lynx   »   [go: up one dir, main page]

alloc/
string.rs

1//! A UTF-8–encoded, growable string.
2//!
3//! This module contains the [`String`] type, the [`ToString`] trait for
4//! converting to strings, and several error types that may result from
5//! working with [`String`]s.
6//!
7//! # Examples
8//!
9//! There are multiple ways to create a new [`String`] from a string literal:
10//!
11//! ```
12//! let s = "Hello".to_string();
13//!
14//! let s = String::from("world");
15//! let s: String = "also this".into();
16//! ```
17//!
18//! You can create a new [`String`] from an existing one by concatenating with
19//! `+`:
20//!
21//! ```
22//! let s = "Hello".to_string();
23//!
24//! let message = s + " world!";
25//! ```
26//!
27//! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
28//! it. You can do the reverse too.
29//!
30//! ```
31//! let sparkle_heart = vec![240, 159, 146, 150];
32//!
33//! // We know these bytes are valid, so we'll use `unwrap()`.
34//! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
35//!
36//! assert_eq!("💖", sparkle_heart);
37//!
38//! let bytes = sparkle_heart.into_bytes();
39//!
40//! assert_eq!(bytes, [240, 159, 146, 150]);
41//! ```
42
43#![stable(feature = "rust1", since = "1.0.0")]
44
45use core::error::Error;
46use core::iter::FusedIterator;
47#[cfg(not(no_global_oom_handling))]
48use core::iter::from_fn;
49#[cfg(not(no_global_oom_handling))]
50use core::ops::Add;
51#[cfg(not(no_global_oom_handling))]
52use core::ops::AddAssign;
53#[cfg(not(no_global_oom_handling))]
54use core::ops::Bound::{Excluded, Included, Unbounded};
55use core::ops::{self, Range, RangeBounds};
56use core::str::pattern::{Pattern, Utf8Pattern};
57use core::{fmt, hash, ptr, slice};
58
59#[cfg(not(no_global_oom_handling))]
60use crate::alloc::Allocator;
61#[cfg(not(no_global_oom_handling))]
62use crate::borrow::{Cow, ToOwned};
63use crate::boxed::Box;
64use crate::collections::TryReserveError;
65use crate::str::{self, CharIndices, Chars, Utf8Error, from_utf8_unchecked_mut};
66#[cfg(not(no_global_oom_handling))]
67use crate::str::{FromStr, from_boxed_utf8_unchecked};
68use crate::vec::{self, Vec};
69
70/// A UTF-8–encoded, growable string.
71///
72/// `String` is the most common string type. It has ownership over the contents
73/// of the string, stored in a heap-allocated buffer (see [Representation](#representation)).
74/// It is closely related to its borrowed counterpart, the primitive [`str`].
75///
76/// # Examples
77///
78/// You can create a `String` from [a literal string][`&str`] with [`String::from`]:
79///
80/// [`String::from`]: From::from
81///
82/// ```
83/// let hello = String::from("Hello, world!");
84/// ```
85///
86/// You can append a [`char`] to a `String` with the [`push`] method, and
87/// append a [`&str`] with the [`push_str`] method:
88///
89/// ```
90/// let mut hello = String::from("Hello, ");
91///
92/// hello.push('w');
93/// hello.push_str("orld!");
94/// ```
95///
96/// [`push`]: String::push
97/// [`push_str`]: String::push_str
98///
99/// If you have a vector of UTF-8 bytes, you can create a `String` from it with
100/// the [`from_utf8`] method:
101///
102/// ```
103/// // some bytes, in a vector
104/// let sparkle_heart = vec![240, 159, 146, 150];
105///
106/// // We know these bytes are valid, so we'll use `unwrap()`.
107/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
108///
109/// assert_eq!("💖", sparkle_heart);
110/// ```
111///
112/// [`from_utf8`]: String::from_utf8
113///
114/// # UTF-8
115///
116/// `String`s are always valid UTF-8. If you need a non-UTF-8 string, consider
117/// [`OsString`]. It is similar, but without the UTF-8 constraint. Because UTF-8
118/// is a variable width encoding, `String`s are typically smaller than an array of
119/// the same `char`s:
120///
121/// ```
122/// // `s` is ASCII which represents each `char` as one byte
123/// let s = "hello";
124/// assert_eq!(s.len(), 5);
125///
126/// // A `char` array with the same contents would be longer because
127/// // every `char` is four bytes
128/// let s = ['h', 'e', 'l', 'l', 'o'];
129/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
130/// assert_eq!(size, 20);
131///
132/// // However, for non-ASCII strings, the difference will be smaller
133/// // and sometimes they are the same
134/// let s = "💖💖💖💖💖";
135/// assert_eq!(s.len(), 20);
136///
137/// let s = ['💖', '💖', '💖', '💖', '💖'];
138/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
139/// assert_eq!(size, 20);
140/// ```
141///
142/// This raises interesting questions as to how `s[i]` should work.
143/// What should `i` be here? Several options include byte indices and
144/// `char` indices but, because of UTF-8 encoding, only byte indices
145/// would provide constant time indexing. Getting the `i`th `char`, for
146/// example, is available using [`chars`]:
147///
148/// ```
149/// let s = "hello";
150/// let third_character = s.chars().nth(2);
151/// assert_eq!(third_character, Some('l'));
152///
153/// let s = "💖💖💖💖💖";
154/// let third_character = s.chars().nth(2);
155/// assert_eq!(third_character, Some('💖'));
156/// ```
157///
158/// Next, what should `s[i]` return? Because indexing returns a reference
159/// to underlying data it could be `&u8`, `&[u8]`, or something else similar.
160/// Since we're only providing one index, `&u8` makes the most sense but that
161/// might not be what the user expects and can be explicitly achieved with
162/// [`as_bytes()`]:
163///
164/// ```
165/// // The first byte is 104 - the byte value of `'h'`
166/// let s = "hello";
167/// assert_eq!(s.as_bytes()[0], 104);
168/// // or
169/// assert_eq!(s.as_bytes()[0], b'h');
170///
171/// // The first byte is 240 which isn't obviously useful
172/// let s = "💖💖💖💖💖";
173/// assert_eq!(s.as_bytes()[0], 240);
174/// ```
175///
176/// Due to these ambiguities/restrictions, indexing with a `usize` is simply
177/// forbidden:
178///
179/// ```compile_fail,E0277
180/// let s = "hello";
181///
182/// // The following will not compile!
183/// println!("The first letter of s is {}", s[0]);
184/// ```
185///
186/// It is more clear, however, how `&s[i..j]` should work (that is,
187/// indexing with a range). It should accept byte indices (to be constant-time)
188/// and return a `&str` which is UTF-8 encoded. This is also called "string slicing".
189/// Note this will panic if the byte indices provided are not character
190/// boundaries - see [`is_char_boundary`] for more details. See the implementations
191/// for [`SliceIndex<str>`] for more details on string slicing. For a non-panicking
192/// version of string slicing, see [`get`].
193///
194/// [`OsString`]: ../../std/ffi/struct.OsString.html "ffi::OsString"
195/// [`SliceIndex<str>`]: core::slice::SliceIndex
196/// [`as_bytes()`]: str::as_bytes
197/// [`get`]: str::get
198/// [`is_char_boundary`]: str::is_char_boundary
199///
200/// The [`bytes`] and [`chars`] methods return iterators over the bytes and
201/// codepoints of the string, respectively. To iterate over codepoints along
202/// with byte indices, use [`char_indices`].
203///
204/// [`bytes`]: str::bytes
205/// [`chars`]: str::chars
206/// [`char_indices`]: str::char_indices
207///
208/// # Deref
209///
210/// `String` implements <code>[Deref]<Target = [str]></code>, and so inherits all of [`str`]'s
211/// methods. In addition, this means that you can pass a `String` to a
212/// function which takes a [`&str`] by using an ampersand (`&`):
213///
214/// ```
215/// fn takes_str(s: &str) { }
216///
217/// let s = String::from("Hello");
218///
219/// takes_str(&s);
220/// ```
221///
222/// This will create a [`&str`] from the `String` and pass it in. This
223/// conversion is very inexpensive, and so generally, functions will accept
224/// [`&str`]s as arguments unless they need a `String` for some specific
225/// reason.
226///
227/// In certain cases Rust doesn't have enough information to make this
228/// conversion, known as [`Deref`] coercion. In the following example a string
229/// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
230/// `example_func` takes anything that implements the trait. In this case Rust
231/// would need to make two implicit conversions, which Rust doesn't have the
232/// means to do. For that reason, the following example will not compile.
233///
234/// ```compile_fail,E0277
235/// trait TraitExample {}
236///
237/// impl<'a> TraitExample for &'a str {}
238///
239/// fn example_func<A: TraitExample>(example_arg: A) {}
240///
241/// let example_string = String::from("example_string");
242/// example_func(&example_string);
243/// ```
244///
245/// There are two options that would work instead. The first would be to
246/// change the line `example_func(&example_string);` to
247/// `example_func(example_string.as_str());`, using the method [`as_str()`]
248/// to explicitly extract the string slice containing the string. The second
249/// way changes `example_func(&example_string);` to
250/// `example_func(&*example_string);`. In this case we are dereferencing a
251/// `String` to a [`str`], then referencing the [`str`] back to
252/// [`&str`]. The second way is more idiomatic, however both work to do the
253/// conversion explicitly rather than relying on the implicit conversion.
254///
255/// # Representation
256///
257/// A `String` is made up of three components: a pointer to some bytes, a
258/// length, and a capacity. The pointer points to the internal buffer which `String`
259/// uses to store its data. The length is the number of bytes currently stored
260/// in the buffer, and the capacity is the size of the buffer in bytes. As such,
261/// the length will always be less than or equal to the capacity.
262///
263/// This buffer is always stored on the heap.
264///
265/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
266/// methods:
267///
268/// ```
269/// use std::mem;
270///
271/// let story = String::from("Once upon a time...");
272///
273// FIXME Update this when vec_into_raw_parts is stabilized
274/// // Prevent automatically dropping the String's data
275/// let mut story = mem::ManuallyDrop::new(story);
276///
277/// let ptr = story.as_mut_ptr();
278/// let len = story.len();
279/// let capacity = story.capacity();
280///
281/// // story has nineteen bytes
282/// assert_eq!(19, len);
283///
284/// // We can re-build a String out of ptr, len, and capacity. This is all
285/// // unsafe because we are responsible for making sure the components are
286/// // valid:
287/// let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
288///
289/// assert_eq!(String::from("Once upon a time..."), s);
290/// ```
291///
292/// [`as_ptr`]: str::as_ptr
293/// [`len`]: String::len
294/// [`capacity`]: String::capacity
295///
296/// If a `String` has enough capacity, adding elements to it will not
297/// re-allocate. For example, consider this program:
298///
299/// ```
300/// let mut s = String::new();
301///
302/// println!("{}", s.capacity());
303///
304/// for _ in 0..5 {
305///     s.push_str("hello");
306///     println!("{}", s.capacity());
307/// }
308/// ```
309///
310/// This will output the following:
311///
312/// ```text
313/// 0
314/// 8
315/// 16
316/// 16
317/// 32
318/// 32
319/// ```
320///
321/// At first, we have no memory allocated at all, but as we append to the
322/// string, it increases its capacity appropriately. If we instead use the
323/// [`with_capacity`] method to allocate the correct capacity initially:
324///
325/// ```
326/// let mut s = String::with_capacity(25);
327///
328/// println!("{}", s.capacity());
329///
330/// for _ in 0..5 {
331///     s.push_str("hello");
332///     println!("{}", s.capacity());
333/// }
334/// ```
335///
336/// [`with_capacity`]: String::with_capacity
337///
338/// We end up with a different output:
339///
340/// ```text
341/// 25
342/// 25
343/// 25
344/// 25
345/// 25
346/// 25
347/// ```
348///
349/// Here, there's no need to allocate more memory inside the loop.
350///
351/// [str]: prim@str "str"
352/// [`str`]: prim@str "str"
353/// [`&str`]: prim@str "&str"
354/// [Deref]: core::ops::Deref "ops::Deref"
355/// [`Deref`]: core::ops::Deref "ops::Deref"
356/// [`as_str()`]: String::as_str
357#[derive(PartialEq, PartialOrd, Eq, Ord)]
358#[stable(feature = "rust1", since = "1.0.0")]
359#[lang = "String"]
360pub struct String {
361    vec: Vec<u8>,
362}
363
364/// A possible error value when converting a `String` from a UTF-8 byte vector.
365///
366/// This type is the error type for the [`from_utf8`] method on [`String`]. It
367/// is designed in such a way to carefully avoid reallocations: the
368/// [`into_bytes`] method will give back the byte vector that was used in the
369/// conversion attempt.
370///
371/// [`from_utf8`]: String::from_utf8
372/// [`into_bytes`]: FromUtf8Error::into_bytes
373///
374/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
375/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
376/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
377/// through the [`utf8_error`] method.
378///
379/// [`Utf8Error`]: str::Utf8Error "std::str::Utf8Error"
380/// [`std::str`]: core::str "std::str"
381/// [`&str`]: prim@str "&str"
382/// [`utf8_error`]: FromUtf8Error::utf8_error
383///
384/// # Examples
385///
386/// ```
387/// // some invalid bytes, in a vector
388/// let bytes = vec![0, 159];
389///
390/// let value = String::from_utf8(bytes);
391///
392/// assert!(value.is_err());
393/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
394/// ```
395#[stable(feature = "rust1", since = "1.0.0")]
396#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
397#[derive(Debug, PartialEq, Eq)]
398pub struct FromUtf8Error {
399    bytes: Vec<u8>,
400    error: Utf8Error,
401}
402
403/// A possible error value when converting a `String` from a UTF-16 byte slice.
404///
405/// This type is the error type for the [`from_utf16`] method on [`String`].
406///
407/// [`from_utf16`]: String::from_utf16
408///
409/// # Examples
410///
411/// ```
412/// // 𝄞mu<invalid>ic
413/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
414///           0xD800, 0x0069, 0x0063];
415///
416/// assert!(String::from_utf16(v).is_err());
417/// ```
418#[stable(feature = "rust1", since = "1.0.0")]
419#[derive(Debug)]
420pub struct FromUtf16Error(());
421
422impl String {
423    /// Creates a new empty `String`.
424    ///
425    /// Given that the `String` is empty, this will not allocate any initial
426    /// buffer. While that means that this initial operation is very
427    /// inexpensive, it may cause excessive allocation later when you add
428    /// data. If you have an idea of how much data the `String` will hold,
429    /// consider the [`with_capacity`] method to prevent excessive
430    /// re-allocation.
431    ///
432    /// [`with_capacity`]: String::with_capacity
433    ///
434    /// # Examples
435    ///
436    /// ```
437    /// let s = String::new();
438    /// ```
439    #[inline]
440    #[rustc_const_stable(feature = "const_string_new", since = "1.39.0")]
441    #[rustc_diagnostic_item = "string_new"]
442    #[stable(feature = "rust1", since = "1.0.0")]
443    #[must_use]
444    pub const fn new() -> String {
445        String { vec: Vec::new() }
446    }
447
448    /// Creates a new empty `String` with at least the specified capacity.
449    ///
450    /// `String`s have an internal buffer to hold their data. The capacity is
451    /// the length of that buffer, and can be queried with the [`capacity`]
452    /// method. This method creates an empty `String`, but one with an initial
453    /// buffer that can hold at least `capacity` bytes. This is useful when you
454    /// may be appending a bunch of data to the `String`, reducing the number of
455    /// reallocations it needs to do.
456    ///
457    /// [`capacity`]: String::capacity
458    ///
459    /// If the given capacity is `0`, no allocation will occur, and this method
460    /// is identical to the [`new`] method.
461    ///
462    /// [`new`]: String::new
463    ///
464    /// # Examples
465    ///
466    /// ```
467    /// let mut s = String::with_capacity(10);
468    ///
469    /// // The String contains no chars, even though it has capacity for more
470    /// assert_eq!(s.len(), 0);
471    ///
472    /// // These are all done without reallocating...
473    /// let cap = s.capacity();
474    /// for _ in 0..10 {
475    ///     s.push('a');
476    /// }
477    ///
478    /// assert_eq!(s.capacity(), cap);
479    ///
480    /// // ...but this may make the string reallocate
481    /// s.push('a');
482    /// ```
483    #[cfg(not(no_global_oom_handling))]
484    #[inline]
485    #[stable(feature = "rust1", since = "1.0.0")]
486    #[must_use]
487    pub fn with_capacity(capacity: usize) -> String {
488        String { vec: Vec::with_capacity(capacity) }
489    }
490
491    /// Creates a new empty `String` with at least the specified capacity.
492    ///
493    /// # Errors
494    ///
495    /// Returns [`Err`] if the capacity exceeds `isize::MAX` bytes,
496    /// or if the memory allocator reports failure.
497    ///
498    #[inline]
499    #[unstable(feature = "try_with_capacity", issue = "91913")]
500    pub fn try_with_capacity(capacity: usize) -> Result<String, TryReserveError> {
501        Ok(String { vec: Vec::try_with_capacity(capacity)? })
502    }
503
504    /// Converts a vector of bytes to a `String`.
505    ///
506    /// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
507    /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
508    /// two. Not all byte slices are valid `String`s, however: `String`
509    /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
510    /// the bytes are valid UTF-8, and then does the conversion.
511    ///
512    /// If you are sure that the byte slice is valid UTF-8, and you don't want
513    /// to incur the overhead of the validity check, there is an unsafe version
514    /// of this function, [`from_utf8_unchecked`], which has the same behavior
515    /// but skips the check.
516    ///
517    /// This method will take care to not copy the vector, for efficiency's
518    /// sake.
519    ///
520    /// If you need a [`&str`] instead of a `String`, consider
521    /// [`str::from_utf8`].
522    ///
523    /// The inverse of this method is [`into_bytes`].
524    ///
525    /// # Errors
526    ///
527    /// Returns [`Err`] if the slice is not UTF-8 with a description as to why the
528    /// provided bytes are not UTF-8. The vector you moved in is also included.
529    ///
530    /// # Examples
531    ///
532    /// Basic usage:
533    ///
534    /// ```
535    /// // some bytes, in a vector
536    /// let sparkle_heart = vec![240, 159, 146, 150];
537    ///
538    /// // We know these bytes are valid, so we'll use `unwrap()`.
539    /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
540    ///
541    /// assert_eq!("💖", sparkle_heart);
542    /// ```
543    ///
544    /// Incorrect bytes:
545    ///
546    /// ```
547    /// // some invalid bytes, in a vector
548    /// let sparkle_heart = vec![0, 159, 146, 150];
549    ///
550    /// assert!(String::from_utf8(sparkle_heart).is_err());
551    /// ```
552    ///
553    /// See the docs for [`FromUtf8Error`] for more details on what you can do
554    /// with this error.
555    ///
556    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
557    /// [`Vec<u8>`]: crate::vec::Vec "Vec"
558    /// [`&str`]: prim@str "&str"
559    /// [`into_bytes`]: String::into_bytes
560    #[inline]
561    #[stable(feature = "rust1", since = "1.0.0")]
562    #[rustc_diagnostic_item = "string_from_utf8"]
563    pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
564        match str::from_utf8(&vec) {
565            Ok(..) => Ok(String { vec }),
566            Err(e) => Err(FromUtf8Error { bytes: vec, error: e }),
567        }
568    }
569
570    /// Converts a slice of bytes to a string, including invalid characters.
571    ///
572    /// Strings are made of bytes ([`u8`]), and a slice of bytes
573    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
574    /// between the two. Not all byte slices are valid strings, however: strings
575    /// are required to be valid UTF-8. During this conversion,
576    /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
577    /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD], which looks like this: �
578    ///
579    /// [byteslice]: prim@slice
580    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
581    ///
582    /// If you are sure that the byte slice is valid UTF-8, and you don't want
583    /// to incur the overhead of the conversion, there is an unsafe version
584    /// of this function, [`from_utf8_unchecked`], which has the same behavior
585    /// but skips the checks.
586    ///
587    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
588    ///
589    /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
590    /// UTF-8, then we need to insert the replacement characters, which will
591    /// change the size of the string, and hence, require a `String`. But if
592    /// it's already valid UTF-8, we don't need a new allocation. This return
593    /// type allows us to handle both cases.
594    ///
595    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
596    ///
597    /// # Examples
598    ///
599    /// Basic usage:
600    ///
601    /// ```
602    /// // some bytes, in a vector
603    /// let sparkle_heart = vec![240, 159, 146, 150];
604    ///
605    /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
606    ///
607    /// assert_eq!("💖", sparkle_heart);
608    /// ```
609    ///
610    /// Incorrect bytes:
611    ///
612    /// ```
613    /// // some invalid bytes
614    /// let input = b"Hello \xF0\x90\x80World";
615    /// let output = String::from_utf8_lossy(input);
616    ///
617    /// assert_eq!("Hello �World", output);
618    /// ```
619    #[must_use]
620    #[cfg(not(no_global_oom_handling))]
621    #[stable(feature = "rust1", since = "1.0.0")]
622    pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str> {
623        let mut iter = v.utf8_chunks();
624
625        let first_valid = if let Some(chunk) = iter.next() {
626            let valid = chunk.valid();
627            if chunk.invalid().is_empty() {
628                debug_assert_eq!(valid.len(), v.len());
629                return Cow::Borrowed(valid);
630            }
631            valid
632        } else {
633            return Cow::Borrowed("");
634        };
635
636        const REPLACEMENT: &str = "\u{FFFD}";
637
638        let mut res = String::with_capacity(v.len());
639        res.push_str(first_valid);
640        res.push_str(REPLACEMENT);
641
642        for chunk in iter {
643            res.push_str(chunk.valid());
644            if !chunk.invalid().is_empty() {
645                res.push_str(REPLACEMENT);
646            }
647        }
648
649        Cow::Owned(res)
650    }
651
652    /// Converts a [`Vec<u8>`] to a `String`, substituting invalid UTF-8
653    /// sequences with replacement characters.
654    ///
655    /// See [`from_utf8_lossy`] for more details.
656    ///
657    /// [`from_utf8_lossy`]: String::from_utf8_lossy
658    ///
659    /// Note that this function does not guarantee reuse of the original `Vec`
660    /// allocation.
661    ///
662    /// # Examples
663    ///
664    /// Basic usage:
665    ///
666    /// ```
667    /// #![feature(string_from_utf8_lossy_owned)]
668    /// // some bytes, in a vector
669    /// let sparkle_heart = vec![240, 159, 146, 150];
670    ///
671    /// let sparkle_heart = String::from_utf8_lossy_owned(sparkle_heart);
672    ///
673    /// assert_eq!(String::from("💖"), sparkle_heart);
674    /// ```
675    ///
676    /// Incorrect bytes:
677    ///
678    /// ```
679    /// #![feature(string_from_utf8_lossy_owned)]
680    /// // some invalid bytes
681    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
682    /// let output = String::from_utf8_lossy_owned(input);
683    ///
684    /// assert_eq!(String::from("Hello �World"), output);
685    /// ```
686    #[must_use]
687    #[cfg(not(no_global_oom_handling))]
688    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
689    pub fn from_utf8_lossy_owned(v: Vec<u8>) -> String {
690        if let Cow::Owned(string) = String::from_utf8_lossy(&v) {
691            string
692        } else {
693            // SAFETY: `String::from_utf8_lossy`'s contract ensures that if
694            // it returns a `Cow::Borrowed`, it is a valid UTF-8 string.
695            // Otherwise, it returns a new allocation of an owned `String`, with
696            // replacement characters for invalid sequences, which is returned
697            // above.
698            unsafe { String::from_utf8_unchecked(v) }
699        }
700    }
701
702    /// Decode a native endian UTF-16–encoded vector `v` into a `String`,
703    /// returning [`Err`] if `v` contains any invalid data.
704    ///
705    /// # Examples
706    ///
707    /// ```
708    /// // 𝄞music
709    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
710    ///           0x0073, 0x0069, 0x0063];
711    /// assert_eq!(String::from("𝄞music"),
712    ///            String::from_utf16(v).unwrap());
713    ///
714    /// // 𝄞mu<invalid>ic
715    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
716    ///           0xD800, 0x0069, 0x0063];
717    /// assert!(String::from_utf16(v).is_err());
718    /// ```
719    #[cfg(not(no_global_oom_handling))]
720    #[stable(feature = "rust1", since = "1.0.0")]
721    pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
722        // This isn't done via collect::<Result<_, _>>() for performance reasons.
723        // FIXME: the function can be simplified again when #48994 is closed.
724        let mut ret = String::with_capacity(v.len());
725        for c in char::decode_utf16(v.iter().cloned()) {
726            if let Ok(c) = c {
727                ret.push(c);
728            } else {
729                return Err(FromUtf16Error(()));
730            }
731        }
732        Ok(ret)
733    }
734
735    /// Decode a native endian UTF-16–encoded slice `v` into a `String`,
736    /// replacing invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
737    ///
738    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
739    /// `from_utf16_lossy` returns a `String` since the UTF-16 to UTF-8
740    /// conversion requires a memory allocation.
741    ///
742    /// [`from_utf8_lossy`]: String::from_utf8_lossy
743    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
744    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
745    ///
746    /// # Examples
747    ///
748    /// ```
749    /// // 𝄞mus<invalid>ic<invalid>
750    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
751    ///           0x0073, 0xDD1E, 0x0069, 0x0063,
752    ///           0xD834];
753    ///
754    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
755    ///            String::from_utf16_lossy(v));
756    /// ```
757    #[cfg(not(no_global_oom_handling))]
758    #[must_use]
759    #[inline]
760    #[stable(feature = "rust1", since = "1.0.0")]
761    pub fn from_utf16_lossy(v: &[u16]) -> String {
762        char::decode_utf16(v.iter().cloned())
763            .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
764            .collect()
765    }
766
767    /// Decode a UTF-16LE–encoded vector `v` into a `String`,
768    /// returning [`Err`] if `v` contains any invalid data.
769    ///
770    /// # Examples
771    ///
772    /// Basic usage:
773    ///
774    /// ```
775    /// #![feature(str_from_utf16_endian)]
776    /// // 𝄞music
777    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
778    ///           0x73, 0x00, 0x69, 0x00, 0x63, 0x00];
779    /// assert_eq!(String::from("𝄞music"),
780    ///            String::from_utf16le(v).unwrap());
781    ///
782    /// // 𝄞mu<invalid>ic
783    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
784    ///           0x00, 0xD8, 0x69, 0x00, 0x63, 0x00];
785    /// assert!(String::from_utf16le(v).is_err());
786    /// ```
787    #[cfg(not(no_global_oom_handling))]
788    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
789    pub fn from_utf16le(v: &[u8]) -> Result<String, FromUtf16Error> {
790        if v.len() % 2 != 0 {
791            return Err(FromUtf16Error(()));
792        }
793        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
794            (true, ([], v, [])) => Self::from_utf16(v),
795            _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_le_bytes))
796                .collect::<Result<_, _>>()
797                .map_err(|_| FromUtf16Error(())),
798        }
799    }
800
801    /// Decode a UTF-16LE–encoded slice `v` into a `String`, replacing
802    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
803    ///
804    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
805    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
806    /// conversion requires a memory allocation.
807    ///
808    /// [`from_utf8_lossy`]: String::from_utf8_lossy
809    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
810    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
811    ///
812    /// # Examples
813    ///
814    /// Basic usage:
815    ///
816    /// ```
817    /// #![feature(str_from_utf16_endian)]
818    /// // 𝄞mus<invalid>ic<invalid>
819    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
820    ///           0x73, 0x00, 0x1E, 0xDD, 0x69, 0x00, 0x63, 0x00,
821    ///           0x34, 0xD8];
822    ///
823    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
824    ///            String::from_utf16le_lossy(v));
825    /// ```
826    #[cfg(not(no_global_oom_handling))]
827    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
828    pub fn from_utf16le_lossy(v: &[u8]) -> String {
829        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
830            (true, ([], v, [])) => Self::from_utf16_lossy(v),
831            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
832            _ => {
833                let mut iter = v.array_chunks::<2>();
834                let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_le_bytes))
835                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
836                    .collect();
837                if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
838            }
839        }
840    }
841
842    /// Decode a UTF-16BE–encoded vector `v` into a `String`,
843    /// returning [`Err`] if `v` contains any invalid data.
844    ///
845    /// # Examples
846    ///
847    /// Basic usage:
848    ///
849    /// ```
850    /// #![feature(str_from_utf16_endian)]
851    /// // 𝄞music
852    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
853    ///           0x00, 0x73, 0x00, 0x69, 0x00, 0x63];
854    /// assert_eq!(String::from("𝄞music"),
855    ///            String::from_utf16be(v).unwrap());
856    ///
857    /// // 𝄞mu<invalid>ic
858    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
859    ///           0xD8, 0x00, 0x00, 0x69, 0x00, 0x63];
860    /// assert!(String::from_utf16be(v).is_err());
861    /// ```
862    #[cfg(not(no_global_oom_handling))]
863    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
864    pub fn from_utf16be(v: &[u8]) -> Result<String, FromUtf16Error> {
865        if v.len() % 2 != 0 {
866            return Err(FromUtf16Error(()));
867        }
868        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
869            (true, ([], v, [])) => Self::from_utf16(v),
870            _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_be_bytes))
871                .collect::<Result<_, _>>()
872                .map_err(|_| FromUtf16Error(())),
873        }
874    }
875
876    /// Decode a UTF-16BE–encoded slice `v` into a `String`, replacing
877    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
878    ///
879    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
880    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
881    /// conversion requires a memory allocation.
882    ///
883    /// [`from_utf8_lossy`]: String::from_utf8_lossy
884    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
885    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
886    ///
887    /// # Examples
888    ///
889    /// Basic usage:
890    ///
891    /// ```
892    /// #![feature(str_from_utf16_endian)]
893    /// // 𝄞mus<invalid>ic<invalid>
894    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
895    ///           0x00, 0x73, 0xDD, 0x1E, 0x00, 0x69, 0x00, 0x63,
896    ///           0xD8, 0x34];
897    ///
898    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
899    ///            String::from_utf16be_lossy(v));
900    /// ```
901    #[cfg(not(no_global_oom_handling))]
902    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
903    pub fn from_utf16be_lossy(v: &[u8]) -> String {
904        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
905            (true, ([], v, [])) => Self::from_utf16_lossy(v),
906            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
907            _ => {
908                let mut iter = v.array_chunks::<2>();
909                let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_be_bytes))
910                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
911                    .collect();
912                if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
913            }
914        }
915    }
916
917    /// Decomposes a `String` into its raw components: `(pointer, length, capacity)`.
918    ///
919    /// Returns the raw pointer to the underlying data, the length of
920    /// the string (in bytes), and the allocated capacity of the data
921    /// (in bytes). These are the same arguments in the same order as
922    /// the arguments to [`from_raw_parts`].
923    ///
924    /// After calling this function, the caller is responsible for the
925    /// memory previously managed by the `String`. The only way to do
926    /// this is to convert the raw pointer, length, and capacity back
927    /// into a `String` with the [`from_raw_parts`] function, allowing
928    /// the destructor to perform the cleanup.
929    ///
930    /// [`from_raw_parts`]: String::from_raw_parts
931    ///
932    /// # Examples
933    ///
934    /// ```
935    /// #![feature(vec_into_raw_parts)]
936    /// let s = String::from("hello");
937    ///
938    /// let (ptr, len, cap) = s.into_raw_parts();
939    ///
940    /// let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
941    /// assert_eq!(rebuilt, "hello");
942    /// ```
943    #[must_use = "losing the pointer will leak memory"]
944    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
945    pub fn into_raw_parts(self) -> (*mut u8, usize, usize) {
946        self.vec.into_raw_parts()
947    }
948
949    /// Creates a new `String` from a pointer, a length and a capacity.
950    ///
951    /// # Safety
952    ///
953    /// This is highly unsafe, due to the number of invariants that aren't
954    /// checked:
955    ///
956    /// * all safety requirements for [`Vec::<u8>::from_raw_parts`].
957    /// * all safety requirements for [`String::from_utf8_unchecked`].
958    ///
959    /// Violating these may cause problems like corrupting the allocator's
960    /// internal data structures. For example, it is normally **not** safe to
961    /// build a `String` from a pointer to a C `char` array containing UTF-8
962    /// _unless_ you are certain that array was originally allocated by the
963    /// Rust standard library's allocator.
964    ///
965    /// The ownership of `buf` is effectively transferred to the
966    /// `String` which may then deallocate, reallocate or change the
967    /// contents of memory pointed to by the pointer at will. Ensure
968    /// that nothing else uses the pointer after calling this
969    /// function.
970    ///
971    /// # Examples
972    ///
973    /// ```
974    /// use std::mem;
975    ///
976    /// unsafe {
977    ///     let s = String::from("hello");
978    ///
979    // FIXME Update this when vec_into_raw_parts is stabilized
980    ///     // Prevent automatically dropping the String's data
981    ///     let mut s = mem::ManuallyDrop::new(s);
982    ///
983    ///     let ptr = s.as_mut_ptr();
984    ///     let len = s.len();
985    ///     let capacity = s.capacity();
986    ///
987    ///     let s = String::from_raw_parts(ptr, len, capacity);
988    ///
989    ///     assert_eq!(String::from("hello"), s);
990    /// }
991    /// ```
992    #[inline]
993    #[stable(feature = "rust1", since = "1.0.0")]
994    pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
995        unsafe { String { vec: Vec::from_raw_parts(buf, length, capacity) } }
996    }
997
998    /// Converts a vector of bytes to a `String` without checking that the
999    /// string contains valid UTF-8.
1000    ///
1001    /// See the safe version, [`from_utf8`], for more details.
1002    ///
1003    /// [`from_utf8`]: String::from_utf8
1004    ///
1005    /// # Safety
1006    ///
1007    /// This function is unsafe because it does not check that the bytes passed
1008    /// to it are valid UTF-8. If this constraint is violated, it may cause
1009    /// memory unsafety issues with future users of the `String`, as the rest of
1010    /// the standard library assumes that `String`s are valid UTF-8.
1011    ///
1012    /// # Examples
1013    ///
1014    /// ```
1015    /// // some bytes, in a vector
1016    /// let sparkle_heart = vec![240, 159, 146, 150];
1017    ///
1018    /// let sparkle_heart = unsafe {
1019    ///     String::from_utf8_unchecked(sparkle_heart)
1020    /// };
1021    ///
1022    /// assert_eq!("💖", sparkle_heart);
1023    /// ```
1024    #[inline]
1025    #[must_use]
1026    #[stable(feature = "rust1", since = "1.0.0")]
1027    pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
1028        String { vec: bytes }
1029    }
1030
1031    /// Converts a `String` into a byte vector.
1032    ///
1033    /// This consumes the `String`, so we do not need to copy its contents.
1034    ///
1035    /// # Examples
1036    ///
1037    /// ```
1038    /// let s = String::from("hello");
1039    /// let bytes = s.into_bytes();
1040    ///
1041    /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
1042    /// ```
1043    #[inline]
1044    #[must_use = "`self` will be dropped if the result is not used"]
1045    #[stable(feature = "rust1", since = "1.0.0")]
1046    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1047    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1048    pub const fn into_bytes(self) -> Vec<u8> {
1049        self.vec
1050    }
1051
1052    /// Extracts a string slice containing the entire `String`.
1053    ///
1054    /// # Examples
1055    ///
1056    /// ```
1057    /// let s = String::from("foo");
1058    ///
1059    /// assert_eq!("foo", s.as_str());
1060    /// ```
1061    #[inline]
1062    #[must_use]
1063    #[stable(feature = "string_as_str", since = "1.7.0")]
1064    #[rustc_diagnostic_item = "string_as_str"]
1065    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1066    pub const fn as_str(&self) -> &str {
1067        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1068        // at construction.
1069        unsafe { str::from_utf8_unchecked(self.vec.as_slice()) }
1070    }
1071
1072    /// Converts a `String` into a mutable string slice.
1073    ///
1074    /// # Examples
1075    ///
1076    /// ```
1077    /// let mut s = String::from("foobar");
1078    /// let s_mut_str = s.as_mut_str();
1079    ///
1080    /// s_mut_str.make_ascii_uppercase();
1081    ///
1082    /// assert_eq!("FOOBAR", s_mut_str);
1083    /// ```
1084    #[inline]
1085    #[must_use]
1086    #[stable(feature = "string_as_str", since = "1.7.0")]
1087    #[rustc_diagnostic_item = "string_as_mut_str"]
1088    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1089    pub const fn as_mut_str(&mut self) -> &mut str {
1090        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1091        // at construction.
1092        unsafe { str::from_utf8_unchecked_mut(self.vec.as_mut_slice()) }
1093    }
1094
1095    /// Appends a given string slice onto the end of this `String`.
1096    ///
1097    /// # Examples
1098    ///
1099    /// ```
1100    /// let mut s = String::from("foo");
1101    ///
1102    /// s.push_str("bar");
1103    ///
1104    /// assert_eq!("foobar", s);
1105    /// ```
1106    #[cfg(not(no_global_oom_handling))]
1107    #[inline]
1108    #[stable(feature = "rust1", since = "1.0.0")]
1109    #[rustc_confusables("append", "push")]
1110    #[rustc_diagnostic_item = "string_push_str"]
1111    pub fn push_str(&mut self, string: &str) {
1112        self.vec.extend_from_slice(string.as_bytes())
1113    }
1114
1115    /// Copies elements from `src` range to the end of the string.
1116    ///
1117    /// # Panics
1118    ///
1119    /// Panics if the starting point or end point do not lie on a [`char`]
1120    /// boundary, or if they're out of bounds.
1121    ///
1122    /// # Examples
1123    ///
1124    /// ```
1125    /// let mut string = String::from("abcde");
1126    ///
1127    /// string.extend_from_within(2..);
1128    /// assert_eq!(string, "abcdecde");
1129    ///
1130    /// string.extend_from_within(..2);
1131    /// assert_eq!(string, "abcdecdeab");
1132    ///
1133    /// string.extend_from_within(4..8);
1134    /// assert_eq!(string, "abcdecdeabecde");
1135    /// ```
1136    #[cfg(not(no_global_oom_handling))]
1137    #[stable(feature = "string_extend_from_within", since = "CURRENT_RUSTC_VERSION")]
1138    pub fn extend_from_within<R>(&mut self, src: R)
1139    where
1140        R: RangeBounds<usize>,
1141    {
1142        let src @ Range { start, end } = slice::range(src, ..self.len());
1143
1144        assert!(self.is_char_boundary(start));
1145        assert!(self.is_char_boundary(end));
1146
1147        self.vec.extend_from_within(src);
1148    }
1149
1150    /// Returns this `String`'s capacity, in bytes.
1151    ///
1152    /// # Examples
1153    ///
1154    /// ```
1155    /// let s = String::with_capacity(10);
1156    ///
1157    /// assert!(s.capacity() >= 10);
1158    /// ```
1159    #[inline]
1160    #[must_use]
1161    #[stable(feature = "rust1", since = "1.0.0")]
1162    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1163    pub const fn capacity(&self) -> usize {
1164        self.vec.capacity()
1165    }
1166
1167    /// Reserves capacity for at least `additional` bytes more than the
1168    /// current length. The allocator may reserve more space to speculatively
1169    /// avoid frequent allocations. After calling `reserve`,
1170    /// capacity will be greater than or equal to `self.len() + additional`.
1171    /// Does nothing if capacity is already sufficient.
1172    ///
1173    /// # Panics
1174    ///
1175    /// Panics if the new capacity overflows [`usize`].
1176    ///
1177    /// # Examples
1178    ///
1179    /// Basic usage:
1180    ///
1181    /// ```
1182    /// let mut s = String::new();
1183    ///
1184    /// s.reserve(10);
1185    ///
1186    /// assert!(s.capacity() >= 10);
1187    /// ```
1188    ///
1189    /// This might not actually increase the capacity:
1190    ///
1191    /// ```
1192    /// let mut s = String::with_capacity(10);
1193    /// s.push('a');
1194    /// s.push('b');
1195    ///
1196    /// // s now has a length of 2 and a capacity of at least 10
1197    /// let capacity = s.capacity();
1198    /// assert_eq!(2, s.len());
1199    /// assert!(capacity >= 10);
1200    ///
1201    /// // Since we already have at least an extra 8 capacity, calling this...
1202    /// s.reserve(8);
1203    ///
1204    /// // ... doesn't actually increase.
1205    /// assert_eq!(capacity, s.capacity());
1206    /// ```
1207    #[cfg(not(no_global_oom_handling))]
1208    #[inline]
1209    #[stable(feature = "rust1", since = "1.0.0")]
1210    pub fn reserve(&mut self, additional: usize) {
1211        self.vec.reserve(additional)
1212    }
1213
1214    /// Reserves the minimum capacity for at least `additional` bytes more than
1215    /// the current length. Unlike [`reserve`], this will not
1216    /// deliberately over-allocate to speculatively avoid frequent allocations.
1217    /// After calling `reserve_exact`, capacity will be greater than or equal to
1218    /// `self.len() + additional`. Does nothing if the capacity is already
1219    /// sufficient.
1220    ///
1221    /// [`reserve`]: String::reserve
1222    ///
1223    /// # Panics
1224    ///
1225    /// Panics if the new capacity overflows [`usize`].
1226    ///
1227    /// # Examples
1228    ///
1229    /// Basic usage:
1230    ///
1231    /// ```
1232    /// let mut s = String::new();
1233    ///
1234    /// s.reserve_exact(10);
1235    ///
1236    /// assert!(s.capacity() >= 10);
1237    /// ```
1238    ///
1239    /// This might not actually increase the capacity:
1240    ///
1241    /// ```
1242    /// let mut s = String::with_capacity(10);
1243    /// s.push('a');
1244    /// s.push('b');
1245    ///
1246    /// // s now has a length of 2 and a capacity of at least 10
1247    /// let capacity = s.capacity();
1248    /// assert_eq!(2, s.len());
1249    /// assert!(capacity >= 10);
1250    ///
1251    /// // Since we already have at least an extra 8 capacity, calling this...
1252    /// s.reserve_exact(8);
1253    ///
1254    /// // ... doesn't actually increase.
1255    /// assert_eq!(capacity, s.capacity());
1256    /// ```
1257    #[cfg(not(no_global_oom_handling))]
1258    #[inline]
1259    #[stable(feature = "rust1", since = "1.0.0")]
1260    pub fn reserve_exact(&mut self, additional: usize) {
1261        self.vec.reserve_exact(additional)
1262    }
1263
1264    /// Tries to reserve capacity for at least `additional` bytes more than the
1265    /// current length. The allocator may reserve more space to speculatively
1266    /// avoid frequent allocations. After calling `try_reserve`, capacity will be
1267    /// greater than or equal to `self.len() + additional` if it returns
1268    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1269    /// preserves the contents even if an error occurs.
1270    ///
1271    /// # Errors
1272    ///
1273    /// If the capacity overflows, or the allocator reports a failure, then an error
1274    /// is returned.
1275    ///
1276    /// # Examples
1277    ///
1278    /// ```
1279    /// use std::collections::TryReserveError;
1280    ///
1281    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1282    ///     let mut output = String::new();
1283    ///
1284    ///     // Pre-reserve the memory, exiting if we can't
1285    ///     output.try_reserve(data.len())?;
1286    ///
1287    ///     // Now we know this can't OOM in the middle of our complex work
1288    ///     output.push_str(data);
1289    ///
1290    ///     Ok(output)
1291    /// }
1292    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1293    /// ```
1294    #[stable(feature = "try_reserve", since = "1.57.0")]
1295    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1296        self.vec.try_reserve(additional)
1297    }
1298
1299    /// Tries to reserve the minimum capacity for at least `additional` bytes
1300    /// more than the current length. Unlike [`try_reserve`], this will not
1301    /// deliberately over-allocate to speculatively avoid frequent allocations.
1302    /// After calling `try_reserve_exact`, capacity will be greater than or
1303    /// equal to `self.len() + additional` if it returns `Ok(())`.
1304    /// Does nothing if the capacity is already sufficient.
1305    ///
1306    /// Note that the allocator may give the collection more space than it
1307    /// requests. Therefore, capacity can not be relied upon to be precisely
1308    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1309    ///
1310    /// [`try_reserve`]: String::try_reserve
1311    ///
1312    /// # Errors
1313    ///
1314    /// If the capacity overflows, or the allocator reports a failure, then an error
1315    /// is returned.
1316    ///
1317    /// # Examples
1318    ///
1319    /// ```
1320    /// use std::collections::TryReserveError;
1321    ///
1322    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1323    ///     let mut output = String::new();
1324    ///
1325    ///     // Pre-reserve the memory, exiting if we can't
1326    ///     output.try_reserve_exact(data.len())?;
1327    ///
1328    ///     // Now we know this can't OOM in the middle of our complex work
1329    ///     output.push_str(data);
1330    ///
1331    ///     Ok(output)
1332    /// }
1333    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1334    /// ```
1335    #[stable(feature = "try_reserve", since = "1.57.0")]
1336    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1337        self.vec.try_reserve_exact(additional)
1338    }
1339
1340    /// Shrinks the capacity of this `String` to match its length.
1341    ///
1342    /// # Examples
1343    ///
1344    /// ```
1345    /// let mut s = String::from("foo");
1346    ///
1347    /// s.reserve(100);
1348    /// assert!(s.capacity() >= 100);
1349    ///
1350    /// s.shrink_to_fit();
1351    /// assert_eq!(3, s.capacity());
1352    /// ```
1353    #[cfg(not(no_global_oom_handling))]
1354    #[inline]
1355    #[stable(feature = "rust1", since = "1.0.0")]
1356    pub fn shrink_to_fit(&mut self) {
1357        self.vec.shrink_to_fit()
1358    }
1359
1360    /// Shrinks the capacity of this `String` with a lower bound.
1361    ///
1362    /// The capacity will remain at least as large as both the length
1363    /// and the supplied value.
1364    ///
1365    /// If the current capacity is less than the lower limit, this is a no-op.
1366    ///
1367    /// # Examples
1368    ///
1369    /// ```
1370    /// let mut s = String::from("foo");
1371    ///
1372    /// s.reserve(100);
1373    /// assert!(s.capacity() >= 100);
1374    ///
1375    /// s.shrink_to(10);
1376    /// assert!(s.capacity() >= 10);
1377    /// s.shrink_to(0);
1378    /// assert!(s.capacity() >= 3);
1379    /// ```
1380    #[cfg(not(no_global_oom_handling))]
1381    #[inline]
1382    #[stable(feature = "shrink_to", since = "1.56.0")]
1383    pub fn shrink_to(&mut self, min_capacity: usize) {
1384        self.vec.shrink_to(min_capacity)
1385    }
1386
1387    /// Appends the given [`char`] to the end of this `String`.
1388    ///
1389    /// # Examples
1390    ///
1391    /// ```
1392    /// let mut s = String::from("abc");
1393    ///
1394    /// s.push('1');
1395    /// s.push('2');
1396    /// s.push('3');
1397    ///
1398    /// assert_eq!("abc123", s);
1399    /// ```
1400    #[cfg(not(no_global_oom_handling))]
1401    #[inline]
1402    #[stable(feature = "rust1", since = "1.0.0")]
1403    pub fn push(&mut self, ch: char) {
1404        match ch.len_utf8() {
1405            1 => self.vec.push(ch as u8),
1406            _ => {
1407                self.vec.extend_from_slice(ch.encode_utf8(&mut [0; char::MAX_LEN_UTF8]).as_bytes())
1408            }
1409        }
1410    }
1411
1412    /// Returns a byte slice of this `String`'s contents.
1413    ///
1414    /// The inverse of this method is [`from_utf8`].
1415    ///
1416    /// [`from_utf8`]: String::from_utf8
1417    ///
1418    /// # Examples
1419    ///
1420    /// ```
1421    /// let s = String::from("hello");
1422    ///
1423    /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
1424    /// ```
1425    #[inline]
1426    #[must_use]
1427    #[stable(feature = "rust1", since = "1.0.0")]
1428    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1429    pub const fn as_bytes(&self) -> &[u8] {
1430        self.vec.as_slice()
1431    }
1432
1433    /// Shortens this `String` to the specified length.
1434    ///
1435    /// If `new_len` is greater than or equal to the string's current length, this has no
1436    /// effect.
1437    ///
1438    /// Note that this method has no effect on the allocated capacity
1439    /// of the string
1440    ///
1441    /// # Panics
1442    ///
1443    /// Panics if `new_len` does not lie on a [`char`] boundary.
1444    ///
1445    /// # Examples
1446    ///
1447    /// ```
1448    /// let mut s = String::from("hello");
1449    ///
1450    /// s.truncate(2);
1451    ///
1452    /// assert_eq!("he", s);
1453    /// ```
1454    #[inline]
1455    #[stable(feature = "rust1", since = "1.0.0")]
1456    pub fn truncate(&mut self, new_len: usize) {
1457        if new_len <= self.len() {
1458            assert!(self.is_char_boundary(new_len));
1459            self.vec.truncate(new_len)
1460        }
1461    }
1462
1463    /// Removes the last character from the string buffer and returns it.
1464    ///
1465    /// Returns [`None`] if this `String` is empty.
1466    ///
1467    /// # Examples
1468    ///
1469    /// ```
1470    /// let mut s = String::from("abč");
1471    ///
1472    /// assert_eq!(s.pop(), Some('č'));
1473    /// assert_eq!(s.pop(), Some('b'));
1474    /// assert_eq!(s.pop(), Some('a'));
1475    ///
1476    /// assert_eq!(s.pop(), None);
1477    /// ```
1478    #[inline]
1479    #[stable(feature = "rust1", since = "1.0.0")]
1480    pub fn pop(&mut self) -> Option<char> {
1481        let ch = self.chars().rev().next()?;
1482        let newlen = self.len() - ch.len_utf8();
1483        unsafe {
1484            self.vec.set_len(newlen);
1485        }
1486        Some(ch)
1487    }
1488
1489    /// Removes a [`char`] from this `String` at a byte position and returns it.
1490    ///
1491    /// This is an *O*(*n*) operation, as it requires copying every element in the
1492    /// buffer.
1493    ///
1494    /// # Panics
1495    ///
1496    /// Panics if `idx` is larger than or equal to the `String`'s length,
1497    /// or if it does not lie on a [`char`] boundary.
1498    ///
1499    /// # Examples
1500    ///
1501    /// ```
1502    /// let mut s = String::from("abç");
1503    ///
1504    /// assert_eq!(s.remove(0), 'a');
1505    /// assert_eq!(s.remove(1), 'ç');
1506    /// assert_eq!(s.remove(0), 'b');
1507    /// ```
1508    #[inline]
1509    #[stable(feature = "rust1", since = "1.0.0")]
1510    #[rustc_confusables("delete", "take")]
1511    pub fn remove(&mut self, idx: usize) -> char {
1512        let ch = match self[idx..].chars().next() {
1513            Some(ch) => ch,
1514            None => panic!("cannot remove a char from the end of a string"),
1515        };
1516
1517        let next = idx + ch.len_utf8();
1518        let len = self.len();
1519        unsafe {
1520            ptr::copy(self.vec.as_ptr().add(next), self.vec.as_mut_ptr().add(idx), len - next);
1521            self.vec.set_len(len - (next - idx));
1522        }
1523        ch
1524    }
1525
1526    /// Remove all matches of pattern `pat` in the `String`.
1527    ///
1528    /// # Examples
1529    ///
1530    /// ```
1531    /// #![feature(string_remove_matches)]
1532    /// let mut s = String::from("Trees are not green, the sky is not blue.");
1533    /// s.remove_matches("not ");
1534    /// assert_eq!("Trees are green, the sky is blue.", s);
1535    /// ```
1536    ///
1537    /// Matches will be detected and removed iteratively, so in cases where
1538    /// patterns overlap, only the first pattern will be removed:
1539    ///
1540    /// ```
1541    /// #![feature(string_remove_matches)]
1542    /// let mut s = String::from("banana");
1543    /// s.remove_matches("ana");
1544    /// assert_eq!("bna", s);
1545    /// ```
1546    #[cfg(not(no_global_oom_handling))]
1547    #[unstable(feature = "string_remove_matches", reason = "new API", issue = "72826")]
1548    pub fn remove_matches<P: Pattern>(&mut self, pat: P) {
1549        use core::str::pattern::Searcher;
1550
1551        let rejections = {
1552            let mut searcher = pat.into_searcher(self);
1553            // Per Searcher::next:
1554            //
1555            // A Match result needs to contain the whole matched pattern,
1556            // however Reject results may be split up into arbitrary many
1557            // adjacent fragments. Both ranges may have zero length.
1558            //
1559            // In practice the implementation of Searcher::next_match tends to
1560            // be more efficient, so we use it here and do some work to invert
1561            // matches into rejections since that's what we want to copy below.
1562            let mut front = 0;
1563            let rejections: Vec<_> = from_fn(|| {
1564                let (start, end) = searcher.next_match()?;
1565                let prev_front = front;
1566                front = end;
1567                Some((prev_front, start))
1568            })
1569            .collect();
1570            rejections.into_iter().chain(core::iter::once((front, self.len())))
1571        };
1572
1573        let mut len = 0;
1574        let ptr = self.vec.as_mut_ptr();
1575
1576        for (start, end) in rejections {
1577            let count = end - start;
1578            if start != len {
1579                // SAFETY: per Searcher::next:
1580                //
1581                // The stream of Match and Reject values up to a Done will
1582                // contain index ranges that are adjacent, non-overlapping,
1583                // covering the whole haystack, and laying on utf8
1584                // boundaries.
1585                unsafe {
1586                    ptr::copy(ptr.add(start), ptr.add(len), count);
1587                }
1588            }
1589            len += count;
1590        }
1591
1592        unsafe {
1593            self.vec.set_len(len);
1594        }
1595    }
1596
1597    /// Retains only the characters specified by the predicate.
1598    ///
1599    /// In other words, remove all characters `c` such that `f(c)` returns `false`.
1600    /// This method operates in place, visiting each character exactly once in the
1601    /// original order, and preserves the order of the retained characters.
1602    ///
1603    /// # Examples
1604    ///
1605    /// ```
1606    /// let mut s = String::from("f_o_ob_ar");
1607    ///
1608    /// s.retain(|c| c != '_');
1609    ///
1610    /// assert_eq!(s, "foobar");
1611    /// ```
1612    ///
1613    /// Because the elements are visited exactly once in the original order,
1614    /// external state may be used to decide which elements to keep.
1615    ///
1616    /// ```
1617    /// let mut s = String::from("abcde");
1618    /// let keep = [false, true, true, false, true];
1619    /// let mut iter = keep.iter();
1620    /// s.retain(|_| *iter.next().unwrap());
1621    /// assert_eq!(s, "bce");
1622    /// ```
1623    #[inline]
1624    #[stable(feature = "string_retain", since = "1.26.0")]
1625    pub fn retain<F>(&mut self, mut f: F)
1626    where
1627        F: FnMut(char) -> bool,
1628    {
1629        struct SetLenOnDrop<'a> {
1630            s: &'a mut String,
1631            idx: usize,
1632            del_bytes: usize,
1633        }
1634
1635        impl<'a> Drop for SetLenOnDrop<'a> {
1636            fn drop(&mut self) {
1637                let new_len = self.idx - self.del_bytes;
1638                debug_assert!(new_len <= self.s.len());
1639                unsafe { self.s.vec.set_len(new_len) };
1640            }
1641        }
1642
1643        let len = self.len();
1644        let mut guard = SetLenOnDrop { s: self, idx: 0, del_bytes: 0 };
1645
1646        while guard.idx < len {
1647            let ch =
1648                // SAFETY: `guard.idx` is positive-or-zero and less that len so the `get_unchecked`
1649                // is in bound. `self` is valid UTF-8 like string and the returned slice starts at
1650                // a unicode code point so the `Chars` always return one character.
1651                unsafe { guard.s.get_unchecked(guard.idx..len).chars().next().unwrap_unchecked() };
1652            let ch_len = ch.len_utf8();
1653
1654            if !f(ch) {
1655                guard.del_bytes += ch_len;
1656            } else if guard.del_bytes > 0 {
1657                // SAFETY: `guard.idx` is in bound and `guard.del_bytes` represent the number of
1658                // bytes that are erased from the string so the resulting `guard.idx -
1659                // guard.del_bytes` always represent a valid unicode code point.
1660                //
1661                // `guard.del_bytes` >= `ch.len_utf8()`, so taking a slice with `ch.len_utf8()` len
1662                // is safe.
1663                ch.encode_utf8(unsafe {
1664                    crate::slice::from_raw_parts_mut(
1665                        guard.s.as_mut_ptr().add(guard.idx - guard.del_bytes),
1666                        ch.len_utf8(),
1667                    )
1668                });
1669            }
1670
1671            // Point idx to the next char
1672            guard.idx += ch_len;
1673        }
1674
1675        drop(guard);
1676    }
1677
1678    /// Inserts a character into this `String` at a byte position.
1679    ///
1680    /// This is an *O*(*n*) operation as it requires copying every element in the
1681    /// buffer.
1682    ///
1683    /// # Panics
1684    ///
1685    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1686    /// lie on a [`char`] boundary.
1687    ///
1688    /// # Examples
1689    ///
1690    /// ```
1691    /// let mut s = String::with_capacity(3);
1692    ///
1693    /// s.insert(0, 'f');
1694    /// s.insert(1, 'o');
1695    /// s.insert(2, 'o');
1696    ///
1697    /// assert_eq!("foo", s);
1698    /// ```
1699    #[cfg(not(no_global_oom_handling))]
1700    #[inline]
1701    #[stable(feature = "rust1", since = "1.0.0")]
1702    #[rustc_confusables("set")]
1703    pub fn insert(&mut self, idx: usize, ch: char) {
1704        assert!(self.is_char_boundary(idx));
1705        let mut bits = [0; char::MAX_LEN_UTF8];
1706        let bits = ch.encode_utf8(&mut bits).as_bytes();
1707
1708        unsafe {
1709            self.insert_bytes(idx, bits);
1710        }
1711    }
1712
1713    #[cfg(not(no_global_oom_handling))]
1714    unsafe fn insert_bytes(&mut self, idx: usize, bytes: &[u8]) {
1715        let len = self.len();
1716        let amt = bytes.len();
1717        self.vec.reserve(amt);
1718
1719        unsafe {
1720            ptr::copy(self.vec.as_ptr().add(idx), self.vec.as_mut_ptr().add(idx + amt), len - idx);
1721            ptr::copy_nonoverlapping(bytes.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
1722            self.vec.set_len(len + amt);
1723        }
1724    }
1725
1726    /// Inserts a string slice into this `String` at a byte position.
1727    ///
1728    /// This is an *O*(*n*) operation as it requires copying every element in the
1729    /// buffer.
1730    ///
1731    /// # Panics
1732    ///
1733    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1734    /// lie on a [`char`] boundary.
1735    ///
1736    /// # Examples
1737    ///
1738    /// ```
1739    /// let mut s = String::from("bar");
1740    ///
1741    /// s.insert_str(0, "foo");
1742    ///
1743    /// assert_eq!("foobar", s);
1744    /// ```
1745    #[cfg(not(no_global_oom_handling))]
1746    #[inline]
1747    #[stable(feature = "insert_str", since = "1.16.0")]
1748    #[rustc_diagnostic_item = "string_insert_str"]
1749    pub fn insert_str(&mut self, idx: usize, string: &str) {
1750        assert!(self.is_char_boundary(idx));
1751
1752        unsafe {
1753            self.insert_bytes(idx, string.as_bytes());
1754        }
1755    }
1756
1757    /// Returns a mutable reference to the contents of this `String`.
1758    ///
1759    /// # Safety
1760    ///
1761    /// This function is unsafe because the returned `&mut Vec` allows writing
1762    /// bytes which are not valid UTF-8. If this constraint is violated, using
1763    /// the original `String` after dropping the `&mut Vec` may violate memory
1764    /// safety, as the rest of the standard library assumes that `String`s are
1765    /// valid UTF-8.
1766    ///
1767    /// # Examples
1768    ///
1769    /// ```
1770    /// let mut s = String::from("hello");
1771    ///
1772    /// unsafe {
1773    ///     let vec = s.as_mut_vec();
1774    ///     assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
1775    ///
1776    ///     vec.reverse();
1777    /// }
1778    /// assert_eq!(s, "olleh");
1779    /// ```
1780    #[inline]
1781    #[stable(feature = "rust1", since = "1.0.0")]
1782    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1783    pub const unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
1784        &mut self.vec
1785    }
1786
1787    /// Returns the length of this `String`, in bytes, not [`char`]s or
1788    /// graphemes. In other words, it might not be what a human considers the
1789    /// length of the string.
1790    ///
1791    /// # Examples
1792    ///
1793    /// ```
1794    /// let a = String::from("foo");
1795    /// assert_eq!(a.len(), 3);
1796    ///
1797    /// let fancy_f = String::from("ƒoo");
1798    /// assert_eq!(fancy_f.len(), 4);
1799    /// assert_eq!(fancy_f.chars().count(), 3);
1800    /// ```
1801    #[inline]
1802    #[must_use]
1803    #[stable(feature = "rust1", since = "1.0.0")]
1804    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1805    #[rustc_confusables("length", "size")]
1806    pub const fn len(&self) -> usize {
1807        self.vec.len()
1808    }
1809
1810    /// Returns `true` if this `String` has a length of zero, and `false` otherwise.
1811    ///
1812    /// # Examples
1813    ///
1814    /// ```
1815    /// let mut v = String::new();
1816    /// assert!(v.is_empty());
1817    ///
1818    /// v.push('a');
1819    /// assert!(!v.is_empty());
1820    /// ```
1821    #[inline]
1822    #[must_use]
1823    #[stable(feature = "rust1", since = "1.0.0")]
1824    #[rustc_const_stable(feature = "const_vec_string_slice", since = "CURRENT_RUSTC_VERSION")]
1825    pub const fn is_empty(&self) -> bool {
1826        self.len() == 0
1827    }
1828
1829    /// Splits the string into two at the given byte index.
1830    ///
1831    /// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
1832    /// the returned `String` contains bytes `[at, len)`. `at` must be on the
1833    /// boundary of a UTF-8 code point.
1834    ///
1835    /// Note that the capacity of `self` does not change.
1836    ///
1837    /// # Panics
1838    ///
1839    /// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
1840    /// code point of the string.
1841    ///
1842    /// # Examples
1843    ///
1844    /// ```
1845    /// # fn main() {
1846    /// let mut hello = String::from("Hello, World!");
1847    /// let world = hello.split_off(7);
1848    /// assert_eq!(hello, "Hello, ");
1849    /// assert_eq!(world, "World!");
1850    /// # }
1851    /// ```
1852    #[cfg(not(no_global_oom_handling))]
1853    #[inline]
1854    #[stable(feature = "string_split_off", since = "1.16.0")]
1855    #[must_use = "use `.truncate()` if you don't need the other half"]
1856    pub fn split_off(&mut self, at: usize) -> String {
1857        assert!(self.is_char_boundary(at));
1858        let other = self.vec.split_off(at);
1859        unsafe { String::from_utf8_unchecked(other) }
1860    }
1861
1862    /// Truncates this `String`, removing all contents.
1863    ///
1864    /// While this means the `String` will have a length of zero, it does not
1865    /// touch its capacity.
1866    ///
1867    /// # Examples
1868    ///
1869    /// ```
1870    /// let mut s = String::from("foo");
1871    ///
1872    /// s.clear();
1873    ///
1874    /// assert!(s.is_empty());
1875    /// assert_eq!(0, s.len());
1876    /// assert_eq!(3, s.capacity());
1877    /// ```
1878    #[inline]
1879    #[stable(feature = "rust1", since = "1.0.0")]
1880    pub fn clear(&mut self) {
1881        self.vec.clear()
1882    }
1883
1884    /// Removes the specified range from the string in bulk, returning all
1885    /// removed characters as an iterator.
1886    ///
1887    /// The returned iterator keeps a mutable borrow on the string to optimize
1888    /// its implementation.
1889    ///
1890    /// # Panics
1891    ///
1892    /// Panics if the starting point or end point do not lie on a [`char`]
1893    /// boundary, or if they're out of bounds.
1894    ///
1895    /// # Leaking
1896    ///
1897    /// If the returned iterator goes out of scope without being dropped (due to
1898    /// [`core::mem::forget`], for example), the string may still contain a copy
1899    /// of any drained characters, or may have lost characters arbitrarily,
1900    /// including characters outside the range.
1901    ///
1902    /// # Examples
1903    ///
1904    /// ```
1905    /// let mut s = String::from("α is alpha, β is beta");
1906    /// let beta_offset = s.find('β').unwrap_or(s.len());
1907    ///
1908    /// // Remove the range up until the β from the string
1909    /// let t: String = s.drain(..beta_offset).collect();
1910    /// assert_eq!(t, "α is alpha, ");
1911    /// assert_eq!(s, "β is beta");
1912    ///
1913    /// // A full range clears the string, like `clear()` does
1914    /// s.drain(..);
1915    /// assert_eq!(s, "");
1916    /// ```
1917    #[stable(feature = "drain", since = "1.6.0")]
1918    pub fn drain<R>(&mut self, range: R) -> Drain<'_>
1919    where
1920        R: RangeBounds<usize>,
1921    {
1922        // Memory safety
1923        //
1924        // The String version of Drain does not have the memory safety issues
1925        // of the vector version. The data is just plain bytes.
1926        // Because the range removal happens in Drop, if the Drain iterator is leaked,
1927        // the removal will not happen.
1928        let Range { start, end } = slice::range(range, ..self.len());
1929        assert!(self.is_char_boundary(start));
1930        assert!(self.is_char_boundary(end));
1931
1932        // Take out two simultaneous borrows. The &mut String won't be accessed
1933        // until iteration is over, in Drop.
1934        let self_ptr = self as *mut _;
1935        // SAFETY: `slice::range` and `is_char_boundary` do the appropriate bounds checks.
1936        let chars_iter = unsafe { self.get_unchecked(start..end) }.chars();
1937
1938        Drain { start, end, iter: chars_iter, string: self_ptr }
1939    }
1940
1941    /// Converts a `String` into an iterator over the [`char`]s of the string.
1942    ///
1943    /// As a string consists of valid UTF-8, we can iterate through a string
1944    /// by [`char`]. This method returns such an iterator.
1945    ///
1946    /// It's important to remember that [`char`] represents a Unicode Scalar
1947    /// Value, and might not match your idea of what a 'character' is. Iteration
1948    /// over grapheme clusters may be what you actually want. That functionality
1949    /// is not provided by Rust's standard library, check crates.io instead.
1950    ///
1951    /// # Examples
1952    ///
1953    /// Basic usage:
1954    ///
1955    /// ```
1956    /// #![feature(string_into_chars)]
1957    ///
1958    /// let word = String::from("goodbye");
1959    ///
1960    /// let mut chars = word.into_chars();
1961    ///
1962    /// assert_eq!(Some('g'), chars.next());
1963    /// assert_eq!(Some('o'), chars.next());
1964    /// assert_eq!(Some('o'), chars.next());
1965    /// assert_eq!(Some('d'), chars.next());
1966    /// assert_eq!(Some('b'), chars.next());
1967    /// assert_eq!(Some('y'), chars.next());
1968    /// assert_eq!(Some('e'), chars.next());
1969    ///
1970    /// assert_eq!(None, chars.next());
1971    /// ```
1972    ///
1973    /// Remember, [`char`]s might not match your intuition about characters:
1974    ///
1975    /// ```
1976    /// #![feature(string_into_chars)]
1977    ///
1978    /// let y = String::from("y̆");
1979    ///
1980    /// let mut chars = y.into_chars();
1981    ///
1982    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1983    /// assert_eq!(Some('\u{0306}'), chars.next());
1984    ///
1985    /// assert_eq!(None, chars.next());
1986    /// ```
1987    ///
1988    /// [`char`]: prim@char
1989    #[inline]
1990    #[must_use = "`self` will be dropped if the result is not used"]
1991    #[unstable(feature = "string_into_chars", issue = "133125")]
1992    pub fn into_chars(self) -> IntoChars {
1993        IntoChars { bytes: self.into_bytes().into_iter() }
1994    }
1995
1996    /// Removes the specified range in the string,
1997    /// and replaces it with the given string.
1998    /// The given string doesn't need to be the same length as the range.
1999    ///
2000    /// # Panics
2001    ///
2002    /// Panics if the starting point or end point do not lie on a [`char`]
2003    /// boundary, or if they're out of bounds.
2004    ///
2005    /// # Examples
2006    ///
2007    /// ```
2008    /// let mut s = String::from("α is alpha, β is beta");
2009    /// let beta_offset = s.find('β').unwrap_or(s.len());
2010    ///
2011    /// // Replace the range up until the β from the string
2012    /// s.replace_range(..beta_offset, "Α is capital alpha; ");
2013    /// assert_eq!(s, "Α is capital alpha; β is beta");
2014    /// ```
2015    #[cfg(not(no_global_oom_handling))]
2016    #[stable(feature = "splice", since = "1.27.0")]
2017    pub fn replace_range<R>(&mut self, range: R, replace_with: &str)
2018    where
2019        R: RangeBounds<usize>,
2020    {
2021        // Memory safety
2022        //
2023        // Replace_range does not have the memory safety issues of a vector Splice.
2024        // of the vector version. The data is just plain bytes.
2025
2026        // WARNING: Inlining this variable would be unsound (#81138)
2027        let start = range.start_bound();
2028        match start {
2029            Included(&n) => assert!(self.is_char_boundary(n)),
2030            Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
2031            Unbounded => {}
2032        };
2033        // WARNING: Inlining this variable would be unsound (#81138)
2034        let end = range.end_bound();
2035        match end {
2036            Included(&n) => assert!(self.is_char_boundary(n + 1)),
2037            Excluded(&n) => assert!(self.is_char_boundary(n)),
2038            Unbounded => {}
2039        };
2040
2041        // Using `range` again would be unsound (#81138)
2042        // We assume the bounds reported by `range` remain the same, but
2043        // an adversarial implementation could change between calls
2044        unsafe { self.as_mut_vec() }.splice((start, end), replace_with.bytes());
2045    }
2046
2047    /// Converts this `String` into a <code>[Box]<[str]></code>.
2048    ///
2049    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
2050    /// Note that this call may reallocate and copy the bytes of the string.
2051    ///
2052    /// [`shrink_to_fit`]: String::shrink_to_fit
2053    /// [str]: prim@str "str"
2054    ///
2055    /// # Examples
2056    ///
2057    /// ```
2058    /// let s = String::from("hello");
2059    ///
2060    /// let b = s.into_boxed_str();
2061    /// ```
2062    #[cfg(not(no_global_oom_handling))]
2063    #[stable(feature = "box_str", since = "1.4.0")]
2064    #[must_use = "`self` will be dropped if the result is not used"]
2065    #[inline]
2066    pub fn into_boxed_str(self) -> Box<str> {
2067        let slice = self.vec.into_boxed_slice();
2068        unsafe { from_boxed_utf8_unchecked(slice) }
2069    }
2070
2071    /// Consumes and leaks the `String`, returning a mutable reference to the contents,
2072    /// `&'a mut str`.
2073    ///
2074    /// The caller has free choice over the returned lifetime, including `'static`. Indeed,
2075    /// this function is ideally used for data that lives for the remainder of the program's life,
2076    /// as dropping the returned reference will cause a memory leak.
2077    ///
2078    /// It does not reallocate or shrink the `String`, so the leaked allocation may include unused
2079    /// capacity that is not part of the returned slice. If you want to discard excess capacity,
2080    /// call [`into_boxed_str`], and then [`Box::leak`] instead. However, keep in mind that
2081    /// trimming the capacity may result in a reallocation and copy.
2082    ///
2083    /// [`into_boxed_str`]: Self::into_boxed_str
2084    ///
2085    /// # Examples
2086    ///
2087    /// ```
2088    /// let x = String::from("bucket");
2089    /// let static_ref: &'static mut str = x.leak();
2090    /// assert_eq!(static_ref, "bucket");
2091    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
2092    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2093    /// # drop(unsafe { Box::from_raw(static_ref) });
2094    /// ```
2095    #[stable(feature = "string_leak", since = "1.72.0")]
2096    #[inline]
2097    pub fn leak<'a>(self) -> &'a mut str {
2098        let slice = self.vec.leak();
2099        unsafe { from_utf8_unchecked_mut(slice) }
2100    }
2101}
2102
2103impl FromUtf8Error {
2104    /// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
2105    ///
2106    /// # Examples
2107    ///
2108    /// ```
2109    /// // some invalid bytes, in a vector
2110    /// let bytes = vec![0, 159];
2111    ///
2112    /// let value = String::from_utf8(bytes);
2113    ///
2114    /// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
2115    /// ```
2116    #[must_use]
2117    #[stable(feature = "from_utf8_error_as_bytes", since = "1.26.0")]
2118    pub fn as_bytes(&self) -> &[u8] {
2119        &self.bytes[..]
2120    }
2121
2122    /// Converts the bytes into a `String` lossily, substituting invalid UTF-8
2123    /// sequences with replacement characters.
2124    ///
2125    /// See [`String::from_utf8_lossy`] for more details on replacement of
2126    /// invalid sequences, and [`String::from_utf8_lossy_owned`] for the
2127    /// `String` function which corresponds to this function.
2128    ///
2129    /// # Examples
2130    ///
2131    /// ```
2132    /// #![feature(string_from_utf8_lossy_owned)]
2133    /// // some invalid bytes
2134    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
2135    /// let output = String::from_utf8(input).unwrap_or_else(|e| e.into_utf8_lossy());
2136    ///
2137    /// assert_eq!(String::from("Hello �World"), output);
2138    /// ```
2139    #[must_use]
2140    #[cfg(not(no_global_oom_handling))]
2141    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
2142    pub fn into_utf8_lossy(self) -> String {
2143        const REPLACEMENT: &str = "\u{FFFD}";
2144
2145        let mut res = {
2146            let mut v = Vec::with_capacity(self.bytes.len());
2147
2148            // `Utf8Error::valid_up_to` returns the maximum index of validated
2149            // UTF-8 bytes. Copy the valid bytes into the output buffer.
2150            v.extend_from_slice(&self.bytes[..self.error.valid_up_to()]);
2151
2152            // SAFETY: This is safe because the only bytes present in the buffer
2153            // were validated as UTF-8 by the call to `String::from_utf8` which
2154            // produced this `FromUtf8Error`.
2155            unsafe { String::from_utf8_unchecked(v) }
2156        };
2157
2158        let iter = self.bytes[self.error.valid_up_to()..].utf8_chunks();
2159
2160        for chunk in iter {
2161            res.push_str(chunk.valid());
2162            if !chunk.invalid().is_empty() {
2163                res.push_str(REPLACEMENT);
2164            }
2165        }
2166
2167        res
2168    }
2169
2170    /// Returns the bytes that were attempted to convert to a `String`.
2171    ///
2172    /// This method is carefully constructed to avoid allocation. It will
2173    /// consume the error, moving out the bytes, so that a copy of the bytes
2174    /// does not need to be made.
2175    ///
2176    /// # Examples
2177    ///
2178    /// ```
2179    /// // some invalid bytes, in a vector
2180    /// let bytes = vec![0, 159];
2181    ///
2182    /// let value = String::from_utf8(bytes);
2183    ///
2184    /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
2185    /// ```
2186    #[must_use = "`self` will be dropped if the result is not used"]
2187    #[stable(feature = "rust1", since = "1.0.0")]
2188    pub fn into_bytes(self) -> Vec<u8> {
2189        self.bytes
2190    }
2191
2192    /// Fetch a `Utf8Error` to get more details about the conversion failure.
2193    ///
2194    /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
2195    /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
2196    /// an analogue to `FromUtf8Error`. See its documentation for more details
2197    /// on using it.
2198    ///
2199    /// [`std::str`]: core::str "std::str"
2200    /// [`&str`]: prim@str "&str"
2201    ///
2202    /// # Examples
2203    ///
2204    /// ```
2205    /// // some invalid bytes, in a vector
2206    /// let bytes = vec![0, 159];
2207    ///
2208    /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
2209    ///
2210    /// // the first byte is invalid here
2211    /// assert_eq!(1, error.valid_up_to());
2212    /// ```
2213    #[must_use]
2214    #[stable(feature = "rust1", since = "1.0.0")]
2215    pub fn utf8_error(&self) -> Utf8Error {
2216        self.error
2217    }
2218}
2219
2220#[stable(feature = "rust1", since = "1.0.0")]
2221impl fmt::Display for FromUtf8Error {
2222    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2223        fmt::Display::fmt(&self.error, f)
2224    }
2225}
2226
2227#[stable(feature = "rust1", since = "1.0.0")]
2228impl fmt::Display for FromUtf16Error {
2229    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2230        fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
2231    }
2232}
2233
2234#[stable(feature = "rust1", since = "1.0.0")]
2235impl Error for FromUtf8Error {
2236    #[allow(deprecated)]
2237    fn description(&self) -> &str {
2238        "invalid utf-8"
2239    }
2240}
2241
2242#[stable(feature = "rust1", since = "1.0.0")]
2243impl Error for FromUtf16Error {
2244    #[allow(deprecated)]
2245    fn description(&self) -> &str {
2246        "invalid utf-16"
2247    }
2248}
2249
2250#[cfg(not(no_global_oom_handling))]
2251#[stable(feature = "rust1", since = "1.0.0")]
2252impl Clone for String {
2253    fn clone(&self) -> Self {
2254        String { vec: self.vec.clone() }
2255    }
2256
2257    /// Clones the contents of `source` into `self`.
2258    ///
2259    /// This method is preferred over simply assigning `source.clone()` to `self`,
2260    /// as it avoids reallocation if possible.
2261    fn clone_from(&mut self, source: &Self) {
2262        self.vec.clone_from(&source.vec);
2263    }
2264}
2265
2266#[cfg(not(no_global_oom_handling))]
2267#[stable(feature = "rust1", since = "1.0.0")]
2268impl FromIterator<char> for String {
2269    fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
2270        let mut buf = String::new();
2271        buf.extend(iter);
2272        buf
2273    }
2274}
2275
2276#[cfg(not(no_global_oom_handling))]
2277#[stable(feature = "string_from_iter_by_ref", since = "1.17.0")]
2278impl<'a> FromIterator<&'a char> for String {
2279    fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String {
2280        let mut buf = String::new();
2281        buf.extend(iter);
2282        buf
2283    }
2284}
2285
2286#[cfg(not(no_global_oom_handling))]
2287#[stable(feature = "rust1", since = "1.0.0")]
2288impl<'a> FromIterator<&'a str> for String {
2289    fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
2290        let mut buf = String::new();
2291        buf.extend(iter);
2292        buf
2293    }
2294}
2295
2296#[cfg(not(no_global_oom_handling))]
2297#[stable(feature = "extend_string", since = "1.4.0")]
2298impl FromIterator<String> for String {
2299    fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
2300        let mut iterator = iter.into_iter();
2301
2302        // Because we're iterating over `String`s, we can avoid at least
2303        // one allocation by getting the first string from the iterator
2304        // and appending to it all the subsequent strings.
2305        match iterator.next() {
2306            None => String::new(),
2307            Some(mut buf) => {
2308                buf.extend(iterator);
2309                buf
2310            }
2311        }
2312    }
2313}
2314
2315#[cfg(not(no_global_oom_handling))]
2316#[stable(feature = "box_str2", since = "1.45.0")]
2317impl<A: Allocator> FromIterator<Box<str, A>> for String {
2318    fn from_iter<I: IntoIterator<Item = Box<str, A>>>(iter: I) -> String {
2319        let mut buf = String::new();
2320        buf.extend(iter);
2321        buf
2322    }
2323}
2324
2325#[cfg(not(no_global_oom_handling))]
2326#[stable(feature = "herd_cows", since = "1.19.0")]
2327impl<'a> FromIterator<Cow<'a, str>> for String {
2328    fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String {
2329        let mut iterator = iter.into_iter();
2330
2331        // Because we're iterating over CoWs, we can (potentially) avoid at least
2332        // one allocation by getting the first item and appending to it all the
2333        // subsequent items.
2334        match iterator.next() {
2335            None => String::new(),
2336            Some(cow) => {
2337                let mut buf = cow.into_owned();
2338                buf.extend(iterator);
2339                buf
2340            }
2341        }
2342    }
2343}
2344
2345#[cfg(not(no_global_oom_handling))]
2346#[stable(feature = "rust1", since = "1.0.0")]
2347impl Extend<char> for String {
2348    fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
2349        let iterator = iter.into_iter();
2350        let (lower_bound, _) = iterator.size_hint();
2351        self.reserve(lower_bound);
2352        iterator.for_each(move |c| self.push(c));
2353    }
2354
2355    #[inline]
2356    fn extend_one(&mut self, c: char) {
2357        self.push(c);
2358    }
2359
2360    #[inline]
2361    fn extend_reserve(&mut self, additional: usize) {
2362        self.reserve(additional);
2363    }
2364}
2365
2366#[cfg(not(no_global_oom_handling))]
2367#[stable(feature = "extend_ref", since = "1.2.0")]
2368impl<'a> Extend<&'a char> for String {
2369    fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
2370        self.extend(iter.into_iter().cloned());
2371    }
2372
2373    #[inline]
2374    fn extend_one(&mut self, &c: &'a char) {
2375        self.push(c);
2376    }
2377
2378    #[inline]
2379    fn extend_reserve(&mut self, additional: usize) {
2380        self.reserve(additional);
2381    }
2382}
2383
2384#[cfg(not(no_global_oom_handling))]
2385#[stable(feature = "rust1", since = "1.0.0")]
2386impl<'a> Extend<&'a str> for String {
2387    fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
2388        iter.into_iter().for_each(move |s| self.push_str(s));
2389    }
2390
2391    #[inline]
2392    fn extend_one(&mut self, s: &'a str) {
2393        self.push_str(s);
2394    }
2395}
2396
2397#[cfg(not(no_global_oom_handling))]
2398#[stable(feature = "box_str2", since = "1.45.0")]
2399impl<A: Allocator> Extend<Box<str, A>> for String {
2400    fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
2401        iter.into_iter().for_each(move |s| self.push_str(&s));
2402    }
2403}
2404
2405#[cfg(not(no_global_oom_handling))]
2406#[stable(feature = "extend_string", since = "1.4.0")]
2407impl Extend<String> for String {
2408    fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
2409        iter.into_iter().for_each(move |s| self.push_str(&s));
2410    }
2411
2412    #[inline]
2413    fn extend_one(&mut self, s: String) {
2414        self.push_str(&s);
2415    }
2416}
2417
2418#[cfg(not(no_global_oom_handling))]
2419#[stable(feature = "herd_cows", since = "1.19.0")]
2420impl<'a> Extend<Cow<'a, str>> for String {
2421    fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) {
2422        iter.into_iter().for_each(move |s| self.push_str(&s));
2423    }
2424
2425    #[inline]
2426    fn extend_one(&mut self, s: Cow<'a, str>) {
2427        self.push_str(&s);
2428    }
2429}
2430
2431#[cfg(not(no_global_oom_handling))]
2432#[unstable(feature = "ascii_char", issue = "110998")]
2433impl Extend<core::ascii::Char> for String {
2434    fn extend<I: IntoIterator<Item = core::ascii::Char>>(&mut self, iter: I) {
2435        self.vec.extend(iter.into_iter().map(|c| c.to_u8()));
2436    }
2437
2438    #[inline]
2439    fn extend_one(&mut self, c: core::ascii::Char) {
2440        self.vec.push(c.to_u8());
2441    }
2442}
2443
2444#[cfg(not(no_global_oom_handling))]
2445#[unstable(feature = "ascii_char", issue = "110998")]
2446impl<'a> Extend<&'a core::ascii::Char> for String {
2447    fn extend<I: IntoIterator<Item = &'a core::ascii::Char>>(&mut self, iter: I) {
2448        self.extend(iter.into_iter().cloned());
2449    }
2450
2451    #[inline]
2452    fn extend_one(&mut self, c: &'a core::ascii::Char) {
2453        self.vec.push(c.to_u8());
2454    }
2455}
2456
2457/// A convenience impl that delegates to the impl for `&str`.
2458///
2459/// # Examples
2460///
2461/// ```
2462/// assert_eq!(String::from("Hello world").find("world"), Some(6));
2463/// ```
2464#[unstable(
2465    feature = "pattern",
2466    reason = "API not fully fleshed out and ready to be stabilized",
2467    issue = "27721"
2468)]
2469impl<'b> Pattern for &'b String {
2470    type Searcher<'a> = <&'b str as Pattern>::Searcher<'a>;
2471
2472    fn into_searcher(self, haystack: &str) -> <&'b str as Pattern>::Searcher<'_> {
2473        self[..].into_searcher(haystack)
2474    }
2475
2476    #[inline]
2477    fn is_contained_in(self, haystack: &str) -> bool {
2478        self[..].is_contained_in(haystack)
2479    }
2480
2481    #[inline]
2482    fn is_prefix_of(self, haystack: &str) -> bool {
2483        self[..].is_prefix_of(haystack)
2484    }
2485
2486    #[inline]
2487    fn strip_prefix_of(self, haystack: &str) -> Option<&str> {
2488        self[..].strip_prefix_of(haystack)
2489    }
2490
2491    #[inline]
2492    fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
2493    where
2494        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2495    {
2496        self[..].is_suffix_of(haystack)
2497    }
2498
2499    #[inline]
2500    fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
2501    where
2502        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2503    {
2504        self[..].strip_suffix_of(haystack)
2505    }
2506
2507    #[inline]
2508    fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> {
2509        Some(Utf8Pattern::StringPattern(self.as_bytes()))
2510    }
2511}
2512
2513macro_rules! impl_eq {
2514    ($lhs:ty, $rhs: ty) => {
2515        #[stable(feature = "rust1", since = "1.0.0")]
2516        #[allow(unused_lifetimes)]
2517        impl<'a, 'b> PartialEq<$rhs> for $lhs {
2518            #[inline]
2519            fn eq(&self, other: &$rhs) -> bool {
2520                PartialEq::eq(&self[..], &other[..])
2521            }
2522            #[inline]
2523            fn ne(&self, other: &$rhs) -> bool {
2524                PartialEq::ne(&self[..], &other[..])
2525            }
2526        }
2527
2528        #[stable(feature = "rust1", since = "1.0.0")]
2529        #[allow(unused_lifetimes)]
2530        impl<'a, 'b> PartialEq<$lhs> for $rhs {
2531            #[inline]
2532            fn eq(&self, other: &$lhs) -> bool {
2533                PartialEq::eq(&self[..], &other[..])
2534            }
2535            #[inline]
2536            fn ne(&self, other: &$lhs) -> bool {
2537                PartialEq::ne(&self[..], &other[..])
2538            }
2539        }
2540    };
2541}
2542
2543impl_eq! { String, str }
2544impl_eq! { String, &'a str }
2545#[cfg(not(no_global_oom_handling))]
2546impl_eq! { Cow<'a, str>, str }
2547#[cfg(not(no_global_oom_handling))]
2548impl_eq! { Cow<'a, str>, &'b str }
2549#[cfg(not(no_global_oom_handling))]
2550impl_eq! { Cow<'a, str>, String }
2551
2552#[stable(feature = "rust1", since = "1.0.0")]
2553impl Default for String {
2554    /// Creates an empty `String`.
2555    #[inline]
2556    fn default() -> String {
2557        String::new()
2558    }
2559}
2560
2561#[stable(feature = "rust1", since = "1.0.0")]
2562impl fmt::Display for String {
2563    #[inline]
2564    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2565        fmt::Display::fmt(&**self, f)
2566    }
2567}
2568
2569#[stable(feature = "rust1", since = "1.0.0")]
2570impl fmt::Debug for String {
2571    #[inline]
2572    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2573        fmt::Debug::fmt(&**self, f)
2574    }
2575}
2576
2577#[stable(feature = "rust1", since = "1.0.0")]
2578impl hash::Hash for String {
2579    #[inline]
2580    fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
2581        (**self).hash(hasher)
2582    }
2583}
2584
2585/// Implements the `+` operator for concatenating two strings.
2586///
2587/// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if
2588/// necessary). This is done to avoid allocating a new `String` and copying the entire contents on
2589/// every operation, which would lead to *O*(*n*^2) running time when building an *n*-byte string by
2590/// repeated concatenation.
2591///
2592/// The string on the right-hand side is only borrowed; its contents are copied into the returned
2593/// `String`.
2594///
2595/// # Examples
2596///
2597/// Concatenating two `String`s takes the first by value and borrows the second:
2598///
2599/// ```
2600/// let a = String::from("hello");
2601/// let b = String::from(" world");
2602/// let c = a + &b;
2603/// // `a` is moved and can no longer be used here.
2604/// ```
2605///
2606/// If you want to keep using the first `String`, you can clone it and append to the clone instead:
2607///
2608/// ```
2609/// let a = String::from("hello");
2610/// let b = String::from(" world");
2611/// let c = a.clone() + &b;
2612/// // `a` is still valid here.
2613/// ```
2614///
2615/// Concatenating `&str` slices can be done by converting the first to a `String`:
2616///
2617/// ```
2618/// let a = "hello";
2619/// let b = " world";
2620/// let c = a.to_string() + b;
2621/// ```
2622#[cfg(not(no_global_oom_handling))]
2623#[stable(feature = "rust1", since = "1.0.0")]
2624impl Add<&str> for String {
2625    type Output = String;
2626
2627    #[inline]
2628    fn add(mut self, other: &str) -> String {
2629        self.push_str(other);
2630        self
2631    }
2632}
2633
2634/// Implements the `+=` operator for appending to a `String`.
2635///
2636/// This has the same behavior as the [`push_str`][String::push_str] method.
2637#[cfg(not(no_global_oom_handling))]
2638#[stable(feature = "stringaddassign", since = "1.12.0")]
2639impl AddAssign<&str> for String {
2640    #[inline]
2641    fn add_assign(&mut self, other: &str) {
2642        self.push_str(other);
2643    }
2644}
2645
2646#[stable(feature = "rust1", since = "1.0.0")]
2647impl<I> ops::Index<I> for String
2648where
2649    I: slice::SliceIndex<str>,
2650{
2651    type Output = I::Output;
2652
2653    #[inline]
2654    fn index(&self, index: I) -> &I::Output {
2655        index.index(self.as_str())
2656    }
2657}
2658
2659#[stable(feature = "rust1", since = "1.0.0")]
2660impl<I> ops::IndexMut<I> for String
2661where
2662    I: slice::SliceIndex<str>,
2663{
2664    #[inline]
2665    fn index_mut(&mut self, index: I) -> &mut I::Output {
2666        index.index_mut(self.as_mut_str())
2667    }
2668}
2669
2670#[stable(feature = "rust1", since = "1.0.0")]
2671impl ops::Deref for String {
2672    type Target = str;
2673
2674    #[inline]
2675    fn deref(&self) -> &str {
2676        self.as_str()
2677    }
2678}
2679
2680#[unstable(feature = "deref_pure_trait", issue = "87121")]
2681unsafe impl ops::DerefPure for String {}
2682
2683#[stable(feature = "derefmut_for_string", since = "1.3.0")]
2684impl ops::DerefMut for String {
2685    #[inline]
2686    fn deref_mut(&mut self) -> &mut str {
2687        self.as_mut_str()
2688    }
2689}
2690
2691/// A type alias for [`Infallible`].
2692///
2693/// This alias exists for backwards compatibility, and may be eventually deprecated.
2694///
2695/// [`Infallible`]: core::convert::Infallible "convert::Infallible"
2696#[stable(feature = "str_parse_error", since = "1.5.0")]
2697pub type ParseError = core::convert::Infallible;
2698
2699#[cfg(not(no_global_oom_handling))]
2700#[stable(feature = "rust1", since = "1.0.0")]
2701impl FromStr for String {
2702    type Err = core::convert::Infallible;
2703    #[inline]
2704    fn from_str(s: &str) -> Result<String, Self::Err> {
2705        Ok(String::from(s))
2706    }
2707}
2708
2709/// A trait for converting a value to a `String`.
2710///
2711/// This trait is automatically implemented for any type which implements the
2712/// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
2713/// [`Display`] should be implemented instead, and you get the `ToString`
2714/// implementation for free.
2715///
2716/// [`Display`]: fmt::Display
2717#[rustc_diagnostic_item = "ToString"]
2718#[stable(feature = "rust1", since = "1.0.0")]
2719pub trait ToString {
2720    /// Converts the given value to a `String`.
2721    ///
2722    /// # Examples
2723    ///
2724    /// ```
2725    /// let i = 5;
2726    /// let five = String::from("5");
2727    ///
2728    /// assert_eq!(five, i.to_string());
2729    /// ```
2730    #[rustc_conversion_suggestion]
2731    #[stable(feature = "rust1", since = "1.0.0")]
2732    #[rustc_diagnostic_item = "to_string_method"]
2733    fn to_string(&self) -> String;
2734}
2735
2736/// # Panics
2737///
2738/// In this implementation, the `to_string` method panics
2739/// if the `Display` implementation returns an error.
2740/// This indicates an incorrect `Display` implementation
2741/// since `fmt::Write for String` never returns an error itself.
2742#[cfg(not(no_global_oom_handling))]
2743#[stable(feature = "rust1", since = "1.0.0")]
2744impl<T: fmt::Display + ?Sized> ToString for T {
2745    #[inline]
2746    fn to_string(&self) -> String {
2747        <Self as SpecToString>::spec_to_string(self)
2748    }
2749}
2750
2751#[cfg(not(no_global_oom_handling))]
2752trait SpecToString {
2753    fn spec_to_string(&self) -> String;
2754}
2755
2756#[cfg(not(no_global_oom_handling))]
2757impl<T: fmt::Display + ?Sized> SpecToString for T {
2758    // A common guideline is to not inline generic functions. However,
2759    // removing `#[inline]` from this method causes non-negligible regressions.
2760    // See <https://github.com/rust-lang/rust/pull/74852>, the last attempt
2761    // to try to remove it.
2762    #[inline]
2763    default fn spec_to_string(&self) -> String {
2764        let mut buf = String::new();
2765        let mut formatter =
2766            core::fmt::Formatter::new(&mut buf, core::fmt::FormattingOptions::new());
2767        // Bypass format_args!() to avoid write_str with zero-length strs
2768        fmt::Display::fmt(self, &mut formatter)
2769            .expect("a Display implementation returned an error unexpectedly");
2770        buf
2771    }
2772}
2773
2774#[cfg(not(no_global_oom_handling))]
2775impl SpecToString for core::ascii::Char {
2776    #[inline]
2777    fn spec_to_string(&self) -> String {
2778        self.as_str().to_owned()
2779    }
2780}
2781
2782#[cfg(not(no_global_oom_handling))]
2783impl SpecToString for char {
2784    #[inline]
2785    fn spec_to_string(&self) -> String {
2786        String::from(self.encode_utf8(&mut [0; char::MAX_LEN_UTF8]))
2787    }
2788}
2789
2790#[cfg(not(no_global_oom_handling))]
2791impl SpecToString for bool {
2792    #[inline]
2793    fn spec_to_string(&self) -> String {
2794        String::from(if *self { "true" } else { "false" })
2795    }
2796}
2797
2798#[cfg(not(no_global_oom_handling))]
2799impl SpecToString for u8 {
2800    #[inline]
2801    fn spec_to_string(&self) -> String {
2802        let mut buf = String::with_capacity(3);
2803        let mut n = *self;
2804        if n >= 10 {
2805            if n >= 100 {
2806                buf.push((b'0' + n / 100) as char);
2807                n %= 100;
2808            }
2809            buf.push((b'0' + n / 10) as char);
2810            n %= 10;
2811        }
2812        buf.push((b'0' + n) as char);
2813        buf
2814    }
2815}
2816
2817#[cfg(not(no_global_oom_handling))]
2818impl SpecToString for i8 {
2819    #[inline]
2820    fn spec_to_string(&self) -> String {
2821        let mut buf = String::with_capacity(4);
2822        if self.is_negative() {
2823            buf.push('-');
2824        }
2825        let mut n = self.unsigned_abs();
2826        if n >= 10 {
2827            if n >= 100 {
2828                buf.push('1');
2829                n -= 100;
2830            }
2831            buf.push((b'0' + n / 10) as char);
2832            n %= 10;
2833        }
2834        buf.push((b'0' + n) as char);
2835        buf
2836    }
2837}
2838
2839// Generic/generated code can sometimes have multiple, nested references
2840// for strings, including `&&&str`s that would never be written
2841// by hand. This macro generates twelve layers of nested `&`-impl
2842// for primitive strings.
2843#[cfg(not(no_global_oom_handling))]
2844macro_rules! to_string_str_wrap_in_ref {
2845    {x $($x:ident)*} => {
2846        &to_string_str_wrap_in_ref! { $($x)* }
2847    };
2848    {} => { str };
2849}
2850#[cfg(not(no_global_oom_handling))]
2851macro_rules! to_string_expr_wrap_in_deref {
2852    {$self:expr ; x $($x:ident)*} => {
2853        *(to_string_expr_wrap_in_deref! { $self ; $($x)* })
2854    };
2855    {$self:expr ;} => { $self };
2856}
2857#[cfg(not(no_global_oom_handling))]
2858macro_rules! to_string_str {
2859    {$($($x:ident)*),+} => {
2860        $(
2861            impl SpecToString for to_string_str_wrap_in_ref!($($x)*) {
2862                #[inline]
2863                fn spec_to_string(&self) -> String {
2864                    String::from(to_string_expr_wrap_in_deref!(self ; $($x)*))
2865                }
2866            }
2867        )+
2868    };
2869}
2870
2871#[cfg(not(no_global_oom_handling))]
2872to_string_str! {
2873    x x x x x x x x x x x x,
2874    x x x x x x x x x x x,
2875    x x x x x x x x x x,
2876    x x x x x x x x x,
2877    x x x x x x x x,
2878    x x x x x x x,
2879    x x x x x x,
2880    x x x x x,
2881    x x x x,
2882    x x x,
2883    x x,
2884    x,
2885}
2886
2887#[cfg(not(no_global_oom_handling))]
2888impl SpecToString for Cow<'_, str> {
2889    #[inline]
2890    fn spec_to_string(&self) -> String {
2891        self[..].to_owned()
2892    }
2893}
2894
2895#[cfg(not(no_global_oom_handling))]
2896impl SpecToString for String {
2897    #[inline]
2898    fn spec_to_string(&self) -> String {
2899        self.to_owned()
2900    }
2901}
2902
2903#[cfg(not(no_global_oom_handling))]
2904impl SpecToString for fmt::Arguments<'_> {
2905    #[inline]
2906    fn spec_to_string(&self) -> String {
2907        crate::fmt::format(*self)
2908    }
2909}
2910
2911#[stable(feature = "rust1", since = "1.0.0")]
2912impl AsRef<str> for String {
2913    #[inline]
2914    fn as_ref(&self) -> &str {
2915        self
2916    }
2917}
2918
2919#[stable(feature = "string_as_mut", since = "1.43.0")]
2920impl AsMut<str> for String {
2921    #[inline]
2922    fn as_mut(&mut self) -> &mut str {
2923        self
2924    }
2925}
2926
2927#[stable(feature = "rust1", since = "1.0.0")]
2928impl AsRef<[u8]> for String {
2929    #[inline]
2930    fn as_ref(&self) -> &[u8] {
2931        self.as_bytes()
2932    }
2933}
2934
2935#[cfg(not(no_global_oom_handling))]
2936#[stable(feature = "rust1", since = "1.0.0")]
2937impl From<&str> for String {
2938    /// Converts a `&str` into a [`String`].
2939    ///
2940    /// The result is allocated on the heap.
2941    #[inline]
2942    fn from(s: &str) -> String {
2943        s.to_owned()
2944    }
2945}
2946
2947#[cfg(not(no_global_oom_handling))]
2948#[stable(feature = "from_mut_str_for_string", since = "1.44.0")]
2949impl From<&mut str> for String {
2950    /// Converts a `&mut str` into a [`String`].
2951    ///
2952    /// The result is allocated on the heap.
2953    #[inline]
2954    fn from(s: &mut str) -> String {
2955        s.to_owned()
2956    }
2957}
2958
2959#[cfg(not(no_global_oom_handling))]
2960#[stable(feature = "from_ref_string", since = "1.35.0")]
2961impl From<&String> for String {
2962    /// Converts a `&String` into a [`String`].
2963    ///
2964    /// This clones `s` and returns the clone.
2965    #[inline]
2966    fn from(s: &String) -> String {
2967        s.clone()
2968    }
2969}
2970
2971// note: test pulls in std, which causes errors here
2972#[stable(feature = "string_from_box", since = "1.18.0")]
2973impl From<Box<str>> for String {
2974    /// Converts the given boxed `str` slice to a [`String`].
2975    /// It is notable that the `str` slice is owned.
2976    ///
2977    /// # Examples
2978    ///
2979    /// ```
2980    /// let s1: String = String::from("hello world");
2981    /// let s2: Box<str> = s1.into_boxed_str();
2982    /// let s3: String = String::from(s2);
2983    ///
2984    /// assert_eq!("hello world", s3)
2985    /// ```
2986    fn from(s: Box<str>) -> String {
2987        s.into_string()
2988    }
2989}
2990
2991#[cfg(not(no_global_oom_handling))]
2992#[stable(feature = "box_from_str", since = "1.20.0")]
2993impl From<String> for Box<str> {
2994    /// Converts the given [`String`] to a boxed `str` slice that is owned.
2995    ///
2996    /// # Examples
2997    ///
2998    /// ```
2999    /// let s1: String = String::from("hello world");
3000    /// let s2: Box<str> = Box::from(s1);
3001    /// let s3: String = String::from(s2);
3002    ///
3003    /// assert_eq!("hello world", s3)
3004    /// ```
3005    fn from(s: String) -> Box<str> {
3006        s.into_boxed_str()
3007    }
3008}
3009
3010#[cfg(not(no_global_oom_handling))]
3011#[stable(feature = "string_from_cow_str", since = "1.14.0")]
3012impl<'a> From<Cow<'a, str>> for String {
3013    /// Converts a clone-on-write string to an owned
3014    /// instance of [`String`].
3015    ///
3016    /// This extracts the owned string,
3017    /// clones the string if it is not already owned.
3018    ///
3019    /// # Example
3020    ///
3021    /// ```
3022    /// # use std::borrow::Cow;
3023    /// // If the string is not owned...
3024    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3025    /// // It will allocate on the heap and copy the string.
3026    /// let owned: String = String::from(cow);
3027    /// assert_eq!(&owned[..], "eggplant");
3028    /// ```
3029    fn from(s: Cow<'a, str>) -> String {
3030        s.into_owned()
3031    }
3032}
3033
3034#[cfg(not(no_global_oom_handling))]
3035#[stable(feature = "rust1", since = "1.0.0")]
3036impl<'a> From<&'a str> for Cow<'a, str> {
3037    /// Converts a string slice into a [`Borrowed`] variant.
3038    /// No heap allocation is performed, and the string
3039    /// is not copied.
3040    ///
3041    /// # Example
3042    ///
3043    /// ```
3044    /// # use std::borrow::Cow;
3045    /// assert_eq!(Cow::from("eggplant"), Cow::Borrowed("eggplant"));
3046    /// ```
3047    ///
3048    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3049    #[inline]
3050    fn from(s: &'a str) -> Cow<'a, str> {
3051        Cow::Borrowed(s)
3052    }
3053}
3054
3055#[cfg(not(no_global_oom_handling))]
3056#[stable(feature = "rust1", since = "1.0.0")]
3057impl<'a> From<String> for Cow<'a, str> {
3058    /// Converts a [`String`] into an [`Owned`] variant.
3059    /// No heap allocation is performed, and the string
3060    /// is not copied.
3061    ///
3062    /// # Example
3063    ///
3064    /// ```
3065    /// # use std::borrow::Cow;
3066    /// let s = "eggplant".to_string();
3067    /// let s2 = "eggplant".to_string();
3068    /// assert_eq!(Cow::from(s), Cow::<'static, str>::Owned(s2));
3069    /// ```
3070    ///
3071    /// [`Owned`]: crate::borrow::Cow::Owned "borrow::Cow::Owned"
3072    #[inline]
3073    fn from(s: String) -> Cow<'a, str> {
3074        Cow::Owned(s)
3075    }
3076}
3077
3078#[cfg(not(no_global_oom_handling))]
3079#[stable(feature = "cow_from_string_ref", since = "1.28.0")]
3080impl<'a> From<&'a String> for Cow<'a, str> {
3081    /// Converts a [`String`] reference into a [`Borrowed`] variant.
3082    /// No heap allocation is performed, and the string
3083    /// is not copied.
3084    ///
3085    /// # Example
3086    ///
3087    /// ```
3088    /// # use std::borrow::Cow;
3089    /// let s = "eggplant".to_string();
3090    /// assert_eq!(Cow::from(&s), Cow::Borrowed("eggplant"));
3091    /// ```
3092    ///
3093    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3094    #[inline]
3095    fn from(s: &'a String) -> Cow<'a, str> {
3096        Cow::Borrowed(s.as_str())
3097    }
3098}
3099
3100#[cfg(not(no_global_oom_handling))]
3101#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3102impl<'a> FromIterator<char> for Cow<'a, str> {
3103    fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> {
3104        Cow::Owned(FromIterator::from_iter(it))
3105    }
3106}
3107
3108#[cfg(not(no_global_oom_handling))]
3109#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3110impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> {
3111    fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> {
3112        Cow::Owned(FromIterator::from_iter(it))
3113    }
3114}
3115
3116#[cfg(not(no_global_oom_handling))]
3117#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3118impl<'a> FromIterator<String> for Cow<'a, str> {
3119    fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> {
3120        Cow::Owned(FromIterator::from_iter(it))
3121    }
3122}
3123
3124#[stable(feature = "from_string_for_vec_u8", since = "1.14.0")]
3125impl From<String> for Vec<u8> {
3126    /// Converts the given [`String`] to a vector [`Vec`] that holds values of type [`u8`].
3127    ///
3128    /// # Examples
3129    ///
3130    /// ```
3131    /// let s1 = String::from("hello world");
3132    /// let v1 = Vec::from(s1);
3133    ///
3134    /// for b in v1 {
3135    ///     println!("{b}");
3136    /// }
3137    /// ```
3138    fn from(string: String) -> Vec<u8> {
3139        string.into_bytes()
3140    }
3141}
3142
3143#[stable(feature = "try_from_vec_u8_for_string", since = "CURRENT_RUSTC_VERSION")]
3144impl TryFrom<Vec<u8>> for String {
3145    type Error = FromUtf8Error;
3146    /// Converts the given [`Vec<u8>`] into a  [`String`] if it contains valid UTF-8 data.
3147    ///
3148    /// # Examples
3149    ///
3150    /// ```
3151    /// let s1 = b"hello world".to_vec();
3152    /// let v1 = String::try_from(s1).unwrap();
3153    /// assert_eq!(v1, "hello world");
3154    ///
3155    /// ```
3156    fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
3157        Self::from_utf8(bytes)
3158    }
3159}
3160
3161#[cfg(not(no_global_oom_handling))]
3162#[stable(feature = "rust1", since = "1.0.0")]
3163impl fmt::Write for String {
3164    #[inline]
3165    fn write_str(&mut self, s: &str) -> fmt::Result {
3166        self.push_str(s);
3167        Ok(())
3168    }
3169
3170    #[inline]
3171    fn write_char(&mut self, c: char) -> fmt::Result {
3172        self.push(c);
3173        Ok(())
3174    }
3175}
3176
3177/// An iterator over the [`char`]s of a string.
3178///
3179/// This struct is created by the [`into_chars`] method on [`String`].
3180/// See its documentation for more.
3181///
3182/// [`char`]: prim@char
3183/// [`into_chars`]: String::into_chars
3184#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
3185#[must_use = "iterators are lazy and do nothing unless consumed"]
3186#[unstable(feature = "string_into_chars", issue = "133125")]
3187pub struct IntoChars {
3188    bytes: vec::IntoIter<u8>,
3189}
3190
3191#[unstable(feature = "string_into_chars", issue = "133125")]
3192impl fmt::Debug for IntoChars {
3193    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3194        f.debug_tuple("IntoChars").field(&self.as_str()).finish()
3195    }
3196}
3197
3198impl IntoChars {
3199    /// Views the underlying data as a subslice of the original data.
3200    ///
3201    /// # Examples
3202    ///
3203    /// ```
3204    /// #![feature(string_into_chars)]
3205    ///
3206    /// let mut chars = String::from("abc").into_chars();
3207    ///
3208    /// assert_eq!(chars.as_str(), "abc");
3209    /// chars.next();
3210    /// assert_eq!(chars.as_str(), "bc");
3211    /// chars.next();
3212    /// chars.next();
3213    /// assert_eq!(chars.as_str(), "");
3214    /// ```
3215    #[unstable(feature = "string_into_chars", issue = "133125")]
3216    #[must_use]
3217    #[inline]
3218    pub fn as_str(&self) -> &str {
3219        // SAFETY: `bytes` is a valid UTF-8 string.
3220        unsafe { str::from_utf8_unchecked(self.bytes.as_slice()) }
3221    }
3222
3223    /// Consumes the `IntoChars`, returning the remaining string.
3224    ///
3225    /// # Examples
3226    ///
3227    /// ```
3228    /// #![feature(string_into_chars)]
3229    ///
3230    /// let chars = String::from("abc").into_chars();
3231    /// assert_eq!(chars.into_string(), "abc");
3232    ///
3233    /// let mut chars = String::from("def").into_chars();
3234    /// chars.next();
3235    /// assert_eq!(chars.into_string(), "ef");
3236    /// ```
3237    #[cfg(not(no_global_oom_handling))]
3238    #[unstable(feature = "string_into_chars", issue = "133125")]
3239    #[inline]
3240    pub fn into_string(self) -> String {
3241        // Safety: `bytes` are kept in UTF-8 form, only removing whole `char`s at a time.
3242        unsafe { String::from_utf8_unchecked(self.bytes.collect()) }
3243    }
3244
3245    #[inline]
3246    fn iter(&self) -> CharIndices<'_> {
3247        self.as_str().char_indices()
3248    }
3249}
3250
3251#[unstable(feature = "string_into_chars", issue = "133125")]
3252impl Iterator for IntoChars {
3253    type Item = char;
3254
3255    #[inline]
3256    fn next(&mut self) -> Option<char> {
3257        let mut iter = self.iter();
3258        match iter.next() {
3259            None => None,
3260            Some((_, ch)) => {
3261                let offset = iter.offset();
3262                // `offset` is a valid index.
3263                let _ = self.bytes.advance_by(offset);
3264                Some(ch)
3265            }
3266        }
3267    }
3268
3269    #[inline]
3270    fn count(self) -> usize {
3271        self.iter().count()
3272    }
3273
3274    #[inline]
3275    fn size_hint(&self) -> (usize, Option<usize>) {
3276        self.iter().size_hint()
3277    }
3278
3279    #[inline]
3280    fn last(mut self) -> Option<char> {
3281        self.next_back()
3282    }
3283}
3284
3285#[unstable(feature = "string_into_chars", issue = "133125")]
3286impl DoubleEndedIterator for IntoChars {
3287    #[inline]
3288    fn next_back(&mut self) -> Option<char> {
3289        let len = self.as_str().len();
3290        let mut iter = self.iter();
3291        match iter.next_back() {
3292            None => None,
3293            Some((idx, ch)) => {
3294                // `idx` is a valid index.
3295                let _ = self.bytes.advance_back_by(len - idx);
3296                Some(ch)
3297            }
3298        }
3299    }
3300}
3301
3302#[unstable(feature = "string_into_chars", issue = "133125")]
3303impl FusedIterator for IntoChars {}
3304
3305/// A draining iterator for `String`.
3306///
3307/// This struct is created by the [`drain`] method on [`String`]. See its
3308/// documentation for more.
3309///
3310/// [`drain`]: String::drain
3311#[stable(feature = "drain", since = "1.6.0")]
3312pub struct Drain<'a> {
3313    /// Will be used as &'a mut String in the destructor
3314    string: *mut String,
3315    /// Start of part to remove
3316    start: usize,
3317    /// End of part to remove
3318    end: usize,
3319    /// Current remaining range to remove
3320    iter: Chars<'a>,
3321}
3322
3323#[stable(feature = "collection_debug", since = "1.17.0")]
3324impl fmt::Debug for Drain<'_> {
3325    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3326        f.debug_tuple("Drain").field(&self.as_str()).finish()
3327    }
3328}
3329
3330#[stable(feature = "drain", since = "1.6.0")]
3331unsafe impl Sync for Drain<'_> {}
3332#[stable(feature = "drain", since = "1.6.0")]
3333unsafe impl Send for Drain<'_> {}
3334
3335#[stable(feature = "drain", since = "1.6.0")]
3336impl Drop for Drain<'_> {
3337    fn drop(&mut self) {
3338        unsafe {
3339            // Use Vec::drain. "Reaffirm" the bounds checks to avoid
3340            // panic code being inserted again.
3341            let self_vec = (*self.string).as_mut_vec();
3342            if self.start <= self.end && self.end <= self_vec.len() {
3343                self_vec.drain(self.start..self.end);
3344            }
3345        }
3346    }
3347}
3348
3349impl<'a> Drain<'a> {
3350    /// Returns the remaining (sub)string of this iterator as a slice.
3351    ///
3352    /// # Examples
3353    ///
3354    /// ```
3355    /// let mut s = String::from("abc");
3356    /// let mut drain = s.drain(..);
3357    /// assert_eq!(drain.as_str(), "abc");
3358    /// let _ = drain.next().unwrap();
3359    /// assert_eq!(drain.as_str(), "bc");
3360    /// ```
3361    #[must_use]
3362    #[stable(feature = "string_drain_as_str", since = "1.55.0")]
3363    pub fn as_str(&self) -> &str {
3364        self.iter.as_str()
3365    }
3366}
3367
3368#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3369impl<'a> AsRef<str> for Drain<'a> {
3370    fn as_ref(&self) -> &str {
3371        self.as_str()
3372    }
3373}
3374
3375#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3376impl<'a> AsRef<[u8]> for Drain<'a> {
3377    fn as_ref(&self) -> &[u8] {
3378        self.as_str().as_bytes()
3379    }
3380}
3381
3382#[stable(feature = "drain", since = "1.6.0")]
3383impl Iterator for Drain<'_> {
3384    type Item = char;
3385
3386    #[inline]
3387    fn next(&mut self) -> Option<char> {
3388        self.iter.next()
3389    }
3390
3391    fn size_hint(&self) -> (usize, Option<usize>) {
3392        self.iter.size_hint()
3393    }
3394
3395    #[inline]
3396    fn last(mut self) -> Option<char> {
3397        self.next_back()
3398    }
3399}
3400
3401#[stable(feature = "drain", since = "1.6.0")]
3402impl DoubleEndedIterator for Drain<'_> {
3403    #[inline]
3404    fn next_back(&mut self) -> Option<char> {
3405        self.iter.next_back()
3406    }
3407}
3408
3409#[stable(feature = "fused", since = "1.26.0")]
3410impl FusedIterator for Drain<'_> {}
3411
3412#[cfg(not(no_global_oom_handling))]
3413#[stable(feature = "from_char_for_string", since = "1.46.0")]
3414impl From<char> for String {
3415    /// Allocates an owned [`String`] from a single character.
3416    ///
3417    /// # Example
3418    /// ```rust
3419    /// let c: char = 'a';
3420    /// let s: String = String::from(c);
3421    /// assert_eq!("a", &s[..]);
3422    /// ```
3423    #[inline]
3424    fn from(c: char) -> Self {
3425        c.to_string()
3426    }
3427}
Лучший частный хостинг