 ///
1645 /// Calls to `write` are not guaranteed to block waiting for data to be
1646 /// written, and a write which would otherwise block can be indicated through
1647 /// an [`Err`] variant.
1648 ///
1649 /// If this method consumed `n > 0` bytes of `buf` it must return [`Ok(n)`].
1650 /// If the return value is `Ok(n)` then `n` must satisfy `n <= buf.len()`.
1651 /// A return value of `Ok(0)` typically means that the underlying object is
1652 /// no longer able to accept bytes and will likely not be able to in the
1653 /// future as well, or that the buffer provided is empty.
1654 ///
1655 /// # Errors
1656 ///
1657 /// Each call to `write` may generate an I/O error indicating that the
1658 /// operation could not be completed. If an error is returned then no bytes
1659 /// in the buffer were written to this writer.
1660 ///
1661 /// It is **not** considered an error if the entire buffer could not be
1662 /// written to this writer.
1663 ///
1664 /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
1665 /// write operation should be retried if there is nothing else to do.
1666 ///
1667 /// # Examples
1668 ///
1669 /// ```no_run
1670 /// use std::io::prelude::*;
1671 /// use std::fs::File;
1672 ///
1673 /// fn main() -> std::io::Result<()> {
1674 /// let mut buffer = File::create("foo.txt")?;
1675 ///
1676 /// // Writes some prefix of the byte string, not necessarily all of it.
1677 /// buffer.write(b"some bytes")?;
1678 /// Ok(())
1679 /// }
1680 /// ```
1681 ///
1682 /// [`Ok(n)`]: Ok
1683 #[stable(feature = "rust1", since = "1.0.0")]
1684 fn write(&mut self, buf: &[u8]) -> Result<usize>;
1685
1686 /// Like [`write`], except that it writes from a slice of buffers.
1687 ///
1688 /// Data is copied from each buffer in order, with the final buffer
1689 /// read from possibly being only partially consumed. This method must
1690 /// behave as a call to [`write`] with the buffers concatenated would.
1691 ///
1692 /// The default implementation calls [`write`] with either the first nonempty
1693 /// buffer provided, or an empty one if none exists.
1694 ///
1695 /// # Examples
1696 ///
1697 /// ```no_run
1698 /// use std::io::IoSlice;
1699 /// use std::io::prelude::*;
1700 /// use std::fs::File;
1701 ///
1702 /// fn main() -> std::io::Result<()> {
1703 /// let data1 = [1; 8];
1704 /// let data2 = [15; 8];
1705 /// let io_slice1 = IoSlice::new(&data1);
1706 /// let io_slice2 = IoSlice::new(&data2);
1707 ///
1708 /// let mut buffer = File::create("foo.txt")?;
1709 ///
1710 /// // Writes some prefix of the byte string, not necessarily all of it.
1711 /// buffer.write_vectored(&[io_slice1, io_slice2])?;
1712 /// Ok(())
1713 /// }
1714 /// ```
1715 ///
1716 /// [`write`]: Write::write
1717 #[stable(feature = "iovec", since = "1.36.0")]
1718 fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
1719 default_write_vectored(|b| self.write(b), bufs)
1720 }
1721
1722 /// Determines if this `Write`r has an efficient [`write_vectored`]
1723 /// implementation.
1724 ///
1725 /// If a `Write`r does not override the default [`write_vectored`]
1726 /// implementation, code using it may want to avoid the method all together
1727 /// and coalesce writes into a single buffer for higher performance.
1728 ///
1729 /// The default implementation returns `false`.
1730 ///
1731 /// [`write_vectored`]: Write::write_vectored
1732 #[unstable(feature = "can_vector", issue = "69941")]
1733 fn is_write_vectored(&self) -> bool {
1734 false
1735 }
1736
1737 /// Flushes this output stream, ensuring that all intermediately buffered
1738 /// contents reach their destination.
1739 ///
1740 /// # Errors
1741 ///
1742 /// It is considered an error if not all bytes could be written due to
1743 /// I/O errors or EOF being reached.
1744 ///
1745 /// # Examples
1746 ///
1747 /// ```no_run
1748 /// use std::io::prelude::*;
1749 /// use std::io::BufWriter;
1750 /// use std::fs::File;
1751 ///
1752 /// fn main() -> std::io::Result<()> {
1753 /// let mut buffer = BufWriter::new(File::create("foo.txt")?);
1754 ///
1755 /// buffer.write_all(b"some bytes")?;
1756 /// buffer.flush()?;
1757 /// Ok(())
1758 /// }
1759 /// ```
1760 #[stable(feature = "rust1", since = "1.0.0")]
1761 fn flush(&mut self) -> Result<()>;
1762
1763 /// Attempts to write an entire buffer into this writer.
1764 ///
1765 /// This method will continuously call [`write`] until there is no more data
1766 /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
1767 /// returned. This method will not return until the entire buffer has been
1768 /// successfully written or such an error occurs. The first error that is
1769 /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
1770 /// returned.
1771 ///
1772 /// If the buffer contains no data, this will never call [`write`].
1773 ///
1774 /// # Errors
1775 ///
1776 /// This function will return the first error of
1777 /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
1778 ///
1779 /// [`write`]: Write::write
1780 ///
1781 /// # Examples
1782 ///
1783 /// ```no_run
1784 /// use std::io::prelude::*;
1785 /// use std::fs::File;
1786 ///
1787 /// fn main() -> std::io::Result<()> {
1788 /// let mut buffer = File::create("foo.txt")?;
1789 ///
1790 /// buffer.write_all(b"some bytes")?;
1791 /// Ok(())
1792 /// }
1793 /// ```
1794 #[stable(feature = "rust1", since = "1.0.0")]
1795 fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
1796 while !buf.is_empty() {
1797 match self.write(buf) {
1798 Ok(0) => {
1799 return Err(Error::WRITE_ALL_EOF);
1800 }
1801 Ok(n) => buf = &buf[n..],
1802 Err(ref e) if e.is_interrupted() => {}
1803 Err(e) => return Err(e),
1804 }
1805 }
1806 Ok(())
1807 }
1808
1809 /// Attempts to write multiple buffers into this writer.
1810 ///
1811 /// This method will continuously call [`write_vectored`] until there is no
1812 /// more data to be written or an error of non-[`ErrorKind::Interrupted`]
1813 /// kind is returned. This method will not return until all buffers have
1814 /// been successfully written or such an error occurs. The first error that
1815 /// is not of [`ErrorKind::Interrupted`] kind generated from this method
1816 /// will be returned.
1817 ///
1818 /// If the buffer contains no data, this will never call [`write_vectored`].
1819 ///
1820 /// # Notes
1821 ///
1822 /// Unlike [`write_vectored`], this takes a *mutable* reference to
1823 /// a slice of [`IoSlice`]s, not an immutable one. That's because we need to
1824 /// modify the slice to keep track of the bytes already written.
1825 ///
1826 /// Once this function returns, the contents of `bufs` are unspecified, as
1827 /// this depends on how many calls to [`write_vectored`] were necessary. It is
1828 /// best to understand this function as taking ownership of `bufs` and to
1829 /// not use `bufs` afterwards. The underlying buffers, to which the
1830 /// [`IoSlice`]s point (but not the [`IoSlice`]s themselves), are unchanged and
1831 /// can be reused.
1832 ///
1833 /// [`write_vectored`]: Write::write_vectored
1834 ///
1835 /// # Examples
1836 ///
1837 /// ```
1838 /// #![feature(write_all_vectored)]
1839 /// # fn main() -> std::io::Result<()> {
1840 ///
1841 /// use std::io::{Write, IoSlice};
1842 ///
1843 /// let mut writer = Vec::new();
1844 /// let bufs = &mut [
1845 /// IoSlice::new(&[1]),
1846 /// IoSlice::new(&[2, 3]),
1847 /// IoSlice::new(&[4, 5, 6]),
1848 /// ];
1849 ///
1850 /// writer.write_all_vectored(bufs)?;
1851 /// // Note: the contents of `bufs` is now undefined, see the Notes section.
1852 ///
1853 /// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]);
1854 /// # Ok(()) }
1855 /// ```
1856 #[unstable(feature = "write_all_vectored", issue = "70436")]
1857 fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
1858 // Guarantee that bufs is empty if it contains no data,
1859 // to avoid calling write_vectored if there is no data to be written.
1860 IoSlice::advance_slices(&mut bufs, 0);
1861 while !bufs.is_empty() {
1862 match self.write_vectored(bufs) {
1863 Ok(0) => {
1864 return Err(Error::WRITE_ALL_EOF);
1865 }
1866 Ok(n) => IoSlice::advance_slices(&mut bufs, n),
1867 Err(ref e) if e.is_interrupted() => {}
1868 Err(e) => return Err(e),
1869 }
1870 }
1871 Ok(())
1872 }
1873
1874 /// Writes a formatted string into this writer, returning any error
1875 /// encountered.
1876 ///
1877 /// This method is primarily used to interface with the
1878 /// [`format_args!()`] macro, and it is rare that this should
1879 /// explicitly be called. The [`write!()`] macro should be favored to
1880 /// invoke this method instead.
1881 ///
1882 /// This function internally uses the [`write_all`] method on
1883 /// this trait and hence will continuously write data so long as no errors
1884 /// are received. This also means that partial writes are not indicated in
1885 /// this signature.
1886 ///
1887 /// [`write_all`]: Write::write_all
1888 ///
1889 /// # Errors
1890 ///
1891 /// This function will return any I/O error reported while formatting.
1892 ///
1893 /// # Examples
1894 ///
1895 /// ```no_run
1896 /// use std::io::prelude::*;
1897 /// use std::fs::File;
1898 ///
1899 /// fn main() -> std::io::Result<()> {
1900 /// let mut buffer = File::create("foo.txt")?;
1901 ///
1902 /// // this call
1903 /// write!(buffer, "{:.*}", 2, 1.234567)?;
1904 /// // turns into this:
1905 /// buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?;
1906 /// Ok(())
1907 /// }
1908 /// ```
1909 #[stable(feature = "rust1", since = "1.0.0")]
1910 fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> Result<()> {
1911 if let Some(s) = args.as_statically_known_str() {
1912 self.write_all(s.as_bytes())
1913 } else {
1914 default_write_fmt(self, args)
1915 }
1916 }
1917
1918 /// Creates a "by reference" adapter for this instance of `Write`.
1919 ///
1920 /// The returned adapter also implements `Write` and will simply borrow this
1921 /// current writer.
1922 ///
1923 /// # Examples
1924 ///
1925 /// ```no_run
1926 /// use std::io::Write;
1927 /// use std::fs::File;
1928 ///
1929 /// fn main() -> std::io::Result<()> {
1930 /// let mut buffer = File::create("foo.txt")?;
1931 ///
1932 /// let reference = buffer.by_ref();
1933 ///
1934 /// // we can use reference just like our original buffer
1935 /// reference.write_all(b"some bytes")?;
1936 /// Ok(())
1937 /// }
1938 /// ```
1939 #[stable(feature = "rust1", since = "1.0.0")]
1940 fn by_ref(&mut self) -> &mut Self
1941 where
1942 Self: Sized,
1943 {
1944 self
1945 }
1946}
1947
1948/// The `Seek` trait provides a cursor which can be moved within a stream of
1949/// bytes.
1950///
1951/// The stream typically has a fixed size, allowing seeking relative to either
1952/// end or the current offset.
1953///
1954/// # Examples
1955///
1956/// [`File`]s implement `Seek`:
1957///
1958/// [`File`]: crate::fs::File
1959///
1960/// ```no_run
1961/// use std::io;
1962/// use std::io::prelude::*;
1963/// use std::fs::File;
1964/// use std::io::SeekFrom;
1965///
1966/// fn main() -> io::Result<()> {
1967/// let mut f = File::open("foo.txt")?;
1968///
1969/// // move the cursor 42 bytes from the start of the file
1970/// f.seek(SeekFrom::Start(42))?;
1971/// Ok(())
1972/// }
1973/// ```
1974#[stable(feature = "rust1", since = "1.0.0")]
1975#[cfg_attr(not(test), rustc_diagnostic_item = "IoSeek")]
1976pub trait Seek {
1977 /// Seek to an offset, in bytes, in a stream.
1978 ///
1979 /// A seek beyond the end of a stream is allowed, but behavior is defined
1980 /// by the implementation.
1981 ///
1982 /// If the seek operation completed successfully,
1983 /// this method returns the new position from the start of the stream.
1984 /// That position can be used later with [`SeekFrom::Start`].
1985 ///
1986 /// # Errors
1987 ///
1988 /// Seeking can fail, for example because it might involve flushing a buffer.
1989 ///
1990 /// Seeking to a negative offset is considered an error.
1991 #[stable(feature = "rust1", since = "1.0.0")]
1992 fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
1993
1994 /// Rewind to the beginning of a stream.
1995 ///
1996 /// This is a convenience method, equivalent to `seek(SeekFrom::Start(0))`.
1997 ///
1998 /// # Errors
1999 ///
2000 /// Rewinding can fail, for example because it might involve flushing a buffer.
2001 ///
2002 /// # Example
2003 ///
2004 /// ```no_run
2005 /// use std::io::{Read, Seek, Write};
2006 /// use std::fs::OpenOptions;
2007 ///
2008 /// let mut f = OpenOptions::new()
2009 /// .write(true)
2010 /// .read(true)
2011 /// .create(true)
2012 /// .open("foo.txt")?;
2013 ///
2014 /// let hello = "Hello!\n";
2015 /// write!(f, "{hello}")?;
2016 /// f.rewind()?;
2017 ///
2018 /// let mut buf = String::new();
2019 /// f.read_to_string(&mut buf)?;
2020 /// assert_eq!(&buf, hello);
2021 /// # std::io::Result::Ok(())
2022 /// ```
2023 #[stable(feature = "seek_rewind", since = "1.55.0")]
2024 fn rewind(&mut self) -> Result<()> {
2025 self.seek(SeekFrom::Start(0))?;
2026 Ok(())
2027 }
2028
2029 /// Returns the length of this stream (in bytes).
2030 ///
2031 /// This method is implemented using up to three seek operations. If this
2032 /// method returns successfully, the seek position is unchanged (i.e. the
2033 /// position before calling this method is the same as afterwards).
2034 /// However, if this method returns an error, the seek position is
2035 /// unspecified.
2036 ///
2037 /// If you need to obtain the length of *many* streams and you don't care
2038 /// about the seek position afterwards, you can reduce the number of seek
2039 /// operations by simply calling `seek(SeekFrom::End(0))` and using its
2040 /// return value (it is also the stream length).
2041 ///
2042 /// Note that length of a stream can change over time (for example, when
2043 /// data is appended to a file). So calling this method multiple times does
2044 /// not necessarily return the same length each time.
2045 ///
2046 /// # Example
2047 ///
2048 /// ```no_run
2049 /// #![feature(seek_stream_len)]
2050 /// use std::{
2051 /// io::{self, Seek},
2052 /// fs::File,
2053 /// };
2054 ///
2055 /// fn main() -> io::Result<()> {
2056 /// let mut f = File::open("foo.txt")?;
2057 ///
2058 /// let len = f.stream_len()?;
2059 /// println!("The file is currently {len} bytes long");
2060 /// Ok(())
2061 /// }
2062 /// ```
2063 #[unstable(feature = "seek_stream_len", issue = "59359")]
2064 fn stream_len(&mut self) -> Result<u64> {
2065 let old_pos = self.stream_position()?;
2066 let len = self.seek(SeekFrom::End(0))?;
2067
2068 // Avoid seeking a third time when we were already at the end of the
2069 // stream. The branch is usually way cheaper than a seek operation.
2070 if old_pos != len {
2071 self.seek(SeekFrom::Start(old_pos))?;
2072 }
2073
2074 Ok(len)
2075 }
2076
2077 /// Returns the current seek position from the start of the stream.
2078 ///
2079 /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
2080 ///
2081 /// # Example
2082 ///
2083 /// ```no_run
2084 /// use std::{
2085 /// io::{self, BufRead, BufReader, Seek},
2086 /// fs::File,
2087 /// };
2088 ///
2089 /// fn main() -> io::Result<()> {
2090 /// let mut f = BufReader::new(File::open("foo.txt")?);
2091 ///
2092 /// let before = f.stream_position()?;
2093 /// f.read_line(&mut String::new())?;
2094 /// let after = f.stream_position()?;
2095 ///
2096 /// println!("The first line was {} bytes long", after - before);
2097 /// Ok(())
2098 /// }
2099 /// ```
2100 #[stable(feature = "seek_convenience", since = "1.51.0")]
2101 fn stream_position(&mut self) -> Result<u64> {
2102 self.seek(SeekFrom::Current(0))
2103 }
2104
2105 /// Seeks relative to the current position.
2106 ///
2107 /// This is equivalent to `self.seek(SeekFrom::Current(offset))` but
2108 /// doesn't return the new position which can allow some implementations
2109 /// such as [`BufReader`] to perform more efficient seeks.
2110 ///
2111 /// # Example
2112 ///
2113 /// ```no_run
2114 /// use std::{
2115 /// io::{self, Seek},
2116 /// fs::File,
2117 /// };
2118 ///
2119 /// fn main() -> io::Result<()> {
2120 /// let mut f = File::open("foo.txt")?;
2121 /// f.seek_relative(10)?;
2122 /// assert_eq!(f.stream_position()?, 10);
2123 /// Ok(())
2124 /// }
2125 /// ```
2126 ///
2127 /// [`BufReader`]: crate::io::BufReader
2128 #[stable(feature = "seek_seek_relative", since = "1.80.0")]
2129 fn seek_relative(&mut self, offset: i64) -> Result<()> {
2130 self.seek(SeekFrom::Current(offset))?;
2131 Ok(())
2132 }
2133}
2134
2135/// Enumeration of possible methods to seek within an I/O object.
2136///
2137/// It is used by the [`Seek`] trait.
2138#[derive(Copy, PartialEq, Eq, Clone, Debug)]
2139#[stable(feature = "rust1", since = "1.0.0")]
2140#[cfg_attr(not(test), rustc_diagnostic_item = "SeekFrom")]
2141pub enum SeekFrom {
2142 /// Sets the offset to the provided number of bytes.
2143 #[stable(feature = "rust1", since = "1.0.0")]
2144 Start(#[stable(feature = "rust1", since = "1.0.0")] u64),
2145
2146 /// Sets the offset to the size of this object plus the specified number of
2147 /// bytes.
2148 ///
2149 /// It is possible to seek beyond the end of an object, but it's an error to
2150 /// seek before byte 0.
2151 #[stable(feature = "rust1", since = "1.0.0")]
2152 End(#[stable(feature = "rust1", since = "1.0.0")] i64),
2153
2154 /// Sets the offset to the current position plus the specified number of
2155 /// bytes.
2156 ///
2157 /// It is possible to seek beyond the end of an object, but it's an error to
2158 /// seek before byte 0.
2159 #[stable(feature = "rust1", since = "1.0.0")]
2160 Current(#[stable(feature = "rust1", since = "1.0.0")] i64),
2161}
2162
2163fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
2164 let mut read = 0;
2165 loop {
2166 let (done, used) = {
2167 let available = match r.fill_buf() {
2168 Ok(n) => n,
2169 Err(ref e) if e.is_interrupted() => continue,
2170 Err(e) => return Err(e),
2171 };
2172 match memchr::memchr(delim, available) {
2173 Some(i) => {
2174 buf.extend_from_slice(&available[..=i]);
2175 (true, i + 1)
2176 }
2177 None => {
2178 buf.extend_from_slice(available);
2179 (false, available.len())
2180 }
2181 }
2182 };
2183 r.consume(used);
2184 read += used;
2185 if done || used == 0 {
2186 return Ok(read);
2187 }
2188 }
2189}
2190
2191fn skip_until<R: BufRead + ?Sized>(r: &mut R, delim: u8) -> Result<usize> {
2192 let mut read = 0;
2193 loop {
2194 let (done, used) = {
2195 let available = match r.fill_buf() {
2196 Ok(n) => n,
2197 Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
2198 Err(e) => return Err(e),
2199 };
2200 match memchr::memchr(delim, available) {
2201 Some(i) => (true, i + 1),
2202 None => (false, available.len()),
2203 }
2204 };
2205 r.consume(used);
2206 read += used;
2207 if done || used == 0 {
2208 return Ok(read);
2209 }
2210 }
2211}
2212
2213/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
2214/// to perform extra ways of reading.
2215///
2216/// For example, reading line-by-line is inefficient without using a buffer, so
2217/// if you want to read by line, you'll need `BufRead`, which includes a
2218/// [`read_line`] method as well as a [`lines`] iterator.
2219///
2220/// # Examples
2221///
2222/// A locked standard input implements `BufRead`:
2223///
2224/// ```no_run
2225/// use std::io;
2226/// use std::io::prelude::*;
2227///
2228/// let stdin = io::stdin();
2229/// for line in stdin.lock().lines() {
2230/// println!("{}", line?);
2231/// }
2232/// # std::io::Result::Ok(())
2233/// ```
2234///
2235/// If you have something that implements [`Read`], you can use the [`BufReader`
2236/// type][`BufReader`] to turn it into a `BufRead`.
2237///
2238/// For example, [`File`] implements [`Read`], but not `BufRead`.
2239/// [`BufReader`] to the rescue!
2240///
2241/// [`File`]: crate::fs::File
2242/// [`read_line`]: BufRead::read_line
2243/// [`lines`]: BufRead::lines
2244///
2245/// ```no_run
2246/// use std::io::{self, BufReader};
2247/// use std::io::prelude::*;
2248/// use std::fs::File;
2249///
2250/// fn main() -> io::Result<()> {
2251/// let f = File::open("foo.txt")?;
2252/// let f = BufReader::new(f);
2253///
2254/// for line in f.lines() {
2255/// let line = line?;
2256/// println!("{line}");
2257/// }
2258///
2259/// Ok(())
2260/// }
2261/// ```
2262#[stable(feature = "rust1", since = "1.0.0")]
2263#[cfg_attr(not(test), rustc_diagnostic_item = "IoBufRead")]
2264pub trait BufRead: Read {
2265 /// Returns the contents of the internal buffer, filling it with more data, via `Read` methods, if empty.
2266 ///
2267 /// This is a lower-level method and is meant to be used together with [`consume`],
2268 /// which can be used to mark bytes that should not be returned by subsequent calls to `read`.
2269 ///
2270 /// [`consume`]: BufRead::consume
2271 ///
2272 /// Returns an empty buffer when the stream has reached EOF.
2273 ///
2274 /// # Errors
2275 ///
2276 /// This function will return an I/O error if a `Read` method was called, but returned an error.
2277 ///
2278 /// # Examples
2279 ///
2280 /// A locked standard input implements `BufRead`:
2281 ///
2282 /// ```no_run
2283 /// use std::io;
2284 /// use std::io::prelude::*;
2285 ///
2286 /// let stdin = io::stdin();
2287 /// let mut stdin = stdin.lock();
2288 ///
2289 /// let buffer = stdin.fill_buf()?;
2290 ///
2291 /// // work with buffer
2292 /// println!("{buffer:?}");
2293 ///
2294 /// // mark the bytes we worked with as read
2295 /// let length = buffer.len();
2296 /// stdin.consume(length);
2297 /// # std::io::Result::Ok(())
2298 /// ```
2299 #[stable(feature = "rust1", since = "1.0.0")]
2300 fn fill_buf(&mut self) -> Result<&[u8]>;
2301
2302 /// Marks the given `amount` of additional bytes from the internal buffer as having been read.
2303 /// Subsequent calls to `read` only return bytes that have not been marked as read.
2304 ///
2305 /// This is a lower-level method and is meant to be used together with [`fill_buf`],
2306 /// which can be used to fill the internal buffer via `Read` methods.
2307 ///
2308 /// It is a logic error if `amount` exceeds the number of unread bytes in the internal buffer, which is returned by [`fill_buf`].
2309 ///
2310 /// # Examples
2311 ///
2312 /// Since `consume()` is meant to be used with [`fill_buf`],
2313 /// that method's example includes an example of `consume()`.
2314 ///
2315 /// [`fill_buf`]: BufRead::fill_buf
2316 #[stable(feature = "rust1", since = "1.0.0")]
2317 fn consume(&mut self, amount: usize);
2318
2319 /// Checks if there is any data left to be `read`.
2320 ///
2321 /// This function may fill the buffer to check for data,
2322 /// so this functions returns `Result<bool>`, not `bool`.
2323 ///
2324 /// Default implementation calls `fill_buf` and checks that
2325 /// returned slice is empty (which means that there is no data left,
2326 /// since EOF is reached).
2327 ///
2328 /// # Errors
2329 ///
2330 /// This function will return an I/O error if a `Read` method was called, but returned an error.
2331 ///
2332 /// Examples
2333 ///
2334 /// ```
2335 /// #![feature(buf_read_has_data_left)]
2336 /// use std::io;
2337 /// use std::io::prelude::*;
2338 ///
2339 /// let stdin = io::stdin();
2340 /// let mut stdin = stdin.lock();
2341 ///
2342 /// while stdin.has_data_left()? {
2343 /// let mut line = String::new();
2344 /// stdin.read_line(&mut line)?;
2345 /// // work with line
2346 /// println!("{line:?}");
2347 /// }
2348 /// # std::io::Result::Ok(())
2349 /// ```
2350 #[unstable(feature = "buf_read_has_data_left", reason = "recently added", issue = "86423")]
2351 fn has_data_left(&mut self) -> Result<bool> {
2352 self.fill_buf().map(|b| !b.is_empty())
2353 }
2354
2355 /// Reads all bytes into `buf` until the delimiter `byte` or EOF is reached.
2356 ///
2357 /// This function will read bytes from the underlying stream until the
2358 /// delimiter or EOF is found. Once found, all bytes up to, and including,
2359 /// the delimiter (if found) will be appended to `buf`.
2360 ///
2361 /// If successful, this function will return the total number of bytes read.
2362 ///
2363 /// This function is blocking and should be used carefully: it is possible for
2364 /// an attacker to continuously send bytes without ever sending the delimiter
2365 /// or EOF.
2366 ///
2367 /// # Errors
2368 ///
2369 /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2370 /// will otherwise return any errors returned by [`fill_buf`].
2371 ///
2372 /// If an I/O error is encountered then all bytes read so far will be
2373 /// present in `buf` and its length will have been adjusted appropriately.
2374 ///
2375 /// [`fill_buf`]: BufRead::fill_buf
2376 ///
2377 /// # Examples
2378 ///
2379 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2380 /// this example, we use [`Cursor`] to read all the bytes in a byte slice
2381 /// in hyphen delimited segments:
2382 ///
2383 /// ```
2384 /// use std::io::{self, BufRead};
2385 ///
2386 /// let mut cursor = io::Cursor::new(b"lorem-ipsum");
2387 /// let mut buf = vec![];
2388 ///
2389 /// // cursor is at 'l'
2390 /// let num_bytes = cursor.read_until(b'-', &mut buf)
2391 /// .expect("reading from cursor won't fail");
2392 /// assert_eq!(num_bytes, 6);
2393 /// assert_eq!(buf, b"lorem-");
2394 /// buf.clear();
2395 ///
2396 /// // cursor is at 'i'
2397 /// let num_bytes = cursor.read_until(b'-', &mut buf)
2398 /// .expect("reading from cursor won't fail");
2399 /// assert_eq!(num_bytes, 5);
2400 /// assert_eq!(buf, b"ipsum");
2401 /// buf.clear();
2402 ///
2403 /// // cursor is at EOF
2404 /// let num_bytes = cursor.read_until(b'-', &mut buf)
2405 /// .expect("reading from cursor won't fail");
2406 /// assert_eq!(num_bytes, 0);
2407 /// assert_eq!(buf, b"");
2408 /// ```
2409 #[stable(feature = "rust1", since = "1.0.0")]
2410 fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
2411 read_until(self, byte, buf)
2412 }
2413
2414 /// Skips all bytes until the delimiter `byte` or EOF is reached.
2415 ///
2416 /// This function will read (and discard) bytes from the underlying stream until the
2417 /// delimiter or EOF is found.
2418 ///
2419 /// If successful, this function will return the total number of bytes read,
2420 /// including the delimiter byte.
2421 ///
2422 /// This is useful for efficiently skipping data such as NUL-terminated strings
2423 /// in binary file formats without buffering.
2424 ///
2425 /// This function is blocking and should be used carefully: it is possible for
2426 /// an attacker to continuously send bytes without ever sending the delimiter
2427 /// or EOF.
2428 ///
2429 /// # Errors
2430 ///
2431 /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2432 /// will otherwise return any errors returned by [`fill_buf`].
2433 ///
2434 /// If an I/O error is encountered then all bytes read so far will be
2435 /// present in `buf` and its length will have been adjusted appropriately.
2436 ///
2437 /// [`fill_buf`]: BufRead::fill_buf
2438 ///
2439 /// # Examples
2440 ///
2441 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2442 /// this example, we use [`Cursor`] to read some NUL-terminated information
2443 /// about Ferris from a binary string, skipping the fun fact:
2444 ///
2445 /// ```
2446 /// use std::io::{self, BufRead};
2447 ///
2448 /// let mut cursor = io::Cursor::new(b"Ferris\0Likes long walks on the beach\0Crustacean\0");
2449 ///
2450 /// // read name
2451 /// let mut name = Vec::new();
2452 /// let num_bytes = cursor.read_until(b'\0', &mut name)
2453 /// .expect("reading from cursor won't fail");
2454 /// assert_eq!(num_bytes, 7);
2455 /// assert_eq!(name, b"Ferris\0");
2456 ///
2457 /// // skip fun fact
2458 /// let num_bytes = cursor.skip_until(b'\0')
2459 /// .expect("reading from cursor won't fail");
2460 /// assert_eq!(num_bytes, 30);
2461 ///
2462 /// // read animal type
2463 /// let mut animal = Vec::new();
2464 /// let num_bytes = cursor.read_until(b'\0', &mut animal)
2465 /// .expect("reading from cursor won't fail");
2466 /// assert_eq!(num_bytes, 11);
2467 /// assert_eq!(animal, b"Crustacean\0");
2468 /// ```
2469 #[stable(feature = "bufread_skip_until", since = "1.83.0")]
2470 fn skip_until(&mut self, byte: u8) -> Result<usize> {
2471 skip_until(self, byte)
2472 }
2473
2474 /// Reads all bytes until a newline (the `0xA` byte) is reached, and append
2475 /// them to the provided `String` buffer.
2476 ///
2477 /// Previous content of the buffer will be preserved. To avoid appending to
2478 /// the buffer, you need to [`clear`] it first.
2479 ///
2480 /// This function will read bytes from the underlying stream until the
2481 /// newline delimiter (the `0xA` byte) or EOF is found. Once found, all bytes
2482 /// up to, and including, the delimiter (if found) will be appended to
2483 /// `buf`.
2484 ///
2485 /// If successful, this function will return the total number of bytes read.
2486 ///
2487 /// If this function returns [`Ok(0)`], the stream has reached EOF.
2488 ///
2489 /// This function is blocking and should be used carefully: it is possible for
2490 /// an attacker to continuously send bytes without ever sending a newline
2491 /// or EOF. You can use [`take`] to limit the maximum number of bytes read.
2492 ///
2493 /// [`Ok(0)`]: Ok
2494 /// [`clear`]: String::clear
2495 /// [`take`]: crate::io::Read::take
2496 ///
2497 /// # Errors
2498 ///
2499 /// This function has the same error semantics as [`read_until`] and will
2500 /// also return an error if the read bytes are not valid UTF-8. If an I/O
2501 /// error is encountered then `buf` may contain some bytes already read in
2502 /// the event that all data read so far was valid UTF-8.
2503 ///
2504 /// [`read_until`]: BufRead::read_until
2505 ///
2506 /// # Examples
2507 ///
2508 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2509 /// this example, we use [`Cursor`] to read all the lines in a byte slice:
2510 ///
2511 /// ```
2512 /// use std::io::{self, BufRead};
2513 ///
2514 /// let mut cursor = io::Cursor::new(b"foo\nbar");
2515 /// let mut buf = String::new();
2516 ///
2517 /// // cursor is at 'f'
2518 /// let num_bytes = cursor.read_line(&mut buf)
2519 /// .expect("reading from cursor won't fail");
2520 /// assert_eq!(num_bytes, 4);
2521 /// assert_eq!(buf, "foo\n");
2522 /// buf.clear();
2523 ///
2524 /// // cursor is at 'b'
2525 /// let num_bytes = cursor.read_line(&mut buf)
2526 /// .expect("reading from cursor won't fail");
2527 /// assert_eq!(num_bytes, 3);
2528 /// assert_eq!(buf, "bar");
2529 /// buf.clear();
2530 ///
2531 /// // cursor is at EOF
2532 /// let num_bytes = cursor.read_line(&mut buf)
2533 /// .expect("reading from cursor won't fail");
2534 /// assert_eq!(num_bytes, 0);
2535 /// assert_eq!(buf, "");
2536 /// ```
2537 #[stable(feature = "rust1", since = "1.0.0")]
2538 fn read_line(&mut self, buf: &mut String) -> Result<usize> {
2539 // Note that we are not calling the `.read_until` method here, but
2540 // rather our hardcoded implementation. For more details as to why, see
2541 // the comments in `default_read_to_string`.
2542 unsafe { append_to_string(buf, |b| read_until(self, b'\n', b)) }
2543 }
2544
2545 /// Returns an iterator over the contents of this reader split on the byte
2546 /// `byte`.
2547 ///
2548 /// The iterator returned from this function will return instances of
2549 /// <code>[io::Result]<[Vec]\<u8>></code>. Each vector returned will *not* have
2550 /// the delimiter byte at the end.
2551 ///
2552 /// This function will yield errors whenever [`read_until`] would have
2553 /// also yielded an error.
2554 ///
2555 /// [io::Result]: self::Result "io::Result"
2556 /// [`read_until`]: BufRead::read_until
2557 ///
2558 /// # Examples
2559 ///
2560 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2561 /// this example, we use [`Cursor`] to iterate over all hyphen delimited
2562 /// segments in a byte slice
2563 ///
2564 /// ```
2565 /// use std::io::{self, BufRead};
2566 ///
2567 /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
2568 ///
2569 /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
2570 /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
2571 /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
2572 /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
2573 /// assert_eq!(split_iter.next(), None);
2574 /// ```
2575 #[stable(feature = "rust1", since = "1.0.0")]
2576 fn split(self, byte: u8) -> Split<Self>
2577 where
2578 Self: Sized,
2579 {
2580 Split { buf: self, delim: byte }
2581 }
2582
2583 /// Returns an iterator over the lines of this reader.
2584 ///
2585 /// The iterator returned from this function will yield instances of
2586 /// <code>[io::Result]<[String]></code>. Each string returned will *not* have a newline
2587 /// byte (the `0xA` byte) or `CRLF` (`0xD`, `0xA` bytes) at the end.
2588 ///
2589 /// [io::Result]: self::Result "io::Result"
2590 ///
2591 /// # Examples
2592 ///
2593 /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2594 /// this example, we use [`Cursor`] to iterate over all the lines in a byte
2595 /// slice.
2596 ///
2597 /// ```
2598 /// use std::io::{self, BufRead};
2599 ///
2600 /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
2601 ///
2602 /// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
2603 /// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
2604 /// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
2605 /// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
2606 /// assert_eq!(lines_iter.next(), None);
2607 /// ```
2608 ///
2609 /// # Errors
2610 ///
2611 /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
2612 #[stable(feature = "rust1", since = "1.0.0")]
2613 fn lines(self) -> Lines<Self>
2614 where
2615 Self: Sized,
2616 {
2617 Lines { buf: self }
2618 }
2619}
2620
2621/// Adapter to chain together two readers.
2622///
2623/// This struct is generally created by calling [`chain`] on a reader.
2624/// Please see the documentation of [`chain`] for more details.
2625///
2626/// [`chain`]: Read::chain
2627#[stable(feature = "rust1", since = "1.0.0")]
2628#[derive(Debug)]
2629pub struct Chain<T, U> {
2630 first: T,
2631 second: U,
2632 done_first: bool,
2633}
2634
2635impl<T, U> Chain<T, U> {
2636 /// Consumes the `Chain`, returning the wrapped readers.
2637 ///
2638 /// # Examples
2639 ///
2640 /// ```no_run
2641 /// use std::io;
2642 /// use std::io::prelude::*;
2643 /// use std::fs::File;
2644 ///
2645 /// fn main() -> io::Result<()> {
2646 /// let mut foo_file = File::open("foo.txt")?;
2647 /// let mut bar_file = File::open("bar.txt")?;
2648 ///
2649 /// let chain = foo_file.chain(bar_file);
2650 /// let (foo_file, bar_file) = chain.into_inner();
2651 /// Ok(())
2652 /// }
2653 /// ```
2654 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2655 pub fn into_inner(self) -> (T, U) {
2656 (self.first, self.second)
2657 }
2658
2659 /// Gets references to the underlying readers in this `Chain`.
2660 ///
2661 /// # Examples
2662 ///
2663 /// ```no_run
2664 /// use std::io;
2665 /// use std::io::prelude::*;
2666 /// use std::fs::File;
2667 ///
2668 /// fn main() -> io::Result<()> {
2669 /// let mut foo_file = File::open("foo.txt")?;
2670 /// let mut bar_file = File::open("bar.txt")?;
2671 ///
2672 /// let chain = foo_file.chain(bar_file);
2673 /// let (foo_file, bar_file) = chain.get_ref();
2674 /// Ok(())
2675 /// }
2676 /// ```
2677 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2678 pub fn get_ref(&self) -> (&T, &U) {
2679 (&self.first, &self.second)
2680 }
2681
2682 /// Gets mutable references to the underlying readers in this `Chain`.
2683 ///
2684 /// Care should be taken to avoid modifying the internal I/O state of the
2685 /// underlying readers as doing so may corrupt the internal state of this
2686 /// `Chain`.
2687 ///
2688 /// # Examples
2689 ///
2690 /// ```no_run
2691 /// use std::io;
2692 /// use std::io::prelude::*;
2693 /// use std::fs::File;
2694 ///
2695 /// fn main() -> io::Result<()> {
2696 /// let mut foo_file = File::open("foo.txt")?;
2697 /// let mut bar_file = File::open("bar.txt")?;
2698 ///
2699 /// let mut chain = foo_file.chain(bar_file);
2700 /// let (foo_file, bar_file) = chain.get_mut();
2701 /// Ok(())
2702 /// }
2703 /// ```
2704 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2705 pub fn get_mut(&mut self) -> (&mut T, &mut U) {
2706 (&mut self.first, &mut self.second)
2707 }
2708}
2709
2710#[stable(feature = "rust1", since = "1.0.0")]
2711impl<T: Read, U: Read> Read for Chain<T, U> {
2712 fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
2713 if !self.done_first {
2714 match self.first.read(buf)? {
2715 0 if !buf.is_empty() => self.done_first = true,
2716 n => return Ok(n),
2717 }
2718 }
2719 self.second.read(buf)
2720 }
2721
2722 fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
2723 if !self.done_first {
2724 match self.first.read_vectored(bufs)? {
2725 0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
2726 n => return Ok(n),
2727 }
2728 }
2729 self.second.read_vectored(bufs)
2730 }
2731
2732 #[inline]
2733 fn is_read_vectored(&self) -> bool {
2734 self.first.is_read_vectored() || self.second.is_read_vectored()
2735 }
2736
2737 fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
2738 let mut read = 0;
2739 if !self.done_first {
2740 read += self.first.read_to_end(buf)?;
2741 self.done_first = true;
2742 }
2743 read += self.second.read_to_end(buf)?;
2744 Ok(read)
2745 }
2746
2747 // We don't override `read_to_string` here because an UTF-8 sequence could
2748 // be split between the two parts of the chain
2749
2750 fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
2751 if buf.capacity() == 0 {
2752 return Ok(());
2753 }
2754
2755 if !self.done_first {
2756 let old_len = buf.written();
2757 self.first.read_buf(buf.reborrow())?;
2758
2759 if buf.written() != old_len {
2760 return Ok(());
2761 } else {
2762 self.done_first = true;
2763 }
2764 }
2765 self.second.read_buf(buf)
2766 }
2767}
2768
2769#[stable(feature = "chain_bufread", since = "1.9.0")]
2770impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
2771 fn fill_buf(&mut self) -> Result<&[u8]> {
2772 if !self.done_first {
2773 match self.first.fill_buf()? {
2774 buf if buf.is_empty() => self.done_first = true,
2775 buf => return Ok(buf),
2776 }
2777 }
2778 self.second.fill_buf()
2779 }
2780
2781 fn consume(&mut self, amt: usize) {
2782 if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
2783 }
2784
2785 fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
2786 let mut read = 0;
2787 if !self.done_first {
2788 let n = self.first.read_until(byte, buf)?;
2789 read += n;
2790
2791 match buf.last() {
2792 Some(b) if *b == byte && n != 0 => return Ok(read),
2793 _ => self.done_first = true,
2794 }
2795 }
2796 read += self.second.read_until(byte, buf)?;
2797 Ok(read)
2798 }
2799
2800 // We don't override `read_line` here because an UTF-8 sequence could be
2801 // split between the two parts of the chain
2802}
2803
2804impl<T, U> SizeHint for Chain<T, U> {
2805 #[inline]
2806 fn lower_bound(&self) -> usize {
2807 SizeHint::lower_bound(&self.first) + SizeHint::lower_bound(&self.second)
2808 }
2809
2810 #[inline]
2811 fn upper_bound(&self) -> Option<usize> {
2812 match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
2813 (Some(first), Some(second)) => first.checked_add(second),
2814 _ => None,
2815 }
2816 }
2817}
2818
2819/// Reader adapter which limits the bytes read from an underlying reader.
2820///
2821/// This struct is generally created by calling [`take`] on a reader.
2822/// Please see the documentation of [`take`] for more details.
2823///
2824/// [`take`]: Read::take
2825#[stable(feature = "rust1", since = "1.0.0")]
2826#[derive(Debug)]
2827pub struct Take<T> {
2828 inner: T,
2829 limit: u64,
2830}
2831
2832impl<T> Take<T> {
2833 /// Returns the number of bytes that can be read before this instance will
2834 /// return EOF.
2835 ///
2836 /// # Note
2837 ///
2838 /// This instance may reach `EOF` after reading fewer bytes than indicated by
2839 /// this method if the underlying [`Read`] instance reaches EOF.
2840 ///
2841 /// # Examples
2842 ///
2843 /// ```no_run
2844 /// use std::io;
2845 /// use std::io::prelude::*;
2846 /// use std::fs::File;
2847 ///
2848 /// fn main() -> io::Result<()> {
2849 /// let f = File::open("foo.txt")?;
2850 ///
2851 /// // read at most five bytes
2852 /// let handle = f.take(5);
2853 ///
2854 /// println!("limit: {}", handle.limit());
2855 /// Ok(())
2856 /// }
2857 /// ```
2858 #[stable(feature = "rust1", since = "1.0.0")]
2859 pub fn limit(&self) -> u64 {
2860 self.limit
2861 }
2862
2863 /// Sets the number of bytes that can be read before this instance will
2864 /// return EOF. This is the same as constructing a new `Take` instance, so
2865 /// the amount of bytes read and the previous limit value don't matter when
2866 /// calling this method.
2867 ///
2868 /// # Examples
2869 ///
2870 /// ```no_run
2871 /// use std::io;
2872 /// use std::io::prelude::*;
2873 /// use std::fs::File;
2874 ///
2875 /// fn main() -> io::Result<()> {
2876 /// let f = File::open("foo.txt")?;
2877 ///
2878 /// // read at most five bytes
2879 /// let mut handle = f.take(5);
2880 /// handle.set_limit(10);
2881 ///
2882 /// assert_eq!(handle.limit(), 10);
2883 /// Ok(())
2884 /// }
2885 /// ```
2886 #[stable(feature = "take_set_limit", since = "1.27.0")]
2887 pub fn set_limit(&mut self, limit: u64) {
2888 self.limit = limit;
2889 }
2890
2891 /// Consumes the `Take`, returning the wrapped reader.
2892 ///
2893 /// # Examples
2894 ///
2895 /// ```no_run
2896 /// use std::io;
2897 /// use std::io::prelude::*;
2898 /// use std::fs::File;
2899 ///
2900 /// fn main() -> io::Result<()> {
2901 /// let mut file = File::open("foo.txt")?;
2902 ///
2903 /// let mut buffer = [0; 5];
2904 /// let mut handle = file.take(5);
2905 /// handle.read(&mut buffer)?;
2906 ///
2907 /// let file = handle.into_inner();
2908 /// Ok(())
2909 /// }
2910 /// ```
2911 #[stable(feature = "io_take_into_inner", since = "1.15.0")]
2912 pub fn into_inner(self) -> T {
2913 self.inner
2914 }
2915
2916 /// Gets a reference to the underlying reader.
2917 ///
2918 /// # Examples
2919 ///
2920 /// ```no_run
2921 /// use std::io;
2922 /// use std::io::prelude::*;
2923 /// use std::fs::File;
2924 ///
2925 /// fn main() -> io::Result<()> {
2926 /// let mut file = File::open("foo.txt")?;
2927 ///
2928 /// let mut buffer = [0; 5];
2929 /// let mut handle = file.take(5);
2930 /// handle.read(&mut buffer)?;
2931 ///
2932 /// let file = handle.get_ref();
2933 /// Ok(())
2934 /// }
2935 /// ```
2936 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2937 pub fn get_ref(&self) -> &T {
2938 &self.inner
2939 }
2940
2941 /// Gets a mutable reference to the underlying reader.
2942 ///
2943 /// Care should be taken to avoid modifying the internal I/O state of the
2944 /// underlying reader as doing so may corrupt the internal limit of this
2945 /// `Take`.
2946 ///
2947 /// # Examples
2948 ///
2949 /// ```no_run
2950 /// use std::io;
2951 /// use std::io::prelude::*;
2952 /// use std::fs::File;
2953 ///
2954 /// fn main() -> io::Result<()> {
2955 /// let mut file = File::open("foo.txt")?;
2956 ///
2957 /// let mut buffer = [0; 5];
2958 /// let mut handle = file.take(5);
2959 /// handle.read(&mut buffer)?;
2960 ///
2961 /// let file = handle.get_mut();
2962 /// Ok(())
2963 /// }
2964 /// ```
2965 #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2966 pub fn get_mut(&mut self) -> &mut T {
2967 &mut self.inner
2968 }
2969}
2970
2971#[stable(feature = "rust1", since = "1.0.0")]
2972impl<T: Read> Read for Take<T> {
2973 fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
2974 // Don't call into inner reader at all at EOF because it may still block
2975 if self.limit == 0 {
2976 return Ok(0);
2977 }
2978
2979 let max = cmp::min(buf.len() as u64, self.limit) as usize;
2980 let n = self.inner.read(&mut buf[..max])?;
2981 assert!(n as u64 <= self.limit, "number of read bytes exceeds limit");
2982 self.limit -= n as u64;
2983 Ok(n)
2984 }
2985
2986 fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
2987 // Don't call into inner reader at all at EOF because it may still block
2988 if self.limit == 0 {
2989 return Ok(());
2990 }
2991
2992 if self.limit < buf.capacity() as u64 {
2993 // The condition above guarantees that `self.limit` fits in `usize`.
2994 let limit = self.limit as usize;
2995
2996 let extra_init = cmp::min(limit, buf.init_ref().len());
2997
2998 // SAFETY: no uninit data is written to ibuf
2999 let ibuf = unsafe { &mut buf.as_mut()[..limit] };
3000
3001 let mut sliced_buf: BorrowedBuf<'_> = ibuf.into();
3002
3003 // SAFETY: extra_init bytes of ibuf are known to be initialized
3004 unsafe {
3005 sliced_buf.set_init(extra_init);
3006 }
3007
3008 let mut cursor = sliced_buf.unfilled();
3009 let result = self.inner.read_buf(cursor.reborrow());
3010
3011 let new_init = cursor.init_ref().len();
3012 let filled = sliced_buf.len();
3013
3014 // cursor / sliced_buf / ibuf must drop here
3015
3016 unsafe {
3017 // SAFETY: filled bytes have been filled and therefore initialized
3018 buf.advance_unchecked(filled);
3019 // SAFETY: new_init bytes of buf's unfilled buffer have been initialized
3020 buf.set_init(new_init);
3021 }
3022
3023 self.limit -= filled as u64;
3024
3025 result
3026 } else {
3027 let written = buf.written();
3028 let result = self.inner.read_buf(buf.reborrow());
3029 self.limit -= (buf.written() - written) as u64;
3030 result
3031 }
3032 }
3033}
3034
3035#[stable(feature = "rust1", since = "1.0.0")]
3036impl<T: BufRead> BufRead for Take<T> {
3037 fn fill_buf(&mut self) -> Result<&[u8]> {
3038 // Don't call into inner reader at all at EOF because it may still block
3039 if self.limit == 0 {
3040 return Ok(&[]);
3041 }
3042
3043 let buf = self.inner.fill_buf()?;
3044 let cap = cmp::min(buf.len() as u64, self.limit) as usize;
3045 Ok(&buf[..cap])
3046 }
3047
3048 fn consume(&mut self, amt: usize) {
3049 // Don't let callers reset the limit by passing an overlarge value
3050 let amt = cmp::min(amt as u64, self.limit) as usize;
3051 self.limit -= amt as u64;
3052 self.inner.consume(amt);
3053 }
3054}
3055
3056impl<T> SizeHint for Take<T> {
3057 #[inline]
3058 fn lower_bound(&self) -> usize {
3059 cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
3060 }
3061
3062 #[inline]
3063 fn upper_bound(&self) -> Option<usize> {
3064 match SizeHint::upper_bound(&self.inner) {
3065 Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
3066 None => self.limit.try_into().ok(),
3067 }
3068 }
3069}
3070
3071/// An iterator over `u8` values of a reader.
3072///
3073/// This struct is generally created by calling [`bytes`] on a reader.
3074/// Please see the documentation of [`bytes`] for more details.
3075///
3076/// [`bytes`]: Read::bytes
3077#[stable(feature = "rust1", since = "1.0.0")]
3078#[derive(Debug)]
3079pub struct Bytes<R> {
3080 inner: R,
3081}
3082
3083#[stable(feature = "rust1", since = "1.0.0")]
3084impl<R: Read> Iterator for Bytes<R> {
3085 type Item = Result<u8>;
3086
3087 // Not `#[inline]`. This function gets inlined even without it, but having
3088 // the inline annotation can result in worse code generation. See #116785.
3089 fn next(&mut self) -> Option<Result<u8>> {
3090 SpecReadByte::spec_read_byte(&mut self.inner)
3091 }
3092
3093 #[inline]
3094 fn size_hint(&self) -> (usize, Option<usize>) {
3095 SizeHint::size_hint(&self.inner)
3096 }
3097}
3098
3099/// For the specialization of `Bytes::next`.
3100trait SpecReadByte {
3101 fn spec_read_byte(&mut self) -> Option<Result<u8>>;
3102}
3103
3104impl<R> SpecReadByte for R
3105where
3106 Self: Read,
3107{
3108 #[inline]
3109 default fn spec_read_byte(&mut self) -> Option<Result<u8>> {
3110 inlined_slow_read_byte(self)
3111 }
3112}
3113
3114/// Reads a single byte in a slow, generic way. This is used by the default
3115/// `spec_read_byte`.
3116#[inline]
3117fn inlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
3118 let mut byte = 0;
3119 loop {
3120 return match reader.read(slice::from_mut(&mut byte)) {
3121 Ok(0) => None,
3122 Ok(..) => Some(Ok(byte)),
3123 Err(ref e) if e.is_interrupted() => continue,
3124 Err(e) => Some(Err(e)),
3125 };
3126 }
3127}
3128
3129// Used by `BufReader::spec_read_byte`, for which the `inline(ever)` is
3130// important.
3131#[inline(never)]
3132fn uninlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
3133 inlined_slow_read_byte(reader)
3134}
3135
3136trait SizeHint {
3137 fn lower_bound(&self) -> usize;
3138
3139 fn upper_bound(&self) -> Option<usize>;
3140
3141 fn size_hint(&self) -> (usize, Option<usize>) {
3142 (self.lower_bound(), self.upper_bound())
3143 }
3144}
3145
3146impl<T: ?Sized> SizeHint for T {
3147 #[inline]
3148 default fn lower_bound(&self) -> usize {
3149 0
3150 }
3151
3152 #[inline]
3153 default fn upper_bound(&self) -> Option<usize> {
3154 None
3155 }
3156}
3157
3158impl<T> SizeHint for &mut T {
3159 #[inline]
3160 fn lower_bound(&self) -> usize {
3161 SizeHint::lower_bound(*self)
3162 }
3163
3164 #[inline]
3165 fn upper_bound(&self) -> Option<usize> {
3166 SizeHint::upper_bound(*self)
3167 }
3168}
3169
3170impl<T> SizeHint for Box<T> {
3171 #[inline]
3172 fn lower_bound(&self) -> usize {
3173 SizeHint::lower_bound(&**self)
3174 }
3175
3176 #[inline]
3177 fn upper_bound(&self) -> Option<usize> {
3178 SizeHint::upper_bound(&**self)
3179 }
3180}
3181
3182impl SizeHint for &[u8] {
3183 #[inline]
3184 fn lower_bound(&self) -> usize {
3185 self.len()
3186 }
3187
3188 #[inline]
3189 fn upper_bound(&self) -> Option<usize> {
3190 Some(self.len())
3191 }
3192}
3193
3194/// An iterator over the contents of an instance of `BufRead` split on a
3195/// particular byte.
3196///
3197/// This struct is generally created by calling [`split`] on a `BufRead`.
3198/// Please see the documentation of [`split`] for more details.
3199///
3200/// [`split`]: BufRead::split
3201#[stable(feature = "rust1", since = "1.0.0")]
3202#[derive(Debug)]
3203pub struct Split<B> {
3204 buf: B,
3205 delim: u8,
3206}
3207
3208#[stable(feature = "rust1", since = "1.0.0")]
3209impl<B: BufRead> Iterator for Split<B> {
3210 type Item = Result<Vec<u8>>;
3211
3212 fn next(&mut self) -> Option<Result<Vec<u8>>> {
3213 let mut buf = Vec::new();
3214 match self.buf.read_until(self.delim, &mut buf) {
3215 Ok(0) => None,
3216 Ok(_n) => {
3217 if buf[buf.len() - 1] == self.delim {
3218 buf.pop();
3219 }
3220 Some(Ok(buf))
3221 }
3222 Err(e) => Some(Err(e)),
3223 }
3224 }
3225}
3226
3227/// An iterator over the lines of an instance of `BufRead`.
3228///
3229/// This struct is generally created by calling [`lines`] on a `BufRead`.
3230/// Please see the documentation of [`lines`] for more details.
3231///
3232/// [`lines`]: BufRead::lines
3233#[stable(feature = "rust1", since = "1.0.0")]
3234#[derive(Debug)]
3235#[cfg_attr(not(test), rustc_diagnostic_item = "IoLines")]
3236pub struct Lines<B> {
3237 buf: B,
3238}
3239
3240#[stable(feature = "rust1", since = "1.0.0")]
3241impl<B: BufRead> Iterator for Lines<B> {
3242 type Item = Result<String>;
3243
3244 fn next(&mut self) -> Option<Result<String>> {
3245 let mut buf = String::new();
3246 match self.buf.read_line(&mut buf) {
3247 Ok(0) => None,
3248 Ok(_n) => {
3249 if buf.ends_with('\n') {
3250 buf.pop();
3251 if buf.ends_with('\r') {
3252 buf.pop();
3253 }
3254 }
3255 Some(Ok(buf))
3256 }
3257 Err(e) => Some(Err(e)),
3258 }
3259 }
3260}