lynx   »   [go: up one dir, main page]

std/io/
mod.rs

1//! Traits, helpers, and type definitions for core I/O functionality.
2//!
3//! The `std::io` module contains a number of common things you'll need
4//! when doing input and output. The most core part of this module is
5//! the [`Read`] and [`Write`] traits, which provide the
6//! most general interface for reading and writing input and output.
7//!
8//! ## Read and Write
9//!
10//! Because they are traits, [`Read`] and [`Write`] are implemented by a number
11//! of other types, and you can implement them for your types too. As such,
12//! you'll see a few different types of I/O throughout the documentation in
13//! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec<T>`]s. For
14//! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on
15//! [`File`]s:
16//!
17//! ```no_run
18//! use std::io;
19//! use std::io::prelude::*;
20//! use std::fs::File;
21//!
22//! fn main() -> io::Result<()> {
23//!     let mut f = File::open("foo.txt")?;
24//!     let mut buffer = [0; 10];
25//!
26//!     // read up to 10 bytes
27//!     let n = f.read(&mut buffer)?;
28//!
29//!     println!("The bytes: {:?}", &buffer[..n]);
30//!     Ok(())
31//! }
32//! ```
33//!
34//! [`Read`] and [`Write`] are so important, implementors of the two traits have a
35//! nickname: readers and writers. So you'll sometimes see 'a reader' instead
36//! of 'a type that implements the [`Read`] trait'. Much easier!
37//!
38//! ## Seek and BufRead
39//!
40//! Beyond that, there are two important traits that are provided: [`Seek`]
41//! and [`BufRead`]. Both of these build on top of a reader to control
42//! how the reading happens. [`Seek`] lets you control where the next byte is
43//! coming from:
44//!
45//! ```no_run
46//! use std::io;
47//! use std::io::prelude::*;
48//! use std::io::SeekFrom;
49//! use std::fs::File;
50//!
51//! fn main() -> io::Result<()> {
52//!     let mut f = File::open("foo.txt")?;
53//!     let mut buffer = [0; 10];
54//!
55//!     // skip to the last 10 bytes of the file
56//!     f.seek(SeekFrom::End(-10))?;
57//!
58//!     // read up to 10 bytes
59//!     let n = f.read(&mut buffer)?;
60//!
61//!     println!("The bytes: {:?}", &buffer[..n]);
62//!     Ok(())
63//! }
64//! ```
65//!
66//! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but
67//! to show it off, we'll need to talk about buffers in general. Keep reading!
68//!
69//! ## BufReader and BufWriter
70//!
71//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
72//! making near-constant calls to the operating system. To help with this,
73//! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap
74//! readers and writers. The wrapper uses a buffer, reducing the number of
75//! calls and providing nicer methods for accessing exactly what you want.
76//!
77//! For example, [`BufReader`] works with the [`BufRead`] trait to add extra
78//! methods to any reader:
79//!
80//! ```no_run
81//! use std::io;
82//! use std::io::prelude::*;
83//! use std::io::BufReader;
84//! use std::fs::File;
85//!
86//! fn main() -> io::Result<()> {
87//!     let f = File::open("foo.txt")?;
88//!     let mut reader = BufReader::new(f);
89//!     let mut buffer = String::new();
90//!
91//!     // read a line into buffer
92//!     reader.read_line(&mut buffer)?;
93//!
94//!     println!("{buffer}");
95//!     Ok(())
96//! }
97//! ```
98//!
99//! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
100//! to [`write`][`Write::write`]:
101//!
102//! ```no_run
103//! use std::io;
104//! use std::io::prelude::*;
105//! use std::io::BufWriter;
106//! use std::fs::File;
107//!
108//! fn main() -> io::Result<()> {
109//!     let f = File::create("foo.txt")?;
110//!     {
111//!         let mut writer = BufWriter::new(f);
112//!
113//!         // write a byte to the buffer
114//!         writer.write(&[42])?;
115//!
116//!     } // the buffer is flushed once writer goes out of scope
117//!
118//!     Ok(())
119//! }
120//! ```
121//!
122//! ## Standard input and output
123//!
124//! A very common source of input is standard input:
125//!
126//! ```no_run
127//! use std::io;
128//!
129//! fn main() -> io::Result<()> {
130//!     let mut input = String::new();
131//!
132//!     io::stdin().read_line(&mut input)?;
133//!
134//!     println!("You typed: {}", input.trim());
135//!     Ok(())
136//! }
137//! ```
138//!
139//! Note that you cannot use the [`?` operator] in functions that do not return
140//! a [`Result<T, E>`][`Result`]. Instead, you can call [`.unwrap()`]
141//! or `match` on the return value to catch any possible errors:
142//!
143//! ```no_run
144//! use std::io;
145//!
146//! let mut input = String::new();
147//!
148//! io::stdin().read_line(&mut input).unwrap();
149//! ```
150//!
151//! And a very common source of output is standard output:
152//!
153//! ```no_run
154//! use std::io;
155//! use std::io::prelude::*;
156//!
157//! fn main() -> io::Result<()> {
158//!     io::stdout().write(&[42])?;
159//!     Ok(())
160//! }
161//! ```
162//!
163//! Of course, using [`io::stdout`] directly is less common than something like
164//! [`println!`].
165//!
166//! ## Iterator types
167//!
168//! A large number of the structures provided by `std::io` are for various
169//! ways of iterating over I/O. For example, [`Lines`] is used to split over
170//! lines:
171//!
172//! ```no_run
173//! use std::io;
174//! use std::io::prelude::*;
175//! use std::io::BufReader;
176//! use std::fs::File;
177//!
178//! fn main() -> io::Result<()> {
179//!     let f = File::open("foo.txt")?;
180//!     let reader = BufReader::new(f);
181//!
182//!     for line in reader.lines() {
183//!         println!("{}", line?);
184//!     }
185//!     Ok(())
186//! }
187//! ```
188//!
189//! ## Functions
190//!
191//! There are a number of [functions][functions-list] that offer access to various
192//! features. For example, we can use three of these functions to copy everything
193//! from standard input to standard output:
194//!
195//! ```no_run
196//! use std::io;
197//!
198//! fn main() -> io::Result<()> {
199//!     io::copy(&mut io::stdin(), &mut io::stdout())?;
200//!     Ok(())
201//! }
202//! ```
203//!
204//! [functions-list]: #functions-1
205//!
206//! ## io::Result
207//!
208//! Last, but certainly not least, is [`io::Result`]. This type is used
209//! as the return type of many `std::io` functions that can cause an error, and
210//! can be returned from your own functions as well. Many of the examples in this
211//! module use the [`?` operator]:
212//!
213//! ```
214//! use std::io;
215//!
216//! fn read_input() -> io::Result<()> {
217//!     let mut input = String::new();
218//!
219//!     io::stdin().read_line(&mut input)?;
220//!
221//!     println!("You typed: {}", input.trim());
222//!
223//!     Ok(())
224//! }
225//! ```
226//!
227//! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very
228//! common type for functions which don't have a 'real' return value, but do want to
229//! return errors if they happen. In this case, the only purpose of this function is
230//! to read the line and print it, so we use `()`.
231//!
232//! ## Platform-specific behavior
233//!
234//! Many I/O functions throughout the standard library are documented to indicate
235//! what various library or syscalls they are delegated to. This is done to help
236//! applications both understand what's happening under the hood as well as investigate
237//! any possibly unclear semantics. Note, however, that this is informative, not a binding
238//! contract. The implementation of many of these functions are subject to change over
239//! time and may call fewer or more syscalls/library functions.
240//!
241//! ## I/O Safety
242//!
243//! Rust follows an I/O safety discipline that is comparable to its memory safety discipline. This
244//! means that file descriptors can be *exclusively owned*. (Here, "file descriptor" is meant to
245//! subsume similar concepts that exist across a wide range of operating systems even if they might
246//! use a different name, such as "handle".) An exclusively owned file descriptor is one that no
247//! other code is allowed to access in any way, but the owner is allowed to access and even close
248//! it any time. A type that owns its file descriptor should usually close it in its `drop`
249//! function. Types like [`File`] own their file descriptor. Similarly, file descriptors
250//! can be *borrowed*, granting the temporary right to perform operations on this file descriptor.
251//! This indicates that the file descriptor will not be closed for the lifetime of the borrow, but
252//! it does *not* imply any right to close this file descriptor, since it will likely be owned by
253//! someone else.
254//!
255//! The platform-specific parts of the Rust standard library expose types that reflect these
256//! concepts, see [`os::unix`] and [`os::windows`].
257//!
258//! To uphold I/O safety, it is crucial that no code acts on file descriptors it does not own or
259//! borrow, and no code closes file descriptors it does not own. In other words, a safe function
260//! that takes a regular integer, treats it as a file descriptor, and acts on it, is *unsound*.
261//!
262//! Not upholding I/O safety and acting on a file descriptor without proof of ownership can lead to
263//! misbehavior and even Undefined Behavior in code that relies on ownership of its file
264//! descriptors: a closed file descriptor could be re-allocated, so the original owner of that file
265//! descriptor is now working on the wrong file. Some code might even rely on fully encapsulating
266//! its file descriptors with no operations being performed by any other part of the program.
267//!
268//! Note that exclusive ownership of a file descriptor does *not* imply exclusive ownership of the
269//! underlying kernel object that the file descriptor references (also called "open file description" on
270//! some operating systems). File descriptors basically work like [`Arc`]: when you receive an owned
271//! file descriptor, you cannot know whether there are any other file descriptors that reference the
272//! same kernel object. However, when you create a new kernel object, you know that you are holding
273//! the only reference to it. Just be careful not to lend it to anyone, since they can obtain a
274//! clone and then you can no longer know what the reference count is! In that sense, [`OwnedFd`] is
275//! like `Arc` and [`BorrowedFd<'a>`] is like `&'a Arc` (and similar for the Windows types). In
276//! particular, given a `BorrowedFd<'a>`, you are not allowed to close the file descriptor -- just
277//! like how, given a `&'a Arc`, you are not allowed to decrement the reference count and
278//! potentially free the underlying object. There is no equivalent to `Box` for file descriptors in
279//! the standard library (that would be a type that guarantees that the reference count is `1`),
280//! however, it would be possible for a crate to define a type with those semantics.
281//!
282//! [`File`]: crate::fs::File
283//! [`TcpStream`]: crate::net::TcpStream
284//! [`io::stdout`]: stdout
285//! [`io::Result`]: self::Result
286//! [`?` operator]: ../../book/appendix-02-operators.html
287//! [`Result`]: crate::result::Result
288//! [`.unwrap()`]: crate::result::Result::unwrap
289//! [`os::unix`]: ../os/unix/io/index.html
290//! [`os::windows`]: ../os/windows/io/index.html
291//! [`OwnedFd`]: ../os/fd/struct.OwnedFd.html
292//! [`BorrowedFd<'a>`]: ../os/fd/struct.BorrowedFd.html
293//! [`Arc`]: crate::sync::Arc
294
295#![stable(feature = "rust1", since = "1.0.0")]
296
297#[cfg(test)]
298mod tests;
299
300#[unstable(feature = "read_buf", issue = "78485")]
301pub use core::io::{BorrowedBuf, BorrowedCursor};
302use core::slice::memchr;
303
304#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
305pub use self::buffered::WriterPanicked;
306#[unstable(feature = "raw_os_error_ty", issue = "107792")]
307pub use self::error::RawOsError;
308#[doc(hidden)]
309#[unstable(feature = "io_const_error_internals", issue = "none")]
310pub use self::error::SimpleMessage;
311#[unstable(feature = "io_const_error", issue = "133448")]
312pub use self::error::const_error;
313#[stable(feature = "anonymous_pipe", since = "CURRENT_RUSTC_VERSION")]
314pub use self::pipe::{PipeReader, PipeWriter, pipe};
315#[stable(feature = "is_terminal", since = "1.70.0")]
316pub use self::stdio::IsTerminal;
317pub(crate) use self::stdio::attempt_print_to_stderr;
318#[unstable(feature = "print_internals", issue = "none")]
319#[doc(hidden)]
320pub use self::stdio::{_eprint, _print};
321#[unstable(feature = "internal_output_capture", issue = "none")]
322#[doc(no_inline, hidden)]
323pub use self::stdio::{set_output_capture, try_set_output_capture};
324#[stable(feature = "rust1", since = "1.0.0")]
325pub use self::{
326    buffered::{BufReader, BufWriter, IntoInnerError, LineWriter},
327    copy::copy,
328    cursor::Cursor,
329    error::{Error, ErrorKind, Result},
330    stdio::{Stderr, StderrLock, Stdin, StdinLock, Stdout, StdoutLock, stderr, stdin, stdout},
331    util::{Empty, Repeat, Sink, empty, repeat, sink},
332};
333use crate::mem::take;
334use crate::ops::{Deref, DerefMut};
335use crate::{cmp, fmt, slice, str, sys};
336
337mod buffered;
338pub(crate) mod copy;
339mod cursor;
340mod error;
341mod impls;
342mod pipe;
343pub mod prelude;
344mod stdio;
345mod util;
346
347const DEFAULT_BUF_SIZE: usize = crate::sys::io::DEFAULT_BUF_SIZE;
348
349pub(crate) use stdio::cleanup;
350
351struct Guard<'a> {
352    buf: &'a mut Vec<u8>,
353    len: usize,
354}
355
356impl Drop for Guard<'_> {
357    fn drop(&mut self) {
358        unsafe {
359            self.buf.set_len(self.len);
360        }
361    }
362}
363
364// Several `read_to_string` and `read_line` methods in the standard library will
365// append data into a `String` buffer, but we need to be pretty careful when
366// doing this. The implementation will just call `.as_mut_vec()` and then
367// delegate to a byte-oriented reading method, but we must ensure that when
368// returning we never leave `buf` in a state such that it contains invalid UTF-8
369// in its bounds.
370//
371// To this end, we use an RAII guard (to protect against panics) which updates
372// the length of the string when it is dropped. This guard initially truncates
373// the string to the prior length and only after we've validated that the
374// new contents are valid UTF-8 do we allow it to set a longer length.
375//
376// The unsafety in this function is twofold:
377//
378// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
379//    checks.
380// 2. We're passing a raw buffer to the function `f`, and it is expected that
381//    the function only *appends* bytes to the buffer. We'll get undefined
382//    behavior if existing bytes are overwritten to have non-UTF-8 data.
383pub(crate) unsafe fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
384where
385    F: FnOnce(&mut Vec<u8>) -> Result<usize>,
386{
387    let mut g = Guard { len: buf.len(), buf: unsafe { buf.as_mut_vec() } };
388    let ret = f(g.buf);
389
390    // SAFETY: the caller promises to only append data to `buf`
391    let appended = unsafe { g.buf.get_unchecked(g.len..) };
392    if str::from_utf8(appended).is_err() {
393        ret.and_then(|_| Err(Error::INVALID_UTF8))
394    } else {
395        g.len = g.buf.len();
396        ret
397    }
398}
399
400// Here we must serve many masters with conflicting goals:
401//
402// - avoid allocating unless necessary
403// - avoid overallocating if we know the exact size (#89165)
404// - avoid passing large buffers to readers that always initialize the free capacity if they perform short reads (#23815, #23820)
405// - pass large buffers to readers that do not initialize the spare capacity. this can amortize per-call overheads
406// - and finally pass not-too-small and not-too-large buffers to Windows read APIs because they manage to suffer from both problems
407//   at the same time, i.e. small reads suffer from syscall overhead, all reads incur costs proportional to buffer size (#110650)
408//
409pub(crate) fn default_read_to_end<R: Read + ?Sized>(
410    r: &mut R,
411    buf: &mut Vec<u8>,
412    size_hint: Option<usize>,
413) -> Result<usize> {
414    let start_len = buf.len();
415    let start_cap = buf.capacity();
416    // Optionally limit the maximum bytes read on each iteration.
417    // This adds an arbitrary fiddle factor to allow for more data than we expect.
418    let mut max_read_size = size_hint
419        .and_then(|s| s.checked_add(1024)?.checked_next_multiple_of(DEFAULT_BUF_SIZE))
420        .unwrap_or(DEFAULT_BUF_SIZE);
421
422    let mut initialized = 0; // Extra initialized bytes from previous loop iteration
423
424    const PROBE_SIZE: usize = 32;
425
426    fn small_probe_read<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
427        let mut probe = [0u8; PROBE_SIZE];
428
429        loop {
430            match r.read(&mut probe) {
431                Ok(n) => {
432                    // there is no way to recover from allocation failure here
433                    // because the data has already been read.
434                    buf.extend_from_slice(&probe[..n]);
435                    return Ok(n);
436                }
437                Err(ref e) if e.is_interrupted() => continue,
438                Err(e) => return Err(e),
439            }
440        }
441    }
442
443    // avoid inflating empty/small vecs before we have determined that there's anything to read
444    if (size_hint.is_none() || size_hint == Some(0)) && buf.capacity() - buf.len() < PROBE_SIZE {
445        let read = small_probe_read(r, buf)?;
446
447        if read == 0 {
448            return Ok(0);
449        }
450    }
451
452    let mut consecutive_short_reads = 0;
453
454    loop {
455        if buf.len() == buf.capacity() && buf.capacity() == start_cap {
456            // The buffer might be an exact fit. Let's read into a probe buffer
457            // and see if it returns `Ok(0)`. If so, we've avoided an
458            // unnecessary doubling of the capacity. But if not, append the
459            // probe buffer to the primary buffer and let its capacity grow.
460            let read = small_probe_read(r, buf)?;
461
462            if read == 0 {
463                return Ok(buf.len() - start_len);
464            }
465        }
466
467        if buf.len() == buf.capacity() {
468            // buf is full, need more space
469            buf.try_reserve(PROBE_SIZE)?;
470        }
471
472        let mut spare = buf.spare_capacity_mut();
473        let buf_len = cmp::min(spare.len(), max_read_size);
474        spare = &mut spare[..buf_len];
475        let mut read_buf: BorrowedBuf<'_> = spare.into();
476
477        // SAFETY: These bytes were initialized but not filled in the previous loop
478        unsafe {
479            read_buf.set_init(initialized);
480        }
481
482        let mut cursor = read_buf.unfilled();
483        let result = loop {
484            match r.read_buf(cursor.reborrow()) {
485                Err(e) if e.is_interrupted() => continue,
486                // Do not stop now in case of error: we might have received both data
487                // and an error
488                res => break res,
489            }
490        };
491
492        let unfilled_but_initialized = cursor.init_ref().len();
493        let bytes_read = cursor.written();
494        let was_fully_initialized = read_buf.init_len() == buf_len;
495
496        // SAFETY: BorrowedBuf's invariants mean this much memory is initialized.
497        unsafe {
498            let new_len = bytes_read + buf.len();
499            buf.set_len(new_len);
500        }
501
502        // Now that all data is pushed to the vector, we can fail without data loss
503        result?;
504
505        if bytes_read == 0 {
506            return Ok(buf.len() - start_len);
507        }
508
509        if bytes_read < buf_len {
510            consecutive_short_reads += 1;
511        } else {
512            consecutive_short_reads = 0;
513        }
514
515        // store how much was initialized but not filled
516        initialized = unfilled_but_initialized;
517
518        // Use heuristics to determine the max read size if no initial size hint was provided
519        if size_hint.is_none() {
520            // The reader is returning short reads but it doesn't call ensure_init().
521            // In that case we no longer need to restrict read sizes to avoid
522            // initialization costs.
523            // When reading from disk we usually don't get any short reads except at EOF.
524            // So we wait for at least 2 short reads before uncapping the read buffer;
525            // this helps with the Windows issue.
526            if !was_fully_initialized && consecutive_short_reads > 1 {
527                max_read_size = usize::MAX;
528            }
529
530            // we have passed a larger buffer than previously and the
531            // reader still hasn't returned a short read
532            if buf_len >= max_read_size && bytes_read == buf_len {
533                max_read_size = max_read_size.saturating_mul(2);
534            }
535        }
536    }
537}
538
539pub(crate) fn default_read_to_string<R: Read + ?Sized>(
540    r: &mut R,
541    buf: &mut String,
542    size_hint: Option<usize>,
543) -> Result<usize> {
544    // Note that we do *not* call `r.read_to_end()` here. We are passing
545    // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
546    // method to fill it up. An arbitrary implementation could overwrite the
547    // entire contents of the vector, not just append to it (which is what
548    // we are expecting).
549    //
550    // To prevent extraneously checking the UTF-8-ness of the entire buffer
551    // we pass it to our hardcoded `default_read_to_end` implementation which
552    // we know is guaranteed to only read data into the end of the buffer.
553    unsafe { append_to_string(buf, |b| default_read_to_end(r, b, size_hint)) }
554}
555
556pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
557where
558    F: FnOnce(&mut [u8]) -> Result<usize>,
559{
560    let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
561    read(buf)
562}
563
564pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
565where
566    F: FnOnce(&[u8]) -> Result<usize>,
567{
568    let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
569    write(buf)
570}
571
572pub(crate) fn default_read_exact<R: Read + ?Sized>(this: &mut R, mut buf: &mut [u8]) -> Result<()> {
573    while !buf.is_empty() {
574        match this.read(buf) {
575            Ok(0) => break,
576            Ok(n) => {
577                buf = &mut buf[n..];
578            }
579            Err(ref e) if e.is_interrupted() => {}
580            Err(e) => return Err(e),
581        }
582    }
583    if !buf.is_empty() { Err(Error::READ_EXACT_EOF) } else { Ok(()) }
584}
585
586pub(crate) fn default_read_buf<F>(read: F, mut cursor: BorrowedCursor<'_>) -> Result<()>
587where
588    F: FnOnce(&mut [u8]) -> Result<usize>,
589{
590    let n = read(cursor.ensure_init().init_mut())?;
591    cursor.advance(n);
592    Ok(())
593}
594
595pub(crate) fn default_read_buf_exact<R: Read + ?Sized>(
596    this: &mut R,
597    mut cursor: BorrowedCursor<'_>,
598) -> Result<()> {
599    while cursor.capacity() > 0 {
600        let prev_written = cursor.written();
601        match this.read_buf(cursor.reborrow()) {
602            Ok(()) => {}
603            Err(e) if e.is_interrupted() => continue,
604            Err(e) => return Err(e),
605        }
606
607        if cursor.written() == prev_written {
608            return Err(Error::READ_EXACT_EOF);
609        }
610    }
611
612    Ok(())
613}
614
615pub(crate) fn default_write_fmt<W: Write + ?Sized>(
616    this: &mut W,
617    args: fmt::Arguments<'_>,
618) -> Result<()> {
619    // Create a shim which translates a `Write` to a `fmt::Write` and saves off
620    // I/O errors, instead of discarding them.
621    struct Adapter<'a, T: ?Sized + 'a> {
622        inner: &'a mut T,
623        error: Result<()>,
624    }
625
626    impl<T: Write + ?Sized> fmt::Write for Adapter<'_, T> {
627        fn write_str(&mut self, s: &str) -> fmt::Result {
628            match self.inner.write_all(s.as_bytes()) {
629                Ok(()) => Ok(()),
630                Err(e) => {
631                    self.error = Err(e);
632                    Err(fmt::Error)
633                }
634            }
635        }
636    }
637
638    let mut output = Adapter { inner: this, error: Ok(()) };
639    match fmt::write(&mut output, args) {
640        Ok(()) => Ok(()),
641        Err(..) => {
642            // Check whether the error came from the underlying `Write`.
643            if output.error.is_err() {
644                output.error
645            } else {
646                // This shouldn't happen: the underlying stream did not error,
647                // but somehow the formatter still errored?
648                panic!(
649                    "a formatting trait implementation returned an error when the underlying stream did not"
650                );
651            }
652        }
653    }
654}
655
656/// The `Read` trait allows for reading bytes from a source.
657///
658/// Implementors of the `Read` trait are called 'readers'.
659///
660/// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
661/// will attempt to pull bytes from this source into a provided buffer. A
662/// number of other methods are implemented in terms of [`read()`], giving
663/// implementors a number of ways to read bytes while only needing to implement
664/// a single method.
665///
666/// Readers are intended to be composable with one another. Many implementors
667/// throughout [`std::io`] take and provide types which implement the `Read`
668/// trait.
669///
670/// Please note that each call to [`read()`] may involve a system call, and
671/// therefore, using something that implements [`BufRead`], such as
672/// [`BufReader`], will be more efficient.
673///
674/// Repeated calls to the reader use the same cursor, so for example
675/// calling `read_to_end` twice on a [`File`] will only return the file's
676/// contents once. It's recommended to first call `rewind()` in that case.
677///
678/// # Examples
679///
680/// [`File`]s implement `Read`:
681///
682/// ```no_run
683/// use std::io;
684/// use std::io::prelude::*;
685/// use std::fs::File;
686///
687/// fn main() -> io::Result<()> {
688///     let mut f = File::open("foo.txt")?;
689///     let mut buffer = [0; 10];
690///
691///     // read up to 10 bytes
692///     f.read(&mut buffer)?;
693///
694///     let mut buffer = Vec::new();
695///     // read the whole file
696///     f.read_to_end(&mut buffer)?;
697///
698///     // read into a String, so that you don't need to do the conversion.
699///     let mut buffer = String::new();
700///     f.read_to_string(&mut buffer)?;
701///
702///     // and more! See the other methods for more details.
703///     Ok(())
704/// }
705/// ```
706///
707/// Read from [`&str`] because [`&[u8]`][prim@slice] implements `Read`:
708///
709/// ```no_run
710/// # use std::io;
711/// use std::io::prelude::*;
712///
713/// fn main() -> io::Result<()> {
714///     let mut b = "This string will be read".as_bytes();
715///     let mut buffer = [0; 10];
716///
717///     // read up to 10 bytes
718///     b.read(&mut buffer)?;
719///
720///     // etc... it works exactly as a File does!
721///     Ok(())
722/// }
723/// ```
724///
725/// [`read()`]: Read::read
726/// [`&str`]: prim@str
727/// [`std::io`]: self
728/// [`File`]: crate::fs::File
729#[stable(feature = "rust1", since = "1.0.0")]
730#[doc(notable_trait)]
731#[cfg_attr(not(test), rustc_diagnostic_item = "IoRead")]
732pub trait Read {
733    /// Pull some bytes from this source into the specified buffer, returning
734    /// how many bytes were read.
735    ///
736    /// This function does not provide any guarantees about whether it blocks
737    /// waiting for data, but if an object needs to block for a read and cannot,
738    /// it will typically signal this via an [`Err`] return value.
739    ///
740    /// If the return value of this method is [`Ok(n)`], then implementations must
741    /// guarantee that `0 <= n <= buf.len()`. A nonzero `n` value indicates
742    /// that the buffer `buf` has been filled in with `n` bytes of data from this
743    /// source. If `n` is `0`, then it can indicate one of two scenarios:
744    ///
745    /// 1. This reader has reached its "end of file" and will likely no longer
746    ///    be able to produce bytes. Note that this does not mean that the
747    ///    reader will *always* no longer be able to produce bytes. As an example,
748    ///    on Linux, this method will call the `recv` syscall for a [`TcpStream`],
749    ///    where returning zero indicates the connection was shut down correctly. While
750    ///    for [`File`], it is possible to reach the end of file and get zero as result,
751    ///    but if more data is appended to the file, future calls to `read` will return
752    ///    more data.
753    /// 2. The buffer specified was 0 bytes in length.
754    ///
755    /// It is not an error if the returned value `n` is smaller than the buffer size,
756    /// even when the reader is not at the end of the stream yet.
757    /// This may happen for example because fewer bytes are actually available right now
758    /// (e. g. being close to end-of-file) or because read() was interrupted by a signal.
759    ///
760    /// As this trait is safe to implement, callers in unsafe code cannot rely on
761    /// `n <= buf.len()` for safety.
762    /// Extra care needs to be taken when `unsafe` functions are used to access the read bytes.
763    /// Callers have to ensure that no unchecked out-of-bounds accesses are possible even if
764    /// `n > buf.len()`.
765    ///
766    /// *Implementations* of this method can make no assumptions about the contents of `buf` when
767    /// this function is called. It is recommended that implementations only write data to `buf`
768    /// instead of reading its contents.
769    ///
770    /// Correspondingly, however, *callers* of this method in unsafe code must not assume
771    /// any guarantees about how the implementation uses `buf`. The trait is safe to implement,
772    /// so it is possible that the code that's supposed to write to the buffer might also read
773    /// from it. It is your responsibility to make sure that `buf` is initialized
774    /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
775    /// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
776    ///
777    /// [`MaybeUninit<T>`]: crate::mem::MaybeUninit
778    ///
779    /// # Errors
780    ///
781    /// If this function encounters any form of I/O or other error, an error
782    /// variant will be returned. If an error is returned then it must be
783    /// guaranteed that no bytes were read.
784    ///
785    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
786    /// operation should be retried if there is nothing else to do.
787    ///
788    /// # Examples
789    ///
790    /// [`File`]s implement `Read`:
791    ///
792    /// [`Ok(n)`]: Ok
793    /// [`File`]: crate::fs::File
794    /// [`TcpStream`]: crate::net::TcpStream
795    ///
796    /// ```no_run
797    /// use std::io;
798    /// use std::io::prelude::*;
799    /// use std::fs::File;
800    ///
801    /// fn main() -> io::Result<()> {
802    ///     let mut f = File::open("foo.txt")?;
803    ///     let mut buffer = [0; 10];
804    ///
805    ///     // read up to 10 bytes
806    ///     let n = f.read(&mut buffer[..])?;
807    ///
808    ///     println!("The bytes: {:?}", &buffer[..n]);
809    ///     Ok(())
810    /// }
811    /// ```
812    #[stable(feature = "rust1", since = "1.0.0")]
813    fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
814
815    /// Like `read`, except that it reads into a slice of buffers.
816    ///
817    /// Data is copied to fill each buffer in order, with the final buffer
818    /// written to possibly being only partially filled. This method must
819    /// behave equivalently to a single call to `read` with concatenated
820    /// buffers.
821    ///
822    /// The default implementation calls `read` with either the first nonempty
823    /// buffer provided, or an empty one if none exists.
824    #[stable(feature = "iovec", since = "1.36.0")]
825    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
826        default_read_vectored(|b| self.read(b), bufs)
827    }
828
829    /// Determines if this `Read`er has an efficient `read_vectored`
830    /// implementation.
831    ///
832    /// If a `Read`er does not override the default `read_vectored`
833    /// implementation, code using it may want to avoid the method all together
834    /// and coalesce writes into a single buffer for higher performance.
835    ///
836    /// The default implementation returns `false`.
837    #[unstable(feature = "can_vector", issue = "69941")]
838    fn is_read_vectored(&self) -> bool {
839        false
840    }
841
842    /// Reads all bytes until EOF in this source, placing them into `buf`.
843    ///
844    /// All bytes read from this source will be appended to the specified buffer
845    /// `buf`. This function will continuously call [`read()`] to append more data to
846    /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
847    /// non-[`ErrorKind::Interrupted`] kind.
848    ///
849    /// If successful, this function will return the total number of bytes read.
850    ///
851    /// # Errors
852    ///
853    /// If this function encounters an error of the kind
854    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
855    /// will continue.
856    ///
857    /// If any other read error is encountered then this function immediately
858    /// returns. Any bytes which have already been read will be appended to
859    /// `buf`.
860    ///
861    /// # Examples
862    ///
863    /// [`File`]s implement `Read`:
864    ///
865    /// [`read()`]: Read::read
866    /// [`Ok(0)`]: Ok
867    /// [`File`]: crate::fs::File
868    ///
869    /// ```no_run
870    /// use std::io;
871    /// use std::io::prelude::*;
872    /// use std::fs::File;
873    ///
874    /// fn main() -> io::Result<()> {
875    ///     let mut f = File::open("foo.txt")?;
876    ///     let mut buffer = Vec::new();
877    ///
878    ///     // read the whole file
879    ///     f.read_to_end(&mut buffer)?;
880    ///     Ok(())
881    /// }
882    /// ```
883    ///
884    /// (See also the [`std::fs::read`] convenience function for reading from a
885    /// file.)
886    ///
887    /// [`std::fs::read`]: crate::fs::read
888    ///
889    /// ## Implementing `read_to_end`
890    ///
891    /// When implementing the `io::Read` trait, it is recommended to allocate
892    /// memory using [`Vec::try_reserve`]. However, this behavior is not guaranteed
893    /// by all implementations, and `read_to_end` may not handle out-of-memory
894    /// situations gracefully.
895    ///
896    /// ```no_run
897    /// # use std::io::{self, BufRead};
898    /// # struct Example { example_datasource: io::Empty } impl Example {
899    /// # fn get_some_data_for_the_example(&self) -> &'static [u8] { &[] }
900    /// fn read_to_end(&mut self, dest_vec: &mut Vec<u8>) -> io::Result<usize> {
901    ///     let initial_vec_len = dest_vec.len();
902    ///     loop {
903    ///         let src_buf = self.example_datasource.fill_buf()?;
904    ///         if src_buf.is_empty() {
905    ///             break;
906    ///         }
907    ///         dest_vec.try_reserve(src_buf.len())?;
908    ///         dest_vec.extend_from_slice(src_buf);
909    ///
910    ///         // Any irreversible side effects should happen after `try_reserve` succeeds,
911    ///         // to avoid losing data on allocation error.
912    ///         let read = src_buf.len();
913    ///         self.example_datasource.consume(read);
914    ///     }
915    ///     Ok(dest_vec.len() - initial_vec_len)
916    /// }
917    /// # }
918    /// ```
919    ///
920    /// [`Vec::try_reserve`]: crate::vec::Vec::try_reserve
921    #[stable(feature = "rust1", since = "1.0.0")]
922    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
923        default_read_to_end(self, buf, None)
924    }
925
926    /// Reads all bytes until EOF in this source, appending them to `buf`.
927    ///
928    /// If successful, this function returns the number of bytes which were read
929    /// and appended to `buf`.
930    ///
931    /// # Errors
932    ///
933    /// If the data in this stream is *not* valid UTF-8 then an error is
934    /// returned and `buf` is unchanged.
935    ///
936    /// See [`read_to_end`] for other error semantics.
937    ///
938    /// [`read_to_end`]: Read::read_to_end
939    ///
940    /// # Examples
941    ///
942    /// [`File`]s implement `Read`:
943    ///
944    /// [`File`]: crate::fs::File
945    ///
946    /// ```no_run
947    /// use std::io;
948    /// use std::io::prelude::*;
949    /// use std::fs::File;
950    ///
951    /// fn main() -> io::Result<()> {
952    ///     let mut f = File::open("foo.txt")?;
953    ///     let mut buffer = String::new();
954    ///
955    ///     f.read_to_string(&mut buffer)?;
956    ///     Ok(())
957    /// }
958    /// ```
959    ///
960    /// (See also the [`std::fs::read_to_string`] convenience function for
961    /// reading from a file.)
962    ///
963    /// [`std::fs::read_to_string`]: crate::fs::read_to_string
964    #[stable(feature = "rust1", since = "1.0.0")]
965    fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
966        default_read_to_string(self, buf, None)
967    }
968
969    /// Reads the exact number of bytes required to fill `buf`.
970    ///
971    /// This function reads as many bytes as necessary to completely fill the
972    /// specified buffer `buf`.
973    ///
974    /// *Implementations* of this method can make no assumptions about the contents of `buf` when
975    /// this function is called. It is recommended that implementations only write data to `buf`
976    /// instead of reading its contents. The documentation on [`read`] has a more detailed
977    /// explanation of this subject.
978    ///
979    /// # Errors
980    ///
981    /// If this function encounters an error of the kind
982    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
983    /// will continue.
984    ///
985    /// If this function encounters an "end of file" before completely filling
986    /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
987    /// The contents of `buf` are unspecified in this case.
988    ///
989    /// If any other read error is encountered then this function immediately
990    /// returns. The contents of `buf` are unspecified in this case.
991    ///
992    /// If this function returns an error, it is unspecified how many bytes it
993    /// has read, but it will never read more than would be necessary to
994    /// completely fill the buffer.
995    ///
996    /// # Examples
997    ///
998    /// [`File`]s implement `Read`:
999    ///
1000    /// [`read`]: Read::read
1001    /// [`File`]: crate::fs::File
1002    ///
1003    /// ```no_run
1004    /// use std::io;
1005    /// use std::io::prelude::*;
1006    /// use std::fs::File;
1007    ///
1008    /// fn main() -> io::Result<()> {
1009    ///     let mut f = File::open("foo.txt")?;
1010    ///     let mut buffer = [0; 10];
1011    ///
1012    ///     // read exactly 10 bytes
1013    ///     f.read_exact(&mut buffer)?;
1014    ///     Ok(())
1015    /// }
1016    /// ```
1017    #[stable(feature = "read_exact", since = "1.6.0")]
1018    fn read_exact(&mut self, buf: &mut [u8]) -> Result<()> {
1019        default_read_exact(self, buf)
1020    }
1021
1022    /// Pull some bytes from this source into the specified buffer.
1023    ///
1024    /// This is equivalent to the [`read`](Read::read) method, except that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
1025    /// with uninitialized buffers. The new data will be appended to any existing contents of `buf`.
1026    ///
1027    /// The default implementation delegates to `read`.
1028    ///
1029    /// This method makes it possible to return both data and an error but it is advised against.
1030    #[unstable(feature = "read_buf", issue = "78485")]
1031    fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<()> {
1032        default_read_buf(|b| self.read(b), buf)
1033    }
1034
1035    /// Reads the exact number of bytes required to fill `cursor`.
1036    ///
1037    /// This is similar to the [`read_exact`](Read::read_exact) method, except
1038    /// that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
1039    /// with uninitialized buffers.
1040    ///
1041    /// # Errors
1042    ///
1043    /// If this function encounters an error of the kind [`ErrorKind::Interrupted`]
1044    /// then the error is ignored and the operation will continue.
1045    ///
1046    /// If this function encounters an "end of file" before completely filling
1047    /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
1048    ///
1049    /// If any other read error is encountered then this function immediately
1050    /// returns.
1051    ///
1052    /// If this function returns an error, all bytes read will be appended to `cursor`.
1053    #[unstable(feature = "read_buf", issue = "78485")]
1054    fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<()> {
1055        default_read_buf_exact(self, cursor)
1056    }
1057
1058    /// Creates a "by reference" adaptor for this instance of `Read`.
1059    ///
1060    /// The returned adapter also implements `Read` and will simply borrow this
1061    /// current reader.
1062    ///
1063    /// # Examples
1064    ///
1065    /// [`File`]s implement `Read`:
1066    ///
1067    /// [`File`]: crate::fs::File
1068    ///
1069    /// ```no_run
1070    /// use std::io;
1071    /// use std::io::Read;
1072    /// use std::fs::File;
1073    ///
1074    /// fn main() -> io::Result<()> {
1075    ///     let mut f = File::open("foo.txt")?;
1076    ///     let mut buffer = Vec::new();
1077    ///     let mut other_buffer = Vec::new();
1078    ///
1079    ///     {
1080    ///         let reference = f.by_ref();
1081    ///
1082    ///         // read at most 5 bytes
1083    ///         reference.take(5).read_to_end(&mut buffer)?;
1084    ///
1085    ///     } // drop our &mut reference so we can use f again
1086    ///
1087    ///     // original file still usable, read the rest
1088    ///     f.read_to_end(&mut other_buffer)?;
1089    ///     Ok(())
1090    /// }
1091    /// ```
1092    #[stable(feature = "rust1", since = "1.0.0")]
1093    fn by_ref(&mut self) -> &mut Self
1094    where
1095        Self: Sized,
1096    {
1097        self
1098    }
1099
1100    /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
1101    ///
1102    /// The returned type implements [`Iterator`] where the [`Item`] is
1103    /// <code>[Result]<[u8], [io::Error]></code>.
1104    /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
1105    /// otherwise. EOF is mapped to returning [`None`] from this iterator.
1106    ///
1107    /// The default implementation calls `read` for each byte,
1108    /// which can be very inefficient for data that's not in memory,
1109    /// such as [`File`]. Consider using a [`BufReader`] in such cases.
1110    ///
1111    /// # Examples
1112    ///
1113    /// [`File`]s implement `Read`:
1114    ///
1115    /// [`Item`]: Iterator::Item
1116    /// [`File`]: crate::fs::File "fs::File"
1117    /// [Result]: crate::result::Result "Result"
1118    /// [io::Error]: self::Error "io::Error"
1119    ///
1120    /// ```no_run
1121    /// use std::io;
1122    /// use std::io::prelude::*;
1123    /// use std::io::BufReader;
1124    /// use std::fs::File;
1125    ///
1126    /// fn main() -> io::Result<()> {
1127    ///     let f = BufReader::new(File::open("foo.txt")?);
1128    ///
1129    ///     for byte in f.bytes() {
1130    ///         println!("{}", byte?);
1131    ///     }
1132    ///     Ok(())
1133    /// }
1134    /// ```
1135    #[stable(feature = "rust1", since = "1.0.0")]
1136    fn bytes(self) -> Bytes<Self>
1137    where
1138        Self: Sized,
1139    {
1140        Bytes { inner: self }
1141    }
1142
1143    /// Creates an adapter which will chain this stream with another.
1144    ///
1145    /// The returned `Read` instance will first read all bytes from this object
1146    /// until EOF is encountered. Afterwards the output is equivalent to the
1147    /// output of `next`.
1148    ///
1149    /// # Examples
1150    ///
1151    /// [`File`]s implement `Read`:
1152    ///
1153    /// [`File`]: crate::fs::File
1154    ///
1155    /// ```no_run
1156    /// use std::io;
1157    /// use std::io::prelude::*;
1158    /// use std::fs::File;
1159    ///
1160    /// fn main() -> io::Result<()> {
1161    ///     let f1 = File::open("foo.txt")?;
1162    ///     let f2 = File::open("bar.txt")?;
1163    ///
1164    ///     let mut handle = f1.chain(f2);
1165    ///     let mut buffer = String::new();
1166    ///
1167    ///     // read the value into a String. We could use any Read method here,
1168    ///     // this is just one example.
1169    ///     handle.read_to_string(&mut buffer)?;
1170    ///     Ok(())
1171    /// }
1172    /// ```
1173    #[stable(feature = "rust1", since = "1.0.0")]
1174    fn chain<R: Read>(self, next: R) -> Chain<Self, R>
1175    where
1176        Self: Sized,
1177    {
1178        Chain { first: self, second: next, done_first: false }
1179    }
1180
1181    /// Creates an adapter which will read at most `limit` bytes from it.
1182    ///
1183    /// This function returns a new instance of `Read` which will read at most
1184    /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
1185    /// read errors will not count towards the number of bytes read and future
1186    /// calls to [`read()`] may succeed.
1187    ///
1188    /// # Examples
1189    ///
1190    /// [`File`]s implement `Read`:
1191    ///
1192    /// [`File`]: crate::fs::File
1193    /// [`Ok(0)`]: Ok
1194    /// [`read()`]: Read::read
1195    ///
1196    /// ```no_run
1197    /// use std::io;
1198    /// use std::io::prelude::*;
1199    /// use std::fs::File;
1200    ///
1201    /// fn main() -> io::Result<()> {
1202    ///     let f = File::open("foo.txt")?;
1203    ///     let mut buffer = [0; 5];
1204    ///
1205    ///     // read at most five bytes
1206    ///     let mut handle = f.take(5);
1207    ///
1208    ///     handle.read(&mut buffer)?;
1209    ///     Ok(())
1210    /// }
1211    /// ```
1212    #[stable(feature = "rust1", since = "1.0.0")]
1213    fn take(self, limit: u64) -> Take<Self>
1214    where
1215        Self: Sized,
1216    {
1217        Take { inner: self, limit }
1218    }
1219}
1220
1221/// Reads all bytes from a [reader][Read] into a new [`String`].
1222///
1223/// This is a convenience function for [`Read::read_to_string`]. Using this
1224/// function avoids having to create a variable first and provides more type
1225/// safety since you can only get the buffer out if there were no errors. (If you
1226/// use [`Read::read_to_string`] you have to remember to check whether the read
1227/// succeeded because otherwise your buffer will be empty or only partially full.)
1228///
1229/// # Performance
1230///
1231/// The downside of this function's increased ease of use and type safety is
1232/// that it gives you less control over performance. For example, you can't
1233/// pre-allocate memory like you can using [`String::with_capacity`] and
1234/// [`Read::read_to_string`]. Also, you can't re-use the buffer if an error
1235/// occurs while reading.
1236///
1237/// In many cases, this function's performance will be adequate and the ease of use
1238/// and type safety tradeoffs will be worth it. However, there are cases where you
1239/// need more control over performance, and in those cases you should definitely use
1240/// [`Read::read_to_string`] directly.
1241///
1242/// Note that in some special cases, such as when reading files, this function will
1243/// pre-allocate memory based on the size of the input it is reading. In those
1244/// cases, the performance should be as good as if you had used
1245/// [`Read::read_to_string`] with a manually pre-allocated buffer.
1246///
1247/// # Errors
1248///
1249/// This function forces you to handle errors because the output (the `String`)
1250/// is wrapped in a [`Result`]. See [`Read::read_to_string`] for the errors
1251/// that can occur. If any error occurs, you will get an [`Err`], so you
1252/// don't have to worry about your buffer being empty or partially full.
1253///
1254/// # Examples
1255///
1256/// ```no_run
1257/// # use std::io;
1258/// fn main() -> io::Result<()> {
1259///     let stdin = io::read_to_string(io::stdin())?;
1260///     println!("Stdin was:");
1261///     println!("{stdin}");
1262///     Ok(())
1263/// }
1264/// ```
1265#[stable(feature = "io_read_to_string", since = "1.65.0")]
1266pub fn read_to_string<R: Read>(mut reader: R) -> Result<String> {
1267    let mut buf = String::new();
1268    reader.read_to_string(&mut buf)?;
1269    Ok(buf)
1270}
1271
1272/// A buffer type used with `Read::read_vectored`.
1273///
1274/// It is semantically a wrapper around a `&mut [u8]`, but is guaranteed to be
1275/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1276/// Windows.
1277#[stable(feature = "iovec", since = "1.36.0")]
1278#[repr(transparent)]
1279pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);
1280
1281#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1282unsafe impl<'a> Send for IoSliceMut<'a> {}
1283
1284#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1285unsafe impl<'a> Sync for IoSliceMut<'a> {}
1286
1287#[stable(feature = "iovec", since = "1.36.0")]
1288impl<'a> fmt::Debug for IoSliceMut<'a> {
1289    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1290        fmt::Debug::fmt(self.0.as_slice(), fmt)
1291    }
1292}
1293
1294impl<'a> IoSliceMut<'a> {
1295    /// Creates a new `IoSliceMut` wrapping a byte slice.
1296    ///
1297    /// # Panics
1298    ///
1299    /// Panics on Windows if the slice is larger than 4GB.
1300    #[stable(feature = "iovec", since = "1.36.0")]
1301    #[inline]
1302    pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
1303        IoSliceMut(sys::io::IoSliceMut::new(buf))
1304    }
1305
1306    /// Advance the internal cursor of the slice.
1307    ///
1308    /// Also see [`IoSliceMut::advance_slices`] to advance the cursors of
1309    /// multiple buffers.
1310    ///
1311    /// # Panics
1312    ///
1313    /// Panics when trying to advance beyond the end of the slice.
1314    ///
1315    /// # Examples
1316    ///
1317    /// ```
1318    /// use std::io::IoSliceMut;
1319    /// use std::ops::Deref;
1320    ///
1321    /// let mut data = [1; 8];
1322    /// let mut buf = IoSliceMut::new(&mut data);
1323    ///
1324    /// // Mark 3 bytes as read.
1325    /// buf.advance(3);
1326    /// assert_eq!(buf.deref(), [1; 5].as_ref());
1327    /// ```
1328    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1329    #[inline]
1330    pub fn advance(&mut self, n: usize) {
1331        self.0.advance(n)
1332    }
1333
1334    /// Advance a slice of slices.
1335    ///
1336    /// Shrinks the slice to remove any `IoSliceMut`s that are fully advanced over.
1337    /// If the cursor ends up in the middle of an `IoSliceMut`, it is modified
1338    /// to start at that cursor.
1339    ///
1340    /// For example, if we have a slice of two 8-byte `IoSliceMut`s, and we advance by 10 bytes,
1341    /// the result will only include the second `IoSliceMut`, advanced by 2 bytes.
1342    ///
1343    /// # Panics
1344    ///
1345    /// Panics when trying to advance beyond the end of the slices.
1346    ///
1347    /// # Examples
1348    ///
1349    /// ```
1350    /// use std::io::IoSliceMut;
1351    /// use std::ops::Deref;
1352    ///
1353    /// let mut buf1 = [1; 8];
1354    /// let mut buf2 = [2; 16];
1355    /// let mut buf3 = [3; 8];
1356    /// let mut bufs = &mut [
1357    ///     IoSliceMut::new(&mut buf1),
1358    ///     IoSliceMut::new(&mut buf2),
1359    ///     IoSliceMut::new(&mut buf3),
1360    /// ][..];
1361    ///
1362    /// // Mark 10 bytes as read.
1363    /// IoSliceMut::advance_slices(&mut bufs, 10);
1364    /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1365    /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1366    /// ```
1367    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1368    #[inline]
1369    pub fn advance_slices(bufs: &mut &mut [IoSliceMut<'a>], n: usize) {
1370        // Number of buffers to remove.
1371        let mut remove = 0;
1372        // Remaining length before reaching n.
1373        let mut left = n;
1374        for buf in bufs.iter() {
1375            if let Some(remainder) = left.checked_sub(buf.len()) {
1376                left = remainder;
1377                remove += 1;
1378            } else {
1379                break;
1380            }
1381        }
1382
1383        *bufs = &mut take(bufs)[remove..];
1384        if bufs.is_empty() {
1385            assert!(left == 0, "advancing io slices beyond their length");
1386        } else {
1387            bufs[0].advance(left);
1388        }
1389    }
1390
1391    /// Get the underlying bytes as a mutable slice with the original lifetime.
1392    ///
1393    /// # Examples
1394    ///
1395    /// ```
1396    /// #![feature(io_slice_as_bytes)]
1397    /// use std::io::IoSliceMut;
1398    ///
1399    /// let mut data = *b"abcdef";
1400    /// let io_slice = IoSliceMut::new(&mut data);
1401    /// io_slice.into_slice()[0] = b'A';
1402    ///
1403    /// assert_eq!(&data, b"Abcdef");
1404    /// ```
1405    #[unstable(feature = "io_slice_as_bytes", issue = "132818")]
1406    pub const fn into_slice(self) -> &'a mut [u8] {
1407        self.0.into_slice()
1408    }
1409}
1410
1411#[stable(feature = "iovec", since = "1.36.0")]
1412impl<'a> Deref for IoSliceMut<'a> {
1413    type Target = [u8];
1414
1415    #[inline]
1416    fn deref(&self) -> &[u8] {
1417        self.0.as_slice()
1418    }
1419}
1420
1421#[stable(feature = "iovec", since = "1.36.0")]
1422impl<'a> DerefMut for IoSliceMut<'a> {
1423    #[inline]
1424    fn deref_mut(&mut self) -> &mut [u8] {
1425        self.0.as_mut_slice()
1426    }
1427}
1428
1429/// A buffer type used with `Write::write_vectored`.
1430///
1431/// It is semantically a wrapper around a `&[u8]`, but is guaranteed to be
1432/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
1433/// Windows.
1434#[stable(feature = "iovec", since = "1.36.0")]
1435#[derive(Copy, Clone)]
1436#[repr(transparent)]
1437pub struct IoSlice<'a>(sys::io::IoSlice<'a>);
1438
1439#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1440unsafe impl<'a> Send for IoSlice<'a> {}
1441
1442#[stable(feature = "iovec_send_sync", since = "1.44.0")]
1443unsafe impl<'a> Sync for IoSlice<'a> {}
1444
1445#[stable(feature = "iovec", since = "1.36.0")]
1446impl<'a> fmt::Debug for IoSlice<'a> {
1447    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1448        fmt::Debug::fmt(self.0.as_slice(), fmt)
1449    }
1450}
1451
1452impl<'a> IoSlice<'a> {
1453    /// Creates a new `IoSlice` wrapping a byte slice.
1454    ///
1455    /// # Panics
1456    ///
1457    /// Panics on Windows if the slice is larger than 4GB.
1458    #[stable(feature = "iovec", since = "1.36.0")]
1459    #[must_use]
1460    #[inline]
1461    pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
1462        IoSlice(sys::io::IoSlice::new(buf))
1463    }
1464
1465    /// Advance the internal cursor of the slice.
1466    ///
1467    /// Also see [`IoSlice::advance_slices`] to advance the cursors of multiple
1468    /// buffers.
1469    ///
1470    /// # Panics
1471    ///
1472    /// Panics when trying to advance beyond the end of the slice.
1473    ///
1474    /// # Examples
1475    ///
1476    /// ```
1477    /// use std::io::IoSlice;
1478    /// use std::ops::Deref;
1479    ///
1480    /// let data = [1; 8];
1481    /// let mut buf = IoSlice::new(&data);
1482    ///
1483    /// // Mark 3 bytes as read.
1484    /// buf.advance(3);
1485    /// assert_eq!(buf.deref(), [1; 5].as_ref());
1486    /// ```
1487    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1488    #[inline]
1489    pub fn advance(&mut self, n: usize) {
1490        self.0.advance(n)
1491    }
1492
1493    /// Advance a slice of slices.
1494    ///
1495    /// Shrinks the slice to remove any `IoSlice`s that are fully advanced over.
1496    /// If the cursor ends up in the middle of an `IoSlice`, it is modified
1497    /// to start at that cursor.
1498    ///
1499    /// For example, if we have a slice of two 8-byte `IoSlice`s, and we advance by 10 bytes,
1500    /// the result will only include the second `IoSlice`, advanced by 2 bytes.
1501    ///
1502    /// # Panics
1503    ///
1504    /// Panics when trying to advance beyond the end of the slices.
1505    ///
1506    /// # Examples
1507    ///
1508    /// ```
1509    /// use std::io::IoSlice;
1510    /// use std::ops::Deref;
1511    ///
1512    /// let buf1 = [1; 8];
1513    /// let buf2 = [2; 16];
1514    /// let buf3 = [3; 8];
1515    /// let mut bufs = &mut [
1516    ///     IoSlice::new(&buf1),
1517    ///     IoSlice::new(&buf2),
1518    ///     IoSlice::new(&buf3),
1519    /// ][..];
1520    ///
1521    /// // Mark 10 bytes as written.
1522    /// IoSlice::advance_slices(&mut bufs, 10);
1523    /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
1524    /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
1525    #[stable(feature = "io_slice_advance", since = "1.81.0")]
1526    #[inline]
1527    pub fn advance_slices(bufs: &mut &mut [IoSlice<'a>], n: usize) {
1528        // Number of buffers to remove.
1529        let mut remove = 0;
1530        // Remaining length before reaching n. This prevents overflow
1531        // that could happen if the length of slices in `bufs` were instead
1532        // accumulated. Those slice may be aliased and, if they are large
1533        // enough, their added length may overflow a `usize`.
1534        let mut left = n;
1535        for buf in bufs.iter() {
1536            if let Some(remainder) = left.checked_sub(buf.len()) {
1537                left = remainder;
1538                remove += 1;
1539            } else {
1540                break;
1541            }
1542        }
1543
1544        *bufs = &mut take(bufs)[remove..];
1545        if bufs.is_empty() {
1546            assert!(left == 0, "advancing io slices beyond their length");
1547        } else {
1548            bufs[0].advance(left);
1549        }
1550    }
1551
1552    /// Get the underlying bytes as a slice with the original lifetime.
1553    ///
1554    /// This doesn't borrow from `self`, so is less restrictive than calling
1555    /// `.deref()`, which does.
1556    ///
1557    /// # Examples
1558    ///
1559    /// ```
1560    /// #![feature(io_slice_as_bytes)]
1561    /// use std::io::IoSlice;
1562    ///
1563    /// let data = b"abcdef";
1564    ///
1565    /// let mut io_slice = IoSlice::new(data);
1566    /// let tail = &io_slice.as_slice()[3..];
1567    ///
1568    /// // This works because `tail` doesn't borrow `io_slice`
1569    /// io_slice = IoSlice::new(tail);
1570    ///
1571    /// assert_eq!(io_slice.as_slice(), b"def");
1572    /// ```
1573    #[unstable(feature = "io_slice_as_bytes", issue = "132818")]
1574    pub const fn as_slice(self) -> &'a [u8] {
1575        self.0.as_slice()
1576    }
1577}
1578
1579#[stable(feature = "iovec", since = "1.36.0")]
1580impl<'a> Deref for IoSlice<'a> {
1581    type Target = [u8];
1582
1583    #[inline]
1584    fn deref(&self) -> &[u8] {
1585        self.0.as_slice()
1586    }
1587}
1588
1589/// A trait for objects which are byte-oriented sinks.
1590///
1591/// Implementors of the `Write` trait are sometimes called 'writers'.
1592///
1593/// Writers are defined by two required methods, [`write`] and [`flush`]:
1594///
1595/// * The [`write`] method will attempt to write some data into the object,
1596///   returning how many bytes were successfully written.
1597///
1598/// * The [`flush`] method is useful for adapters and explicit buffers
1599///   themselves for ensuring that all buffered data has been pushed out to the
1600///   'true sink'.
1601///
1602/// Writers are intended to be composable with one another. Many implementors
1603/// throughout [`std::io`] take and provide types which implement the `Write`
1604/// trait.
1605///
1606/// [`write`]: Write::write
1607/// [`flush`]: Write::flush
1608/// [`std::io`]: self
1609///
1610/// # Examples
1611///
1612/// ```no_run
1613/// use std::io::prelude::*;
1614/// use std::fs::File;
1615///
1616/// fn main() -> std::io::Result<()> {
1617///     let data = b"some bytes";
1618///
1619///     let mut pos = 0;
1620///     let mut buffer = File::create("foo.txt")?;
1621///
1622///     while pos < data.len() {
1623///         let bytes_written = buffer.write(&data[pos..])?;
1624///         pos += bytes_written;
1625///     }
1626///     Ok(())
1627/// }
1628/// ```
1629///
1630/// The trait also provides convenience methods like [`write_all`], which calls
1631/// `write` in a loop until its entire input has been written.
1632///
1633/// [`write_all`]: Write::write_all
1634#[stable(feature = "rust1", since = "1.0.0")]
1635#[doc(notable_trait)]
1636#[cfg_attr(not(test), rustc_diagnostic_item = "IoWrite")]
1637pub trait Write {
1638    /// Writes a buffer into this writer, returning how many bytes were written.
1639    ///
1640    /// This function will attempt to write the entire contents of `buf`, but
1641    /// the entire write might not succeed, or the write may also generate an
1642    /// error. Typically, a call to `write` represents one attempt to write to
1643    /// any wrapped object.
1644    ///
1645    /// Calls to `write` are not guaranteed to block waiting for data to be
1646    /// written, and a write which would otherwise block can be indicated through
1647    /// an [`Err`] variant.
1648    ///
1649    /// If this method consumed `n > 0` bytes of `buf` it must return [`Ok(n)`].
1650    /// If the return value is `Ok(n)` then `n` must satisfy `n <= buf.len()`.
1651    /// A return value of `Ok(0)` typically means that the underlying object is
1652    /// no longer able to accept bytes and will likely not be able to in the
1653    /// future as well, or that the buffer provided is empty.
1654    ///
1655    /// # Errors
1656    ///
1657    /// Each call to `write` may generate an I/O error indicating that the
1658    /// operation could not be completed. If an error is returned then no bytes
1659    /// in the buffer were written to this writer.
1660    ///
1661    /// It is **not** considered an error if the entire buffer could not be
1662    /// written to this writer.
1663    ///
1664    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
1665    /// write operation should be retried if there is nothing else to do.
1666    ///
1667    /// # Examples
1668    ///
1669    /// ```no_run
1670    /// use std::io::prelude::*;
1671    /// use std::fs::File;
1672    ///
1673    /// fn main() -> std::io::Result<()> {
1674    ///     let mut buffer = File::create("foo.txt")?;
1675    ///
1676    ///     // Writes some prefix of the byte string, not necessarily all of it.
1677    ///     buffer.write(b"some bytes")?;
1678    ///     Ok(())
1679    /// }
1680    /// ```
1681    ///
1682    /// [`Ok(n)`]: Ok
1683    #[stable(feature = "rust1", since = "1.0.0")]
1684    fn write(&mut self, buf: &[u8]) -> Result<usize>;
1685
1686    /// Like [`write`], except that it writes from a slice of buffers.
1687    ///
1688    /// Data is copied from each buffer in order, with the final buffer
1689    /// read from possibly being only partially consumed. This method must
1690    /// behave as a call to [`write`] with the buffers concatenated would.
1691    ///
1692    /// The default implementation calls [`write`] with either the first nonempty
1693    /// buffer provided, or an empty one if none exists.
1694    ///
1695    /// # Examples
1696    ///
1697    /// ```no_run
1698    /// use std::io::IoSlice;
1699    /// use std::io::prelude::*;
1700    /// use std::fs::File;
1701    ///
1702    /// fn main() -> std::io::Result<()> {
1703    ///     let data1 = [1; 8];
1704    ///     let data2 = [15; 8];
1705    ///     let io_slice1 = IoSlice::new(&data1);
1706    ///     let io_slice2 = IoSlice::new(&data2);
1707    ///
1708    ///     let mut buffer = File::create("foo.txt")?;
1709    ///
1710    ///     // Writes some prefix of the byte string, not necessarily all of it.
1711    ///     buffer.write_vectored(&[io_slice1, io_slice2])?;
1712    ///     Ok(())
1713    /// }
1714    /// ```
1715    ///
1716    /// [`write`]: Write::write
1717    #[stable(feature = "iovec", since = "1.36.0")]
1718    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
1719        default_write_vectored(|b| self.write(b), bufs)
1720    }
1721
1722    /// Determines if this `Write`r has an efficient [`write_vectored`]
1723    /// implementation.
1724    ///
1725    /// If a `Write`r does not override the default [`write_vectored`]
1726    /// implementation, code using it may want to avoid the method all together
1727    /// and coalesce writes into a single buffer for higher performance.
1728    ///
1729    /// The default implementation returns `false`.
1730    ///
1731    /// [`write_vectored`]: Write::write_vectored
1732    #[unstable(feature = "can_vector", issue = "69941")]
1733    fn is_write_vectored(&self) -> bool {
1734        false
1735    }
1736
1737    /// Flushes this output stream, ensuring that all intermediately buffered
1738    /// contents reach their destination.
1739    ///
1740    /// # Errors
1741    ///
1742    /// It is considered an error if not all bytes could be written due to
1743    /// I/O errors or EOF being reached.
1744    ///
1745    /// # Examples
1746    ///
1747    /// ```no_run
1748    /// use std::io::prelude::*;
1749    /// use std::io::BufWriter;
1750    /// use std::fs::File;
1751    ///
1752    /// fn main() -> std::io::Result<()> {
1753    ///     let mut buffer = BufWriter::new(File::create("foo.txt")?);
1754    ///
1755    ///     buffer.write_all(b"some bytes")?;
1756    ///     buffer.flush()?;
1757    ///     Ok(())
1758    /// }
1759    /// ```
1760    #[stable(feature = "rust1", since = "1.0.0")]
1761    fn flush(&mut self) -> Result<()>;
1762
1763    /// Attempts to write an entire buffer into this writer.
1764    ///
1765    /// This method will continuously call [`write`] until there is no more data
1766    /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
1767    /// returned. This method will not return until the entire buffer has been
1768    /// successfully written or such an error occurs. The first error that is
1769    /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
1770    /// returned.
1771    ///
1772    /// If the buffer contains no data, this will never call [`write`].
1773    ///
1774    /// # Errors
1775    ///
1776    /// This function will return the first error of
1777    /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
1778    ///
1779    /// [`write`]: Write::write
1780    ///
1781    /// # Examples
1782    ///
1783    /// ```no_run
1784    /// use std::io::prelude::*;
1785    /// use std::fs::File;
1786    ///
1787    /// fn main() -> std::io::Result<()> {
1788    ///     let mut buffer = File::create("foo.txt")?;
1789    ///
1790    ///     buffer.write_all(b"some bytes")?;
1791    ///     Ok(())
1792    /// }
1793    /// ```
1794    #[stable(feature = "rust1", since = "1.0.0")]
1795    fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
1796        while !buf.is_empty() {
1797            match self.write(buf) {
1798                Ok(0) => {
1799                    return Err(Error::WRITE_ALL_EOF);
1800                }
1801                Ok(n) => buf = &buf[n..],
1802                Err(ref e) if e.is_interrupted() => {}
1803                Err(e) => return Err(e),
1804            }
1805        }
1806        Ok(())
1807    }
1808
1809    /// Attempts to write multiple buffers into this writer.
1810    ///
1811    /// This method will continuously call [`write_vectored`] until there is no
1812    /// more data to be written or an error of non-[`ErrorKind::Interrupted`]
1813    /// kind is returned. This method will not return until all buffers have
1814    /// been successfully written or such an error occurs. The first error that
1815    /// is not of [`ErrorKind::Interrupted`] kind generated from this method
1816    /// will be returned.
1817    ///
1818    /// If the buffer contains no data, this will never call [`write_vectored`].
1819    ///
1820    /// # Notes
1821    ///
1822    /// Unlike [`write_vectored`], this takes a *mutable* reference to
1823    /// a slice of [`IoSlice`]s, not an immutable one. That's because we need to
1824    /// modify the slice to keep track of the bytes already written.
1825    ///
1826    /// Once this function returns, the contents of `bufs` are unspecified, as
1827    /// this depends on how many calls to [`write_vectored`] were necessary. It is
1828    /// best to understand this function as taking ownership of `bufs` and to
1829    /// not use `bufs` afterwards. The underlying buffers, to which the
1830    /// [`IoSlice`]s point (but not the [`IoSlice`]s themselves), are unchanged and
1831    /// can be reused.
1832    ///
1833    /// [`write_vectored`]: Write::write_vectored
1834    ///
1835    /// # Examples
1836    ///
1837    /// ```
1838    /// #![feature(write_all_vectored)]
1839    /// # fn main() -> std::io::Result<()> {
1840    ///
1841    /// use std::io::{Write, IoSlice};
1842    ///
1843    /// let mut writer = Vec::new();
1844    /// let bufs = &mut [
1845    ///     IoSlice::new(&[1]),
1846    ///     IoSlice::new(&[2, 3]),
1847    ///     IoSlice::new(&[4, 5, 6]),
1848    /// ];
1849    ///
1850    /// writer.write_all_vectored(bufs)?;
1851    /// // Note: the contents of `bufs` is now undefined, see the Notes section.
1852    ///
1853    /// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]);
1854    /// # Ok(()) }
1855    /// ```
1856    #[unstable(feature = "write_all_vectored", issue = "70436")]
1857    fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
1858        // Guarantee that bufs is empty if it contains no data,
1859        // to avoid calling write_vectored if there is no data to be written.
1860        IoSlice::advance_slices(&mut bufs, 0);
1861        while !bufs.is_empty() {
1862            match self.write_vectored(bufs) {
1863                Ok(0) => {
1864                    return Err(Error::WRITE_ALL_EOF);
1865                }
1866                Ok(n) => IoSlice::advance_slices(&mut bufs, n),
1867                Err(ref e) if e.is_interrupted() => {}
1868                Err(e) => return Err(e),
1869            }
1870        }
1871        Ok(())
1872    }
1873
1874    /// Writes a formatted string into this writer, returning any error
1875    /// encountered.
1876    ///
1877    /// This method is primarily used to interface with the
1878    /// [`format_args!()`] macro, and it is rare that this should
1879    /// explicitly be called. The [`write!()`] macro should be favored to
1880    /// invoke this method instead.
1881    ///
1882    /// This function internally uses the [`write_all`] method on
1883    /// this trait and hence will continuously write data so long as no errors
1884    /// are received. This also means that partial writes are not indicated in
1885    /// this signature.
1886    ///
1887    /// [`write_all`]: Write::write_all
1888    ///
1889    /// # Errors
1890    ///
1891    /// This function will return any I/O error reported while formatting.
1892    ///
1893    /// # Examples
1894    ///
1895    /// ```no_run
1896    /// use std::io::prelude::*;
1897    /// use std::fs::File;
1898    ///
1899    /// fn main() -> std::io::Result<()> {
1900    ///     let mut buffer = File::create("foo.txt")?;
1901    ///
1902    ///     // this call
1903    ///     write!(buffer, "{:.*}", 2, 1.234567)?;
1904    ///     // turns into this:
1905    ///     buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?;
1906    ///     Ok(())
1907    /// }
1908    /// ```
1909    #[stable(feature = "rust1", since = "1.0.0")]
1910    fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> Result<()> {
1911        if let Some(s) = args.as_statically_known_str() {
1912            self.write_all(s.as_bytes())
1913        } else {
1914            default_write_fmt(self, args)
1915        }
1916    }
1917
1918    /// Creates a "by reference" adapter for this instance of `Write`.
1919    ///
1920    /// The returned adapter also implements `Write` and will simply borrow this
1921    /// current writer.
1922    ///
1923    /// # Examples
1924    ///
1925    /// ```no_run
1926    /// use std::io::Write;
1927    /// use std::fs::File;
1928    ///
1929    /// fn main() -> std::io::Result<()> {
1930    ///     let mut buffer = File::create("foo.txt")?;
1931    ///
1932    ///     let reference = buffer.by_ref();
1933    ///
1934    ///     // we can use reference just like our original buffer
1935    ///     reference.write_all(b"some bytes")?;
1936    ///     Ok(())
1937    /// }
1938    /// ```
1939    #[stable(feature = "rust1", since = "1.0.0")]
1940    fn by_ref(&mut self) -> &mut Self
1941    where
1942        Self: Sized,
1943    {
1944        self
1945    }
1946}
1947
1948/// The `Seek` trait provides a cursor which can be moved within a stream of
1949/// bytes.
1950///
1951/// The stream typically has a fixed size, allowing seeking relative to either
1952/// end or the current offset.
1953///
1954/// # Examples
1955///
1956/// [`File`]s implement `Seek`:
1957///
1958/// [`File`]: crate::fs::File
1959///
1960/// ```no_run
1961/// use std::io;
1962/// use std::io::prelude::*;
1963/// use std::fs::File;
1964/// use std::io::SeekFrom;
1965///
1966/// fn main() -> io::Result<()> {
1967///     let mut f = File::open("foo.txt")?;
1968///
1969///     // move the cursor 42 bytes from the start of the file
1970///     f.seek(SeekFrom::Start(42))?;
1971///     Ok(())
1972/// }
1973/// ```
1974#[stable(feature = "rust1", since = "1.0.0")]
1975#[cfg_attr(not(test), rustc_diagnostic_item = "IoSeek")]
1976pub trait Seek {
1977    /// Seek to an offset, in bytes, in a stream.
1978    ///
1979    /// A seek beyond the end of a stream is allowed, but behavior is defined
1980    /// by the implementation.
1981    ///
1982    /// If the seek operation completed successfully,
1983    /// this method returns the new position from the start of the stream.
1984    /// That position can be used later with [`SeekFrom::Start`].
1985    ///
1986    /// # Errors
1987    ///
1988    /// Seeking can fail, for example because it might involve flushing a buffer.
1989    ///
1990    /// Seeking to a negative offset is considered an error.
1991    #[stable(feature = "rust1", since = "1.0.0")]
1992    fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
1993
1994    /// Rewind to the beginning of a stream.
1995    ///
1996    /// This is a convenience method, equivalent to `seek(SeekFrom::Start(0))`.
1997    ///
1998    /// # Errors
1999    ///
2000    /// Rewinding can fail, for example because it might involve flushing a buffer.
2001    ///
2002    /// # Example
2003    ///
2004    /// ```no_run
2005    /// use std::io::{Read, Seek, Write};
2006    /// use std::fs::OpenOptions;
2007    ///
2008    /// let mut f = OpenOptions::new()
2009    ///     .write(true)
2010    ///     .read(true)
2011    ///     .create(true)
2012    ///     .open("foo.txt")?;
2013    ///
2014    /// let hello = "Hello!\n";
2015    /// write!(f, "{hello}")?;
2016    /// f.rewind()?;
2017    ///
2018    /// let mut buf = String::new();
2019    /// f.read_to_string(&mut buf)?;
2020    /// assert_eq!(&buf, hello);
2021    /// # std::io::Result::Ok(())
2022    /// ```
2023    #[stable(feature = "seek_rewind", since = "1.55.0")]
2024    fn rewind(&mut self) -> Result<()> {
2025        self.seek(SeekFrom::Start(0))?;
2026        Ok(())
2027    }
2028
2029    /// Returns the length of this stream (in bytes).
2030    ///
2031    /// This method is implemented using up to three seek operations. If this
2032    /// method returns successfully, the seek position is unchanged (i.e. the
2033    /// position before calling this method is the same as afterwards).
2034    /// However, if this method returns an error, the seek position is
2035    /// unspecified.
2036    ///
2037    /// If you need to obtain the length of *many* streams and you don't care
2038    /// about the seek position afterwards, you can reduce the number of seek
2039    /// operations by simply calling `seek(SeekFrom::End(0))` and using its
2040    /// return value (it is also the stream length).
2041    ///
2042    /// Note that length of a stream can change over time (for example, when
2043    /// data is appended to a file). So calling this method multiple times does
2044    /// not necessarily return the same length each time.
2045    ///
2046    /// # Example
2047    ///
2048    /// ```no_run
2049    /// #![feature(seek_stream_len)]
2050    /// use std::{
2051    ///     io::{self, Seek},
2052    ///     fs::File,
2053    /// };
2054    ///
2055    /// fn main() -> io::Result<()> {
2056    ///     let mut f = File::open("foo.txt")?;
2057    ///
2058    ///     let len = f.stream_len()?;
2059    ///     println!("The file is currently {len} bytes long");
2060    ///     Ok(())
2061    /// }
2062    /// ```
2063    #[unstable(feature = "seek_stream_len", issue = "59359")]
2064    fn stream_len(&mut self) -> Result<u64> {
2065        let old_pos = self.stream_position()?;
2066        let len = self.seek(SeekFrom::End(0))?;
2067
2068        // Avoid seeking a third time when we were already at the end of the
2069        // stream. The branch is usually way cheaper than a seek operation.
2070        if old_pos != len {
2071            self.seek(SeekFrom::Start(old_pos))?;
2072        }
2073
2074        Ok(len)
2075    }
2076
2077    /// Returns the current seek position from the start of the stream.
2078    ///
2079    /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
2080    ///
2081    /// # Example
2082    ///
2083    /// ```no_run
2084    /// use std::{
2085    ///     io::{self, BufRead, BufReader, Seek},
2086    ///     fs::File,
2087    /// };
2088    ///
2089    /// fn main() -> io::Result<()> {
2090    ///     let mut f = BufReader::new(File::open("foo.txt")?);
2091    ///
2092    ///     let before = f.stream_position()?;
2093    ///     f.read_line(&mut String::new())?;
2094    ///     let after = f.stream_position()?;
2095    ///
2096    ///     println!("The first line was {} bytes long", after - before);
2097    ///     Ok(())
2098    /// }
2099    /// ```
2100    #[stable(feature = "seek_convenience", since = "1.51.0")]
2101    fn stream_position(&mut self) -> Result<u64> {
2102        self.seek(SeekFrom::Current(0))
2103    }
2104
2105    /// Seeks relative to the current position.
2106    ///
2107    /// This is equivalent to `self.seek(SeekFrom::Current(offset))` but
2108    /// doesn't return the new position which can allow some implementations
2109    /// such as [`BufReader`] to perform more efficient seeks.
2110    ///
2111    /// # Example
2112    ///
2113    /// ```no_run
2114    /// use std::{
2115    ///     io::{self, Seek},
2116    ///     fs::File,
2117    /// };
2118    ///
2119    /// fn main() -> io::Result<()> {
2120    ///     let mut f = File::open("foo.txt")?;
2121    ///     f.seek_relative(10)?;
2122    ///     assert_eq!(f.stream_position()?, 10);
2123    ///     Ok(())
2124    /// }
2125    /// ```
2126    ///
2127    /// [`BufReader`]: crate::io::BufReader
2128    #[stable(feature = "seek_seek_relative", since = "1.80.0")]
2129    fn seek_relative(&mut self, offset: i64) -> Result<()> {
2130        self.seek(SeekFrom::Current(offset))?;
2131        Ok(())
2132    }
2133}
2134
2135/// Enumeration of possible methods to seek within an I/O object.
2136///
2137/// It is used by the [`Seek`] trait.
2138#[derive(Copy, PartialEq, Eq, Clone, Debug)]
2139#[stable(feature = "rust1", since = "1.0.0")]
2140#[cfg_attr(not(test), rustc_diagnostic_item = "SeekFrom")]
2141pub enum SeekFrom {
2142    /// Sets the offset to the provided number of bytes.
2143    #[stable(feature = "rust1", since = "1.0.0")]
2144    Start(#[stable(feature = "rust1", since = "1.0.0")] u64),
2145
2146    /// Sets the offset to the size of this object plus the specified number of
2147    /// bytes.
2148    ///
2149    /// It is possible to seek beyond the end of an object, but it's an error to
2150    /// seek before byte 0.
2151    #[stable(feature = "rust1", since = "1.0.0")]
2152    End(#[stable(feature = "rust1", since = "1.0.0")] i64),
2153
2154    /// Sets the offset to the current position plus the specified number of
2155    /// bytes.
2156    ///
2157    /// It is possible to seek beyond the end of an object, but it's an error to
2158    /// seek before byte 0.
2159    #[stable(feature = "rust1", since = "1.0.0")]
2160    Current(#[stable(feature = "rust1", since = "1.0.0")] i64),
2161}
2162
2163fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
2164    let mut read = 0;
2165    loop {
2166        let (done, used) = {
2167            let available = match r.fill_buf() {
2168                Ok(n) => n,
2169                Err(ref e) if e.is_interrupted() => continue,
2170                Err(e) => return Err(e),
2171            };
2172            match memchr::memchr(delim, available) {
2173                Some(i) => {
2174                    buf.extend_from_slice(&available[..=i]);
2175                    (true, i + 1)
2176                }
2177                None => {
2178                    buf.extend_from_slice(available);
2179                    (false, available.len())
2180                }
2181            }
2182        };
2183        r.consume(used);
2184        read += used;
2185        if done || used == 0 {
2186            return Ok(read);
2187        }
2188    }
2189}
2190
2191fn skip_until<R: BufRead + ?Sized>(r: &mut R, delim: u8) -> Result<usize> {
2192    let mut read = 0;
2193    loop {
2194        let (done, used) = {
2195            let available = match r.fill_buf() {
2196                Ok(n) => n,
2197                Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
2198                Err(e) => return Err(e),
2199            };
2200            match memchr::memchr(delim, available) {
2201                Some(i) => (true, i + 1),
2202                None => (false, available.len()),
2203            }
2204        };
2205        r.consume(used);
2206        read += used;
2207        if done || used == 0 {
2208            return Ok(read);
2209        }
2210    }
2211}
2212
2213/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
2214/// to perform extra ways of reading.
2215///
2216/// For example, reading line-by-line is inefficient without using a buffer, so
2217/// if you want to read by line, you'll need `BufRead`, which includes a
2218/// [`read_line`] method as well as a [`lines`] iterator.
2219///
2220/// # Examples
2221///
2222/// A locked standard input implements `BufRead`:
2223///
2224/// ```no_run
2225/// use std::io;
2226/// use std::io::prelude::*;
2227///
2228/// let stdin = io::stdin();
2229/// for line in stdin.lock().lines() {
2230///     println!("{}", line?);
2231/// }
2232/// # std::io::Result::Ok(())
2233/// ```
2234///
2235/// If you have something that implements [`Read`], you can use the [`BufReader`
2236/// type][`BufReader`] to turn it into a `BufRead`.
2237///
2238/// For example, [`File`] implements [`Read`], but not `BufRead`.
2239/// [`BufReader`] to the rescue!
2240///
2241/// [`File`]: crate::fs::File
2242/// [`read_line`]: BufRead::read_line
2243/// [`lines`]: BufRead::lines
2244///
2245/// ```no_run
2246/// use std::io::{self, BufReader};
2247/// use std::io::prelude::*;
2248/// use std::fs::File;
2249///
2250/// fn main() -> io::Result<()> {
2251///     let f = File::open("foo.txt")?;
2252///     let f = BufReader::new(f);
2253///
2254///     for line in f.lines() {
2255///         let line = line?;
2256///         println!("{line}");
2257///     }
2258///
2259///     Ok(())
2260/// }
2261/// ```
2262#[stable(feature = "rust1", since = "1.0.0")]
2263#[cfg_attr(not(test), rustc_diagnostic_item = "IoBufRead")]
2264pub trait BufRead: Read {
2265    /// Returns the contents of the internal buffer, filling it with more data, via `Read` methods, if empty.
2266    ///
2267    /// This is a lower-level method and is meant to be used together with [`consume`],
2268    /// which can be used to mark bytes that should not be returned by subsequent calls to `read`.
2269    ///
2270    /// [`consume`]: BufRead::consume
2271    ///
2272    /// Returns an empty buffer when the stream has reached EOF.
2273    ///
2274    /// # Errors
2275    ///
2276    /// This function will return an I/O error if a `Read` method was called, but returned an error.
2277    ///
2278    /// # Examples
2279    ///
2280    /// A locked standard input implements `BufRead`:
2281    ///
2282    /// ```no_run
2283    /// use std::io;
2284    /// use std::io::prelude::*;
2285    ///
2286    /// let stdin = io::stdin();
2287    /// let mut stdin = stdin.lock();
2288    ///
2289    /// let buffer = stdin.fill_buf()?;
2290    ///
2291    /// // work with buffer
2292    /// println!("{buffer:?}");
2293    ///
2294    /// // mark the bytes we worked with as read
2295    /// let length = buffer.len();
2296    /// stdin.consume(length);
2297    /// # std::io::Result::Ok(())
2298    /// ```
2299    #[stable(feature = "rust1", since = "1.0.0")]
2300    fn fill_buf(&mut self) -> Result<&[u8]>;
2301
2302    /// Marks the given `amount` of additional bytes from the internal buffer as having been read.
2303    /// Subsequent calls to `read` only return bytes that have not been marked as read.
2304    ///
2305    /// This is a lower-level method and is meant to be used together with [`fill_buf`],
2306    /// which can be used to fill the internal buffer via `Read` methods.
2307    ///
2308    /// It is a logic error if `amount` exceeds the number of unread bytes in the internal buffer, which is returned by [`fill_buf`].
2309    ///
2310    /// # Examples
2311    ///
2312    /// Since `consume()` is meant to be used with [`fill_buf`],
2313    /// that method's example includes an example of `consume()`.
2314    ///
2315    /// [`fill_buf`]: BufRead::fill_buf
2316    #[stable(feature = "rust1", since = "1.0.0")]
2317    fn consume(&mut self, amount: usize);
2318
2319    /// Checks if there is any data left to be `read`.
2320    ///
2321    /// This function may fill the buffer to check for data,
2322    /// so this functions returns `Result<bool>`, not `bool`.
2323    ///
2324    /// Default implementation calls `fill_buf` and checks that
2325    /// returned slice is empty (which means that there is no data left,
2326    /// since EOF is reached).
2327    ///
2328    /// # Errors
2329    ///
2330    /// This function will return an I/O error if a `Read` method was called, but returned an error.
2331    ///
2332    /// Examples
2333    ///
2334    /// ```
2335    /// #![feature(buf_read_has_data_left)]
2336    /// use std::io;
2337    /// use std::io::prelude::*;
2338    ///
2339    /// let stdin = io::stdin();
2340    /// let mut stdin = stdin.lock();
2341    ///
2342    /// while stdin.has_data_left()? {
2343    ///     let mut line = String::new();
2344    ///     stdin.read_line(&mut line)?;
2345    ///     // work with line
2346    ///     println!("{line:?}");
2347    /// }
2348    /// # std::io::Result::Ok(())
2349    /// ```
2350    #[unstable(feature = "buf_read_has_data_left", reason = "recently added", issue = "86423")]
2351    fn has_data_left(&mut self) -> Result<bool> {
2352        self.fill_buf().map(|b| !b.is_empty())
2353    }
2354
2355    /// Reads all bytes into `buf` until the delimiter `byte` or EOF is reached.
2356    ///
2357    /// This function will read bytes from the underlying stream until the
2358    /// delimiter or EOF is found. Once found, all bytes up to, and including,
2359    /// the delimiter (if found) will be appended to `buf`.
2360    ///
2361    /// If successful, this function will return the total number of bytes read.
2362    ///
2363    /// This function is blocking and should be used carefully: it is possible for
2364    /// an attacker to continuously send bytes without ever sending the delimiter
2365    /// or EOF.
2366    ///
2367    /// # Errors
2368    ///
2369    /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2370    /// will otherwise return any errors returned by [`fill_buf`].
2371    ///
2372    /// If an I/O error is encountered then all bytes read so far will be
2373    /// present in `buf` and its length will have been adjusted appropriately.
2374    ///
2375    /// [`fill_buf`]: BufRead::fill_buf
2376    ///
2377    /// # Examples
2378    ///
2379    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2380    /// this example, we use [`Cursor`] to read all the bytes in a byte slice
2381    /// in hyphen delimited segments:
2382    ///
2383    /// ```
2384    /// use std::io::{self, BufRead};
2385    ///
2386    /// let mut cursor = io::Cursor::new(b"lorem-ipsum");
2387    /// let mut buf = vec![];
2388    ///
2389    /// // cursor is at 'l'
2390    /// let num_bytes = cursor.read_until(b'-', &mut buf)
2391    ///     .expect("reading from cursor won't fail");
2392    /// assert_eq!(num_bytes, 6);
2393    /// assert_eq!(buf, b"lorem-");
2394    /// buf.clear();
2395    ///
2396    /// // cursor is at 'i'
2397    /// let num_bytes = cursor.read_until(b'-', &mut buf)
2398    ///     .expect("reading from cursor won't fail");
2399    /// assert_eq!(num_bytes, 5);
2400    /// assert_eq!(buf, b"ipsum");
2401    /// buf.clear();
2402    ///
2403    /// // cursor is at EOF
2404    /// let num_bytes = cursor.read_until(b'-', &mut buf)
2405    ///     .expect("reading from cursor won't fail");
2406    /// assert_eq!(num_bytes, 0);
2407    /// assert_eq!(buf, b"");
2408    /// ```
2409    #[stable(feature = "rust1", since = "1.0.0")]
2410    fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
2411        read_until(self, byte, buf)
2412    }
2413
2414    /// Skips all bytes until the delimiter `byte` or EOF is reached.
2415    ///
2416    /// This function will read (and discard) bytes from the underlying stream until the
2417    /// delimiter or EOF is found.
2418    ///
2419    /// If successful, this function will return the total number of bytes read,
2420    /// including the delimiter byte.
2421    ///
2422    /// This is useful for efficiently skipping data such as NUL-terminated strings
2423    /// in binary file formats without buffering.
2424    ///
2425    /// This function is blocking and should be used carefully: it is possible for
2426    /// an attacker to continuously send bytes without ever sending the delimiter
2427    /// or EOF.
2428    ///
2429    /// # Errors
2430    ///
2431    /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
2432    /// will otherwise return any errors returned by [`fill_buf`].
2433    ///
2434    /// If an I/O error is encountered then all bytes read so far will be
2435    /// present in `buf` and its length will have been adjusted appropriately.
2436    ///
2437    /// [`fill_buf`]: BufRead::fill_buf
2438    ///
2439    /// # Examples
2440    ///
2441    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2442    /// this example, we use [`Cursor`] to read some NUL-terminated information
2443    /// about Ferris from a binary string, skipping the fun fact:
2444    ///
2445    /// ```
2446    /// use std::io::{self, BufRead};
2447    ///
2448    /// let mut cursor = io::Cursor::new(b"Ferris\0Likes long walks on the beach\0Crustacean\0");
2449    ///
2450    /// // read name
2451    /// let mut name = Vec::new();
2452    /// let num_bytes = cursor.read_until(b'\0', &mut name)
2453    ///     .expect("reading from cursor won't fail");
2454    /// assert_eq!(num_bytes, 7);
2455    /// assert_eq!(name, b"Ferris\0");
2456    ///
2457    /// // skip fun fact
2458    /// let num_bytes = cursor.skip_until(b'\0')
2459    ///     .expect("reading from cursor won't fail");
2460    /// assert_eq!(num_bytes, 30);
2461    ///
2462    /// // read animal type
2463    /// let mut animal = Vec::new();
2464    /// let num_bytes = cursor.read_until(b'\0', &mut animal)
2465    ///     .expect("reading from cursor won't fail");
2466    /// assert_eq!(num_bytes, 11);
2467    /// assert_eq!(animal, b"Crustacean\0");
2468    /// ```
2469    #[stable(feature = "bufread_skip_until", since = "1.83.0")]
2470    fn skip_until(&mut self, byte: u8) -> Result<usize> {
2471        skip_until(self, byte)
2472    }
2473
2474    /// Reads all bytes until a newline (the `0xA` byte) is reached, and append
2475    /// them to the provided `String` buffer.
2476    ///
2477    /// Previous content of the buffer will be preserved. To avoid appending to
2478    /// the buffer, you need to [`clear`] it first.
2479    ///
2480    /// This function will read bytes from the underlying stream until the
2481    /// newline delimiter (the `0xA` byte) or EOF is found. Once found, all bytes
2482    /// up to, and including, the delimiter (if found) will be appended to
2483    /// `buf`.
2484    ///
2485    /// If successful, this function will return the total number of bytes read.
2486    ///
2487    /// If this function returns [`Ok(0)`], the stream has reached EOF.
2488    ///
2489    /// This function is blocking and should be used carefully: it is possible for
2490    /// an attacker to continuously send bytes without ever sending a newline
2491    /// or EOF. You can use [`take`] to limit the maximum number of bytes read.
2492    ///
2493    /// [`Ok(0)`]: Ok
2494    /// [`clear`]: String::clear
2495    /// [`take`]: crate::io::Read::take
2496    ///
2497    /// # Errors
2498    ///
2499    /// This function has the same error semantics as [`read_until`] and will
2500    /// also return an error if the read bytes are not valid UTF-8. If an I/O
2501    /// error is encountered then `buf` may contain some bytes already read in
2502    /// the event that all data read so far was valid UTF-8.
2503    ///
2504    /// [`read_until`]: BufRead::read_until
2505    ///
2506    /// # Examples
2507    ///
2508    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2509    /// this example, we use [`Cursor`] to read all the lines in a byte slice:
2510    ///
2511    /// ```
2512    /// use std::io::{self, BufRead};
2513    ///
2514    /// let mut cursor = io::Cursor::new(b"foo\nbar");
2515    /// let mut buf = String::new();
2516    ///
2517    /// // cursor is at 'f'
2518    /// let num_bytes = cursor.read_line(&mut buf)
2519    ///     .expect("reading from cursor won't fail");
2520    /// assert_eq!(num_bytes, 4);
2521    /// assert_eq!(buf, "foo\n");
2522    /// buf.clear();
2523    ///
2524    /// // cursor is at 'b'
2525    /// let num_bytes = cursor.read_line(&mut buf)
2526    ///     .expect("reading from cursor won't fail");
2527    /// assert_eq!(num_bytes, 3);
2528    /// assert_eq!(buf, "bar");
2529    /// buf.clear();
2530    ///
2531    /// // cursor is at EOF
2532    /// let num_bytes = cursor.read_line(&mut buf)
2533    ///     .expect("reading from cursor won't fail");
2534    /// assert_eq!(num_bytes, 0);
2535    /// assert_eq!(buf, "");
2536    /// ```
2537    #[stable(feature = "rust1", since = "1.0.0")]
2538    fn read_line(&mut self, buf: &mut String) -> Result<usize> {
2539        // Note that we are not calling the `.read_until` method here, but
2540        // rather our hardcoded implementation. For more details as to why, see
2541        // the comments in `default_read_to_string`.
2542        unsafe { append_to_string(buf, |b| read_until(self, b'\n', b)) }
2543    }
2544
2545    /// Returns an iterator over the contents of this reader split on the byte
2546    /// `byte`.
2547    ///
2548    /// The iterator returned from this function will return instances of
2549    /// <code>[io::Result]<[Vec]\<u8>></code>. Each vector returned will *not* have
2550    /// the delimiter byte at the end.
2551    ///
2552    /// This function will yield errors whenever [`read_until`] would have
2553    /// also yielded an error.
2554    ///
2555    /// [io::Result]: self::Result "io::Result"
2556    /// [`read_until`]: BufRead::read_until
2557    ///
2558    /// # Examples
2559    ///
2560    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2561    /// this example, we use [`Cursor`] to iterate over all hyphen delimited
2562    /// segments in a byte slice
2563    ///
2564    /// ```
2565    /// use std::io::{self, BufRead};
2566    ///
2567    /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
2568    ///
2569    /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
2570    /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
2571    /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
2572    /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
2573    /// assert_eq!(split_iter.next(), None);
2574    /// ```
2575    #[stable(feature = "rust1", since = "1.0.0")]
2576    fn split(self, byte: u8) -> Split<Self>
2577    where
2578        Self: Sized,
2579    {
2580        Split { buf: self, delim: byte }
2581    }
2582
2583    /// Returns an iterator over the lines of this reader.
2584    ///
2585    /// The iterator returned from this function will yield instances of
2586    /// <code>[io::Result]<[String]></code>. Each string returned will *not* have a newline
2587    /// byte (the `0xA` byte) or `CRLF` (`0xD`, `0xA` bytes) at the end.
2588    ///
2589    /// [io::Result]: self::Result "io::Result"
2590    ///
2591    /// # Examples
2592    ///
2593    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
2594    /// this example, we use [`Cursor`] to iterate over all the lines in a byte
2595    /// slice.
2596    ///
2597    /// ```
2598    /// use std::io::{self, BufRead};
2599    ///
2600    /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
2601    ///
2602    /// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
2603    /// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
2604    /// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
2605    /// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
2606    /// assert_eq!(lines_iter.next(), None);
2607    /// ```
2608    ///
2609    /// # Errors
2610    ///
2611    /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
2612    #[stable(feature = "rust1", since = "1.0.0")]
2613    fn lines(self) -> Lines<Self>
2614    where
2615        Self: Sized,
2616    {
2617        Lines { buf: self }
2618    }
2619}
2620
2621/// Adapter to chain together two readers.
2622///
2623/// This struct is generally created by calling [`chain`] on a reader.
2624/// Please see the documentation of [`chain`] for more details.
2625///
2626/// [`chain`]: Read::chain
2627#[stable(feature = "rust1", since = "1.0.0")]
2628#[derive(Debug)]
2629pub struct Chain<T, U> {
2630    first: T,
2631    second: U,
2632    done_first: bool,
2633}
2634
2635impl<T, U> Chain<T, U> {
2636    /// Consumes the `Chain`, returning the wrapped readers.
2637    ///
2638    /// # Examples
2639    ///
2640    /// ```no_run
2641    /// use std::io;
2642    /// use std::io::prelude::*;
2643    /// use std::fs::File;
2644    ///
2645    /// fn main() -> io::Result<()> {
2646    ///     let mut foo_file = File::open("foo.txt")?;
2647    ///     let mut bar_file = File::open("bar.txt")?;
2648    ///
2649    ///     let chain = foo_file.chain(bar_file);
2650    ///     let (foo_file, bar_file) = chain.into_inner();
2651    ///     Ok(())
2652    /// }
2653    /// ```
2654    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2655    pub fn into_inner(self) -> (T, U) {
2656        (self.first, self.second)
2657    }
2658
2659    /// Gets references to the underlying readers in this `Chain`.
2660    ///
2661    /// # Examples
2662    ///
2663    /// ```no_run
2664    /// use std::io;
2665    /// use std::io::prelude::*;
2666    /// use std::fs::File;
2667    ///
2668    /// fn main() -> io::Result<()> {
2669    ///     let mut foo_file = File::open("foo.txt")?;
2670    ///     let mut bar_file = File::open("bar.txt")?;
2671    ///
2672    ///     let chain = foo_file.chain(bar_file);
2673    ///     let (foo_file, bar_file) = chain.get_ref();
2674    ///     Ok(())
2675    /// }
2676    /// ```
2677    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2678    pub fn get_ref(&self) -> (&T, &U) {
2679        (&self.first, &self.second)
2680    }
2681
2682    /// Gets mutable references to the underlying readers in this `Chain`.
2683    ///
2684    /// Care should be taken to avoid modifying the internal I/O state of the
2685    /// underlying readers as doing so may corrupt the internal state of this
2686    /// `Chain`.
2687    ///
2688    /// # Examples
2689    ///
2690    /// ```no_run
2691    /// use std::io;
2692    /// use std::io::prelude::*;
2693    /// use std::fs::File;
2694    ///
2695    /// fn main() -> io::Result<()> {
2696    ///     let mut foo_file = File::open("foo.txt")?;
2697    ///     let mut bar_file = File::open("bar.txt")?;
2698    ///
2699    ///     let mut chain = foo_file.chain(bar_file);
2700    ///     let (foo_file, bar_file) = chain.get_mut();
2701    ///     Ok(())
2702    /// }
2703    /// ```
2704    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2705    pub fn get_mut(&mut self) -> (&mut T, &mut U) {
2706        (&mut self.first, &mut self.second)
2707    }
2708}
2709
2710#[stable(feature = "rust1", since = "1.0.0")]
2711impl<T: Read, U: Read> Read for Chain<T, U> {
2712    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
2713        if !self.done_first {
2714            match self.first.read(buf)? {
2715                0 if !buf.is_empty() => self.done_first = true,
2716                n => return Ok(n),
2717            }
2718        }
2719        self.second.read(buf)
2720    }
2721
2722    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
2723        if !self.done_first {
2724            match self.first.read_vectored(bufs)? {
2725                0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
2726                n => return Ok(n),
2727            }
2728        }
2729        self.second.read_vectored(bufs)
2730    }
2731
2732    #[inline]
2733    fn is_read_vectored(&self) -> bool {
2734        self.first.is_read_vectored() || self.second.is_read_vectored()
2735    }
2736
2737    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
2738        let mut read = 0;
2739        if !self.done_first {
2740            read += self.first.read_to_end(buf)?;
2741            self.done_first = true;
2742        }
2743        read += self.second.read_to_end(buf)?;
2744        Ok(read)
2745    }
2746
2747    // We don't override `read_to_string` here because an UTF-8 sequence could
2748    // be split between the two parts of the chain
2749
2750    fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
2751        if buf.capacity() == 0 {
2752            return Ok(());
2753        }
2754
2755        if !self.done_first {
2756            let old_len = buf.written();
2757            self.first.read_buf(buf.reborrow())?;
2758
2759            if buf.written() != old_len {
2760                return Ok(());
2761            } else {
2762                self.done_first = true;
2763            }
2764        }
2765        self.second.read_buf(buf)
2766    }
2767}
2768
2769#[stable(feature = "chain_bufread", since = "1.9.0")]
2770impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
2771    fn fill_buf(&mut self) -> Result<&[u8]> {
2772        if !self.done_first {
2773            match self.first.fill_buf()? {
2774                buf if buf.is_empty() => self.done_first = true,
2775                buf => return Ok(buf),
2776            }
2777        }
2778        self.second.fill_buf()
2779    }
2780
2781    fn consume(&mut self, amt: usize) {
2782        if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
2783    }
2784
2785    fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
2786        let mut read = 0;
2787        if !self.done_first {
2788            let n = self.first.read_until(byte, buf)?;
2789            read += n;
2790
2791            match buf.last() {
2792                Some(b) if *b == byte && n != 0 => return Ok(read),
2793                _ => self.done_first = true,
2794            }
2795        }
2796        read += self.second.read_until(byte, buf)?;
2797        Ok(read)
2798    }
2799
2800    // We don't override `read_line` here because an UTF-8 sequence could be
2801    // split between the two parts of the chain
2802}
2803
2804impl<T, U> SizeHint for Chain<T, U> {
2805    #[inline]
2806    fn lower_bound(&self) -> usize {
2807        SizeHint::lower_bound(&self.first) + SizeHint::lower_bound(&self.second)
2808    }
2809
2810    #[inline]
2811    fn upper_bound(&self) -> Option<usize> {
2812        match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
2813            (Some(first), Some(second)) => first.checked_add(second),
2814            _ => None,
2815        }
2816    }
2817}
2818
2819/// Reader adapter which limits the bytes read from an underlying reader.
2820///
2821/// This struct is generally created by calling [`take`] on a reader.
2822/// Please see the documentation of [`take`] for more details.
2823///
2824/// [`take`]: Read::take
2825#[stable(feature = "rust1", since = "1.0.0")]
2826#[derive(Debug)]
2827pub struct Take<T> {
2828    inner: T,
2829    limit: u64,
2830}
2831
2832impl<T> Take<T> {
2833    /// Returns the number of bytes that can be read before this instance will
2834    /// return EOF.
2835    ///
2836    /// # Note
2837    ///
2838    /// This instance may reach `EOF` after reading fewer bytes than indicated by
2839    /// this method if the underlying [`Read`] instance reaches EOF.
2840    ///
2841    /// # Examples
2842    ///
2843    /// ```no_run
2844    /// use std::io;
2845    /// use std::io::prelude::*;
2846    /// use std::fs::File;
2847    ///
2848    /// fn main() -> io::Result<()> {
2849    ///     let f = File::open("foo.txt")?;
2850    ///
2851    ///     // read at most five bytes
2852    ///     let handle = f.take(5);
2853    ///
2854    ///     println!("limit: {}", handle.limit());
2855    ///     Ok(())
2856    /// }
2857    /// ```
2858    #[stable(feature = "rust1", since = "1.0.0")]
2859    pub fn limit(&self) -> u64 {
2860        self.limit
2861    }
2862
2863    /// Sets the number of bytes that can be read before this instance will
2864    /// return EOF. This is the same as constructing a new `Take` instance, so
2865    /// the amount of bytes read and the previous limit value don't matter when
2866    /// calling this method.
2867    ///
2868    /// # Examples
2869    ///
2870    /// ```no_run
2871    /// use std::io;
2872    /// use std::io::prelude::*;
2873    /// use std::fs::File;
2874    ///
2875    /// fn main() -> io::Result<()> {
2876    ///     let f = File::open("foo.txt")?;
2877    ///
2878    ///     // read at most five bytes
2879    ///     let mut handle = f.take(5);
2880    ///     handle.set_limit(10);
2881    ///
2882    ///     assert_eq!(handle.limit(), 10);
2883    ///     Ok(())
2884    /// }
2885    /// ```
2886    #[stable(feature = "take_set_limit", since = "1.27.0")]
2887    pub fn set_limit(&mut self, limit: u64) {
2888        self.limit = limit;
2889    }
2890
2891    /// Consumes the `Take`, returning the wrapped reader.
2892    ///
2893    /// # Examples
2894    ///
2895    /// ```no_run
2896    /// use std::io;
2897    /// use std::io::prelude::*;
2898    /// use std::fs::File;
2899    ///
2900    /// fn main() -> io::Result<()> {
2901    ///     let mut file = File::open("foo.txt")?;
2902    ///
2903    ///     let mut buffer = [0; 5];
2904    ///     let mut handle = file.take(5);
2905    ///     handle.read(&mut buffer)?;
2906    ///
2907    ///     let file = handle.into_inner();
2908    ///     Ok(())
2909    /// }
2910    /// ```
2911    #[stable(feature = "io_take_into_inner", since = "1.15.0")]
2912    pub fn into_inner(self) -> T {
2913        self.inner
2914    }
2915
2916    /// Gets a reference to the underlying reader.
2917    ///
2918    /// # Examples
2919    ///
2920    /// ```no_run
2921    /// use std::io;
2922    /// use std::io::prelude::*;
2923    /// use std::fs::File;
2924    ///
2925    /// fn main() -> io::Result<()> {
2926    ///     let mut file = File::open("foo.txt")?;
2927    ///
2928    ///     let mut buffer = [0; 5];
2929    ///     let mut handle = file.take(5);
2930    ///     handle.read(&mut buffer)?;
2931    ///
2932    ///     let file = handle.get_ref();
2933    ///     Ok(())
2934    /// }
2935    /// ```
2936    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2937    pub fn get_ref(&self) -> &T {
2938        &self.inner
2939    }
2940
2941    /// Gets a mutable reference to the underlying reader.
2942    ///
2943    /// Care should be taken to avoid modifying the internal I/O state of the
2944    /// underlying reader as doing so may corrupt the internal limit of this
2945    /// `Take`.
2946    ///
2947    /// # Examples
2948    ///
2949    /// ```no_run
2950    /// use std::io;
2951    /// use std::io::prelude::*;
2952    /// use std::fs::File;
2953    ///
2954    /// fn main() -> io::Result<()> {
2955    ///     let mut file = File::open("foo.txt")?;
2956    ///
2957    ///     let mut buffer = [0; 5];
2958    ///     let mut handle = file.take(5);
2959    ///     handle.read(&mut buffer)?;
2960    ///
2961    ///     let file = handle.get_mut();
2962    ///     Ok(())
2963    /// }
2964    /// ```
2965    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
2966    pub fn get_mut(&mut self) -> &mut T {
2967        &mut self.inner
2968    }
2969}
2970
2971#[stable(feature = "rust1", since = "1.0.0")]
2972impl<T: Read> Read for Take<T> {
2973    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
2974        // Don't call into inner reader at all at EOF because it may still block
2975        if self.limit == 0 {
2976            return Ok(0);
2977        }
2978
2979        let max = cmp::min(buf.len() as u64, self.limit) as usize;
2980        let n = self.inner.read(&mut buf[..max])?;
2981        assert!(n as u64 <= self.limit, "number of read bytes exceeds limit");
2982        self.limit -= n as u64;
2983        Ok(n)
2984    }
2985
2986    fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
2987        // Don't call into inner reader at all at EOF because it may still block
2988        if self.limit == 0 {
2989            return Ok(());
2990        }
2991
2992        if self.limit < buf.capacity() as u64 {
2993            // The condition above guarantees that `self.limit` fits in `usize`.
2994            let limit = self.limit as usize;
2995
2996            let extra_init = cmp::min(limit, buf.init_ref().len());
2997
2998            // SAFETY: no uninit data is written to ibuf
2999            let ibuf = unsafe { &mut buf.as_mut()[..limit] };
3000
3001            let mut sliced_buf: BorrowedBuf<'_> = ibuf.into();
3002
3003            // SAFETY: extra_init bytes of ibuf are known to be initialized
3004            unsafe {
3005                sliced_buf.set_init(extra_init);
3006            }
3007
3008            let mut cursor = sliced_buf.unfilled();
3009            let result = self.inner.read_buf(cursor.reborrow());
3010
3011            let new_init = cursor.init_ref().len();
3012            let filled = sliced_buf.len();
3013
3014            // cursor / sliced_buf / ibuf must drop here
3015
3016            unsafe {
3017                // SAFETY: filled bytes have been filled and therefore initialized
3018                buf.advance_unchecked(filled);
3019                // SAFETY: new_init bytes of buf's unfilled buffer have been initialized
3020                buf.set_init(new_init);
3021            }
3022
3023            self.limit -= filled as u64;
3024
3025            result
3026        } else {
3027            let written = buf.written();
3028            let result = self.inner.read_buf(buf.reborrow());
3029            self.limit -= (buf.written() - written) as u64;
3030            result
3031        }
3032    }
3033}
3034
3035#[stable(feature = "rust1", since = "1.0.0")]
3036impl<T: BufRead> BufRead for Take<T> {
3037    fn fill_buf(&mut self) -> Result<&[u8]> {
3038        // Don't call into inner reader at all at EOF because it may still block
3039        if self.limit == 0 {
3040            return Ok(&[]);
3041        }
3042
3043        let buf = self.inner.fill_buf()?;
3044        let cap = cmp::min(buf.len() as u64, self.limit) as usize;
3045        Ok(&buf[..cap])
3046    }
3047
3048    fn consume(&mut self, amt: usize) {
3049        // Don't let callers reset the limit by passing an overlarge value
3050        let amt = cmp::min(amt as u64, self.limit) as usize;
3051        self.limit -= amt as u64;
3052        self.inner.consume(amt);
3053    }
3054}
3055
3056impl<T> SizeHint for Take<T> {
3057    #[inline]
3058    fn lower_bound(&self) -> usize {
3059        cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
3060    }
3061
3062    #[inline]
3063    fn upper_bound(&self) -> Option<usize> {
3064        match SizeHint::upper_bound(&self.inner) {
3065            Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
3066            None => self.limit.try_into().ok(),
3067        }
3068    }
3069}
3070
3071/// An iterator over `u8` values of a reader.
3072///
3073/// This struct is generally created by calling [`bytes`] on a reader.
3074/// Please see the documentation of [`bytes`] for more details.
3075///
3076/// [`bytes`]: Read::bytes
3077#[stable(feature = "rust1", since = "1.0.0")]
3078#[derive(Debug)]
3079pub struct Bytes<R> {
3080    inner: R,
3081}
3082
3083#[stable(feature = "rust1", since = "1.0.0")]
3084impl<R: Read> Iterator for Bytes<R> {
3085    type Item = Result<u8>;
3086
3087    // Not `#[inline]`. This function gets inlined even without it, but having
3088    // the inline annotation can result in worse code generation. See #116785.
3089    fn next(&mut self) -> Option<Result<u8>> {
3090        SpecReadByte::spec_read_byte(&mut self.inner)
3091    }
3092
3093    #[inline]
3094    fn size_hint(&self) -> (usize, Option<usize>) {
3095        SizeHint::size_hint(&self.inner)
3096    }
3097}
3098
3099/// For the specialization of `Bytes::next`.
3100trait SpecReadByte {
3101    fn spec_read_byte(&mut self) -> Option<Result<u8>>;
3102}
3103
3104impl<R> SpecReadByte for R
3105where
3106    Self: Read,
3107{
3108    #[inline]
3109    default fn spec_read_byte(&mut self) -> Option<Result<u8>> {
3110        inlined_slow_read_byte(self)
3111    }
3112}
3113
3114/// Reads a single byte in a slow, generic way. This is used by the default
3115/// `spec_read_byte`.
3116#[inline]
3117fn inlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
3118    let mut byte = 0;
3119    loop {
3120        return match reader.read(slice::from_mut(&mut byte)) {
3121            Ok(0) => None,
3122            Ok(..) => Some(Ok(byte)),
3123            Err(ref e) if e.is_interrupted() => continue,
3124            Err(e) => Some(Err(e)),
3125        };
3126    }
3127}
3128
3129// Used by `BufReader::spec_read_byte`, for which the `inline(ever)` is
3130// important.
3131#[inline(never)]
3132fn uninlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
3133    inlined_slow_read_byte(reader)
3134}
3135
3136trait SizeHint {
3137    fn lower_bound(&self) -> usize;
3138
3139    fn upper_bound(&self) -> Option<usize>;
3140
3141    fn size_hint(&self) -> (usize, Option<usize>) {
3142        (self.lower_bound(), self.upper_bound())
3143    }
3144}
3145
3146impl<T: ?Sized> SizeHint for T {
3147    #[inline]
3148    default fn lower_bound(&self) -> usize {
3149        0
3150    }
3151
3152    #[inline]
3153    default fn upper_bound(&self) -> Option<usize> {
3154        None
3155    }
3156}
3157
3158impl<T> SizeHint for &mut T {
3159    #[inline]
3160    fn lower_bound(&self) -> usize {
3161        SizeHint::lower_bound(*self)
3162    }
3163
3164    #[inline]
3165    fn upper_bound(&self) -> Option<usize> {
3166        SizeHint::upper_bound(*self)
3167    }
3168}
3169
3170impl<T> SizeHint for Box<T> {
3171    #[inline]
3172    fn lower_bound(&self) -> usize {
3173        SizeHint::lower_bound(&**self)
3174    }
3175
3176    #[inline]
3177    fn upper_bound(&self) -> Option<usize> {
3178        SizeHint::upper_bound(&**self)
3179    }
3180}
3181
3182impl SizeHint for &[u8] {
3183    #[inline]
3184    fn lower_bound(&self) -> usize {
3185        self.len()
3186    }
3187
3188    #[inline]
3189    fn upper_bound(&self) -> Option<usize> {
3190        Some(self.len())
3191    }
3192}
3193
3194/// An iterator over the contents of an instance of `BufRead` split on a
3195/// particular byte.
3196///
3197/// This struct is generally created by calling [`split`] on a `BufRead`.
3198/// Please see the documentation of [`split`] for more details.
3199///
3200/// [`split`]: BufRead::split
3201#[stable(feature = "rust1", since = "1.0.0")]
3202#[derive(Debug)]
3203pub struct Split<B> {
3204    buf: B,
3205    delim: u8,
3206}
3207
3208#[stable(feature = "rust1", since = "1.0.0")]
3209impl<B: BufRead> Iterator for Split<B> {
3210    type Item = Result<Vec<u8>>;
3211
3212    fn next(&mut self) -> Option<Result<Vec<u8>>> {
3213        let mut buf = Vec::new();
3214        match self.buf.read_until(self.delim, &mut buf) {
3215            Ok(0) => None,
3216            Ok(_n) => {
3217                if buf[buf.len() - 1] == self.delim {
3218                    buf.pop();
3219                }
3220                Some(Ok(buf))
3221            }
3222            Err(e) => Some(Err(e)),
3223        }
3224    }
3225}
3226
3227/// An iterator over the lines of an instance of `BufRead`.
3228///
3229/// This struct is generally created by calling [`lines`] on a `BufRead`.
3230/// Please see the documentation of [`lines`] for more details.
3231///
3232/// [`lines`]: BufRead::lines
3233#[stable(feature = "rust1", since = "1.0.0")]
3234#[derive(Debug)]
3235#[cfg_attr(not(test), rustc_diagnostic_item = "IoLines")]
3236pub struct Lines<B> {
3237    buf: B,
3238}
3239
3240#[stable(feature = "rust1", since = "1.0.0")]
3241impl<B: BufRead> Iterator for Lines<B> {
3242    type Item = Result<String>;
3243
3244    fn next(&mut self) -> Option<Result<String>> {
3245        let mut buf = String::new();
3246        match self.buf.read_line(&mut buf) {
3247            Ok(0) => None,
3248            Ok(_n) => {
3249                if buf.ends_with('\n') {
3250                    buf.pop();
3251                    if buf.ends_with('\r') {
3252                        buf.pop();
3253                    }
3254                }
3255                Some(Ok(buf))
3256            }
3257            Err(e) => Some(Err(e)),
3258        }
3259    }
3260}
Лучший частный хостинг