lynx   »   [go: up one dir, main page]

alloc/
sync.rs

1#![stable(feature = "rust1", since = "1.0.0")]
2
3//! Thread-safe reference-counting pointers.
4//!
5//! See the [`Arc<T>`][Arc] documentation for more details.
6//!
7//! **Note**: This module is only available on platforms that support atomic
8//! loads and stores of pointers. This may be detected at compile time using
9//! `#[cfg(target_has_atomic = "ptr")]`.
10
11use core::any::Any;
12#[cfg(not(no_global_oom_handling))]
13use core::clone::CloneToUninit;
14use core::clone::UseCloned;
15use core::cmp::Ordering;
16use core::hash::{Hash, Hasher};
17use core::intrinsics::abort;
18#[cfg(not(no_global_oom_handling))]
19use core::iter;
20use core::marker::{PhantomData, Unsize};
21use core::mem::{self, ManuallyDrop, align_of_val_raw};
22use core::num::NonZeroUsize;
23use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver};
24use core::panic::{RefUnwindSafe, UnwindSafe};
25use core::pin::{Pin, PinCoerceUnsized};
26use core::ptr::{self, NonNull};
27#[cfg(not(no_global_oom_handling))]
28use core::slice::from_raw_parts_mut;
29use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
30use core::sync::atomic::{self, Atomic};
31use core::{borrow, fmt, hint};
32
33#[cfg(not(no_global_oom_handling))]
34use crate::alloc::handle_alloc_error;
35use crate::alloc::{AllocError, Allocator, Global, Layout};
36use crate::borrow::{Cow, ToOwned};
37use crate::boxed::Box;
38use crate::rc::is_dangling;
39#[cfg(not(no_global_oom_handling))]
40use crate::string::String;
41#[cfg(not(no_global_oom_handling))]
42use crate::vec::Vec;
43
44/// A soft limit on the amount of references that may be made to an `Arc`.
45///
46/// Going above this limit will abort your program (although not
47/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
48/// Trying to go above it might call a `panic` (if not actually going above it).
49///
50/// This is a global invariant, and also applies when using a compare-exchange loop.
51///
52/// See comment in `Arc::clone`.
53const MAX_REFCOUNT: usize = (isize::MAX) as usize;
54
55/// The error in case either counter reaches above `MAX_REFCOUNT`, and we can `panic` safely.
56const INTERNAL_OVERFLOW_ERROR: &str = "Arc counter overflow";
57
58#[cfg(not(sanitize = "thread"))]
59macro_rules! acquire {
60    ($x:expr) => {
61        atomic::fence(Acquire)
62    };
63}
64
65// ThreadSanitizer does not support memory fences. To avoid false positive
66// reports in Arc / Weak implementation use atomic loads for synchronization
67// instead.
68#[cfg(sanitize = "thread")]
69macro_rules! acquire {
70    ($x:expr) => {
71        $x.load(Acquire)
72    };
73}
74
75/// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
76/// Reference Counted'.
77///
78/// The type `Arc<T>` provides shared ownership of a value of type `T`,
79/// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
80/// a new `Arc` instance, which points to the same allocation on the heap as the
81/// source `Arc`, while increasing a reference count. When the last `Arc`
82/// pointer to a given allocation is destroyed, the value stored in that allocation (often
83/// referred to as "inner value") is also dropped.
84///
85/// Shared references in Rust disallow mutation by default, and `Arc` is no
86/// exception: you cannot generally obtain a mutable reference to something
87/// inside an `Arc`. If you do need to mutate through an `Arc`, you have several options:
88///
89/// 1. Use interior mutability with synchronization primitives like [`Mutex`][mutex],
90///    [`RwLock`][rwlock], or one of the [`Atomic`][atomic] types.
91///
92/// 2. Use clone-on-write semantics with [`Arc::make_mut`] which provides efficient mutation
93///    without requiring interior mutability. This approach clones the data only when
94///    needed (when there are multiple references) and can be more efficient when mutations
95///    are infrequent.
96///
97/// 3. Use [`Arc::get_mut`] when you know your `Arc` is not shared (has a reference count of 1),
98///    which provides direct mutable access to the inner value without any cloning.
99///
100/// ```
101/// use std::sync::Arc;
102///
103/// let mut data = Arc::new(vec![1, 2, 3]);
104///
105/// // This will clone the vector only if there are other references to it
106/// Arc::make_mut(&mut data).push(4);
107///
108/// assert_eq!(*data, vec![1, 2, 3, 4]);
109/// ```
110///
111/// **Note**: This type is only available on platforms that support atomic
112/// loads and stores of pointers, which includes all platforms that support
113/// the `std` crate but not all those which only support [`alloc`](crate).
114/// This may be detected at compile time using `#[cfg(target_has_atomic = "ptr")]`.
115///
116/// ## Thread Safety
117///
118/// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
119/// counting. This means that it is thread-safe. The disadvantage is that
120/// atomic operations are more expensive than ordinary memory accesses. If you
121/// are not sharing reference-counted allocations between threads, consider using
122/// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
123/// compiler will catch any attempt to send an [`Rc<T>`] between threads.
124/// However, a library might choose `Arc<T>` in order to give library consumers
125/// more flexibility.
126///
127/// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
128/// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
129/// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
130/// first: after all, isn't the point of `Arc<T>` thread safety? The key is
131/// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
132/// data, but it  doesn't add thread safety to its data. Consider
133/// <code>Arc<[RefCell\<T>]></code>. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
134/// [`Send`], <code>Arc<[RefCell\<T>]></code> would be as well. But then we'd have a problem:
135/// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
136/// non-atomic operations.
137///
138/// In the end, this means that you may need to pair `Arc<T>` with some sort of
139/// [`std::sync`] type, usually [`Mutex<T>`][mutex].
140///
141/// ## Breaking cycles with `Weak`
142///
143/// The [`downgrade`][downgrade] method can be used to create a non-owning
144/// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
145/// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
146/// already been dropped. In other words, `Weak` pointers do not keep the value
147/// inside the allocation alive; however, they *do* keep the allocation
148/// (the backing store for the value) alive.
149///
150/// A cycle between `Arc` pointers will never be deallocated. For this reason,
151/// [`Weak`] is used to break cycles. For example, a tree could have
152/// strong `Arc` pointers from parent nodes to children, and [`Weak`]
153/// pointers from children back to their parents.
154///
155/// # Cloning references
156///
157/// Creating a new reference from an existing reference-counted pointer is done using the
158/// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak].
159///
160/// ```
161/// use std::sync::Arc;
162/// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
163/// // The two syntaxes below are equivalent.
164/// let a = foo.clone();
165/// let b = Arc::clone(&foo);
166/// // a, b, and foo are all Arcs that point to the same memory location
167/// ```
168///
169/// ## `Deref` behavior
170///
171/// `Arc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
172/// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
173/// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
174/// functions, called using [fully qualified syntax]:
175///
176/// ```
177/// use std::sync::Arc;
178///
179/// let my_arc = Arc::new(());
180/// let my_weak = Arc::downgrade(&my_arc);
181/// ```
182///
183/// `Arc<T>`'s implementations of traits like `Clone` may also be called using
184/// fully qualified syntax. Some people prefer to use fully qualified syntax,
185/// while others prefer using method-call syntax.
186///
187/// ```
188/// use std::sync::Arc;
189///
190/// let arc = Arc::new(());
191/// // Method-call syntax
192/// let arc2 = arc.clone();
193/// // Fully qualified syntax
194/// let arc3 = Arc::clone(&arc);
195/// ```
196///
197/// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have
198/// already been dropped.
199///
200/// [`Rc<T>`]: crate::rc::Rc
201/// [clone]: Clone::clone
202/// [mutex]: ../../std/sync/struct.Mutex.html
203/// [rwlock]: ../../std/sync/struct.RwLock.html
204/// [atomic]: core::sync::atomic
205/// [downgrade]: Arc::downgrade
206/// [upgrade]: Weak::upgrade
207/// [RefCell\<T>]: core::cell::RefCell
208/// [`RefCell<T>`]: core::cell::RefCell
209/// [`std::sync`]: ../../std/sync/index.html
210/// [`Arc::clone(&from)`]: Arc::clone
211/// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
212///
213/// # Examples
214///
215/// Sharing some immutable data between threads:
216///
217/// ```
218/// use std::sync::Arc;
219/// use std::thread;
220///
221/// let five = Arc::new(5);
222///
223/// for _ in 0..10 {
224///     let five = Arc::clone(&five);
225///
226///     thread::spawn(move || {
227///         println!("{five:?}");
228///     });
229/// }
230/// ```
231///
232/// Sharing a mutable [`AtomicUsize`]:
233///
234/// [`AtomicUsize`]: core::sync::atomic::AtomicUsize "sync::atomic::AtomicUsize"
235///
236/// ```
237/// use std::sync::Arc;
238/// use std::sync::atomic::{AtomicUsize, Ordering};
239/// use std::thread;
240///
241/// let val = Arc::new(AtomicUsize::new(5));
242///
243/// for _ in 0..10 {
244///     let val = Arc::clone(&val);
245///
246///     thread::spawn(move || {
247///         let v = val.fetch_add(1, Ordering::Relaxed);
248///         println!("{v:?}");
249///     });
250/// }
251/// ```
252///
253/// See the [`rc` documentation][rc_examples] for more examples of reference
254/// counting in general.
255///
256/// [rc_examples]: crate::rc#examples
257#[doc(search_unbox)]
258#[rustc_diagnostic_item = "Arc"]
259#[stable(feature = "rust1", since = "1.0.0")]
260#[rustc_insignificant_dtor]
261pub struct Arc<
262    T: ?Sized,
263    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
264> {
265    ptr: NonNull<ArcInner<T>>,
266    phantom: PhantomData<ArcInner<T>>,
267    alloc: A,
268}
269
270#[stable(feature = "rust1", since = "1.0.0")]
271unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Arc<T, A> {}
272#[stable(feature = "rust1", since = "1.0.0")]
273unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Arc<T, A> {}
274
275#[stable(feature = "catch_unwind", since = "1.9.0")]
276impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Arc<T, A> {}
277
278#[unstable(feature = "coerce_unsized", issue = "18598")]
279impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Arc<U, A>> for Arc<T, A> {}
280
281#[unstable(feature = "dispatch_from_dyn", issue = "none")]
282impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
283
284impl<T: ?Sized> Arc<T> {
285    unsafe fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
286        unsafe { Self::from_inner_in(ptr, Global) }
287    }
288
289    unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
290        unsafe { Self::from_ptr_in(ptr, Global) }
291    }
292}
293
294impl<T: ?Sized, A: Allocator> Arc<T, A> {
295    #[inline]
296    fn into_inner_with_allocator(this: Self) -> (NonNull<ArcInner<T>>, A) {
297        let this = mem::ManuallyDrop::new(this);
298        (this.ptr, unsafe { ptr::read(&this.alloc) })
299    }
300
301    #[inline]
302    unsafe fn from_inner_in(ptr: NonNull<ArcInner<T>>, alloc: A) -> Self {
303        Self { ptr, phantom: PhantomData, alloc }
304    }
305
306    #[inline]
307    unsafe fn from_ptr_in(ptr: *mut ArcInner<T>, alloc: A) -> Self {
308        unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
309    }
310}
311
312/// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
313/// managed allocation.
314///
315/// The allocation is accessed by calling [`upgrade`] on the `Weak`
316/// pointer, which returns an <code>[Option]<[Arc]\<T>></code>.
317///
318/// Since a `Weak` reference does not count towards ownership, it will not
319/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
320/// guarantees about the value still being present. Thus it may return [`None`]
321/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
322/// itself (the backing store) from being deallocated.
323///
324/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
325/// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
326/// prevent circular references between [`Arc`] pointers, since mutual owning references
327/// would never allow either [`Arc`] to be dropped. For example, a tree could
328/// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
329/// pointers from children back to their parents.
330///
331/// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
332///
333/// [`upgrade`]: Weak::upgrade
334#[stable(feature = "arc_weak", since = "1.4.0")]
335#[rustc_diagnostic_item = "ArcWeak"]
336pub struct Weak<
337    T: ?Sized,
338    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
339> {
340    // This is a `NonNull` to allow optimizing the size of this type in enums,
341    // but it is not necessarily a valid pointer.
342    // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
343    // to allocate space on the heap. That's not a value a real pointer
344    // will ever have because RcInner has alignment at least 2.
345    // This is only possible when `T: Sized`; unsized `T` never dangle.
346    ptr: NonNull<ArcInner<T>>,
347    alloc: A,
348}
349
350#[stable(feature = "arc_weak", since = "1.4.0")]
351unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Weak<T, A> {}
352#[stable(feature = "arc_weak", since = "1.4.0")]
353unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Weak<T, A> {}
354
355#[unstable(feature = "coerce_unsized", issue = "18598")]
356impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}
357#[unstable(feature = "dispatch_from_dyn", issue = "none")]
358impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
359
360#[stable(feature = "arc_weak", since = "1.4.0")]
361impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
362    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
363        write!(f, "(Weak)")
364    }
365}
366
367// This is repr(C) to future-proof against possible field-reordering, which
368// would interfere with otherwise safe [into|from]_raw() of transmutable
369// inner types.
370#[repr(C)]
371struct ArcInner<T: ?Sized> {
372    strong: Atomic<usize>,
373
374    // the value usize::MAX acts as a sentinel for temporarily "locking" the
375    // ability to upgrade weak pointers or downgrade strong ones; this is used
376    // to avoid races in `make_mut` and `get_mut`.
377    weak: Atomic<usize>,
378
379    data: T,
380}
381
382/// Calculate layout for `ArcInner<T>` using the inner value's layout
383fn arcinner_layout_for_value_layout(layout: Layout) -> Layout {
384    // Calculate layout using the given value layout.
385    // Previously, layout was calculated on the expression
386    // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
387    // reference (see #54908).
388    Layout::new::<ArcInner<()>>().extend(layout).unwrap().0.pad_to_align()
389}
390
391unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
392unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
393
394impl<T> Arc<T> {
395    /// Constructs a new `Arc<T>`.
396    ///
397    /// # Examples
398    ///
399    /// ```
400    /// use std::sync::Arc;
401    ///
402    /// let five = Arc::new(5);
403    /// ```
404    #[cfg(not(no_global_oom_handling))]
405    #[inline]
406    #[stable(feature = "rust1", since = "1.0.0")]
407    pub fn new(data: T) -> Arc<T> {
408        // Start the weak pointer count as 1 which is the weak pointer that's
409        // held by all the strong pointers (kinda), see std/rc.rs for more info
410        let x: Box<_> = Box::new(ArcInner {
411            strong: atomic::AtomicUsize::new(1),
412            weak: atomic::AtomicUsize::new(1),
413            data,
414        });
415        unsafe { Self::from_inner(Box::leak(x).into()) }
416    }
417
418    /// Constructs a new `Arc<T>` while giving you a `Weak<T>` to the allocation,
419    /// to allow you to construct a `T` which holds a weak pointer to itself.
420    ///
421    /// Generally, a structure circularly referencing itself, either directly or
422    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
423    /// Using this function, you get access to the weak pointer during the
424    /// initialization of `T`, before the `Arc<T>` is created, such that you can
425    /// clone and store it inside the `T`.
426    ///
427    /// `new_cyclic` first allocates the managed allocation for the `Arc<T>`,
428    /// then calls your closure, giving it a `Weak<T>` to this allocation,
429    /// and only afterwards completes the construction of the `Arc<T>` by placing
430    /// the `T` returned from your closure into the allocation.
431    ///
432    /// Since the new `Arc<T>` is not fully-constructed until `Arc<T>::new_cyclic`
433    /// returns, calling [`upgrade`] on the weak reference inside your closure will
434    /// fail and result in a `None` value.
435    ///
436    /// # Panics
437    ///
438    /// If `data_fn` panics, the panic is propagated to the caller, and the
439    /// temporary [`Weak<T>`] is dropped normally.
440    ///
441    /// # Example
442    ///
443    /// ```
444    /// # #![allow(dead_code)]
445    /// use std::sync::{Arc, Weak};
446    ///
447    /// struct Gadget {
448    ///     me: Weak<Gadget>,
449    /// }
450    ///
451    /// impl Gadget {
452    ///     /// Constructs a reference counted Gadget.
453    ///     fn new() -> Arc<Self> {
454    ///         // `me` is a `Weak<Gadget>` pointing at the new allocation of the
455    ///         // `Arc` we're constructing.
456    ///         Arc::new_cyclic(|me| {
457    ///             // Create the actual struct here.
458    ///             Gadget { me: me.clone() }
459    ///         })
460    ///     }
461    ///
462    ///     /// Returns a reference counted pointer to Self.
463    ///     fn me(&self) -> Arc<Self> {
464    ///         self.me.upgrade().unwrap()
465    ///     }
466    /// }
467    /// ```
468    /// [`upgrade`]: Weak::upgrade
469    #[cfg(not(no_global_oom_handling))]
470    #[inline]
471    #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
472    pub fn new_cyclic<F>(data_fn: F) -> Arc<T>
473    where
474        F: FnOnce(&Weak<T>) -> T,
475    {
476        Self::new_cyclic_in(data_fn, Global)
477    }
478
479    /// Constructs a new `Arc` with uninitialized contents.
480    ///
481    /// # Examples
482    ///
483    /// ```
484    /// #![feature(get_mut_unchecked)]
485    ///
486    /// use std::sync::Arc;
487    ///
488    /// let mut five = Arc::<u32>::new_uninit();
489    ///
490    /// // Deferred initialization:
491    /// Arc::get_mut(&mut five).unwrap().write(5);
492    ///
493    /// let five = unsafe { five.assume_init() };
494    ///
495    /// assert_eq!(*five, 5)
496    /// ```
497    #[cfg(not(no_global_oom_handling))]
498    #[inline]
499    #[stable(feature = "new_uninit", since = "1.82.0")]
500    #[must_use]
501    pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
502        unsafe {
503            Arc::from_ptr(Arc::allocate_for_layout(
504                Layout::new::<T>(),
505                |layout| Global.allocate(layout),
506                <*mut u8>::cast,
507            ))
508        }
509    }
510
511    /// Constructs a new `Arc` with uninitialized contents, with the memory
512    /// being filled with `0` bytes.
513    ///
514    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
515    /// of this method.
516    ///
517    /// # Examples
518    ///
519    /// ```
520    /// #![feature(new_zeroed_alloc)]
521    ///
522    /// use std::sync::Arc;
523    ///
524    /// let zero = Arc::<u32>::new_zeroed();
525    /// let zero = unsafe { zero.assume_init() };
526    ///
527    /// assert_eq!(*zero, 0)
528    /// ```
529    ///
530    /// [zeroed]: mem::MaybeUninit::zeroed
531    #[cfg(not(no_global_oom_handling))]
532    #[inline]
533    #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
534    #[must_use]
535    pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
536        unsafe {
537            Arc::from_ptr(Arc::allocate_for_layout(
538                Layout::new::<T>(),
539                |layout| Global.allocate_zeroed(layout),
540                <*mut u8>::cast,
541            ))
542        }
543    }
544
545    /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
546    /// `data` will be pinned in memory and unable to be moved.
547    #[cfg(not(no_global_oom_handling))]
548    #[stable(feature = "pin", since = "1.33.0")]
549    #[must_use]
550    pub fn pin(data: T) -> Pin<Arc<T>> {
551        unsafe { Pin::new_unchecked(Arc::new(data)) }
552    }
553
554    /// Constructs a new `Pin<Arc<T>>`, return an error if allocation fails.
555    #[unstable(feature = "allocator_api", issue = "32838")]
556    #[inline]
557    pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError> {
558        unsafe { Ok(Pin::new_unchecked(Arc::try_new(data)?)) }
559    }
560
561    /// Constructs a new `Arc<T>`, returning an error if allocation fails.
562    ///
563    /// # Examples
564    ///
565    /// ```
566    /// #![feature(allocator_api)]
567    /// use std::sync::Arc;
568    ///
569    /// let five = Arc::try_new(5)?;
570    /// # Ok::<(), std::alloc::AllocError>(())
571    /// ```
572    #[unstable(feature = "allocator_api", issue = "32838")]
573    #[inline]
574    pub fn try_new(data: T) -> Result<Arc<T>, AllocError> {
575        // Start the weak pointer count as 1 which is the weak pointer that's
576        // held by all the strong pointers (kinda), see std/rc.rs for more info
577        let x: Box<_> = Box::try_new(ArcInner {
578            strong: atomic::AtomicUsize::new(1),
579            weak: atomic::AtomicUsize::new(1),
580            data,
581        })?;
582        unsafe { Ok(Self::from_inner(Box::leak(x).into())) }
583    }
584
585    /// Constructs a new `Arc` with uninitialized contents, returning an error
586    /// if allocation fails.
587    ///
588    /// # Examples
589    ///
590    /// ```
591    /// #![feature(allocator_api)]
592    /// #![feature(get_mut_unchecked)]
593    ///
594    /// use std::sync::Arc;
595    ///
596    /// let mut five = Arc::<u32>::try_new_uninit()?;
597    ///
598    /// // Deferred initialization:
599    /// Arc::get_mut(&mut five).unwrap().write(5);
600    ///
601    /// let five = unsafe { five.assume_init() };
602    ///
603    /// assert_eq!(*five, 5);
604    /// # Ok::<(), std::alloc::AllocError>(())
605    /// ```
606    #[unstable(feature = "allocator_api", issue = "32838")]
607    // #[unstable(feature = "new_uninit", issue = "63291")]
608    pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
609        unsafe {
610            Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
611                Layout::new::<T>(),
612                |layout| Global.allocate(layout),
613                <*mut u8>::cast,
614            )?))
615        }
616    }
617
618    /// Constructs a new `Arc` with uninitialized contents, with the memory
619    /// being filled with `0` bytes, returning an error if allocation fails.
620    ///
621    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
622    /// of this method.
623    ///
624    /// # Examples
625    ///
626    /// ```
627    /// #![feature( allocator_api)]
628    ///
629    /// use std::sync::Arc;
630    ///
631    /// let zero = Arc::<u32>::try_new_zeroed()?;
632    /// let zero = unsafe { zero.assume_init() };
633    ///
634    /// assert_eq!(*zero, 0);
635    /// # Ok::<(), std::alloc::AllocError>(())
636    /// ```
637    ///
638    /// [zeroed]: mem::MaybeUninit::zeroed
639    #[unstable(feature = "allocator_api", issue = "32838")]
640    // #[unstable(feature = "new_uninit", issue = "63291")]
641    pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
642        unsafe {
643            Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
644                Layout::new::<T>(),
645                |layout| Global.allocate_zeroed(layout),
646                <*mut u8>::cast,
647            )?))
648        }
649    }
650}
651
652impl<T, A: Allocator> Arc<T, A> {
653    /// Constructs a new `Arc<T>` in the provided allocator.
654    ///
655    /// # Examples
656    ///
657    /// ```
658    /// #![feature(allocator_api)]
659    ///
660    /// use std::sync::Arc;
661    /// use std::alloc::System;
662    ///
663    /// let five = Arc::new_in(5, System);
664    /// ```
665    #[inline]
666    #[cfg(not(no_global_oom_handling))]
667    #[unstable(feature = "allocator_api", issue = "32838")]
668    pub fn new_in(data: T, alloc: A) -> Arc<T, A> {
669        // Start the weak pointer count as 1 which is the weak pointer that's
670        // held by all the strong pointers (kinda), see std/rc.rs for more info
671        let x = Box::new_in(
672            ArcInner {
673                strong: atomic::AtomicUsize::new(1),
674                weak: atomic::AtomicUsize::new(1),
675                data,
676            },
677            alloc,
678        );
679        let (ptr, alloc) = Box::into_unique(x);
680        unsafe { Self::from_inner_in(ptr.into(), alloc) }
681    }
682
683    /// Constructs a new `Arc` with uninitialized contents in the provided allocator.
684    ///
685    /// # Examples
686    ///
687    /// ```
688    /// #![feature(get_mut_unchecked)]
689    /// #![feature(allocator_api)]
690    ///
691    /// use std::sync::Arc;
692    /// use std::alloc::System;
693    ///
694    /// let mut five = Arc::<u32, _>::new_uninit_in(System);
695    ///
696    /// let five = unsafe {
697    ///     // Deferred initialization:
698    ///     Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
699    ///
700    ///     five.assume_init()
701    /// };
702    ///
703    /// assert_eq!(*five, 5)
704    /// ```
705    #[cfg(not(no_global_oom_handling))]
706    #[unstable(feature = "allocator_api", issue = "32838")]
707    // #[unstable(feature = "new_uninit", issue = "63291")]
708    #[inline]
709    pub fn new_uninit_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
710        unsafe {
711            Arc::from_ptr_in(
712                Arc::allocate_for_layout(
713                    Layout::new::<T>(),
714                    |layout| alloc.allocate(layout),
715                    <*mut u8>::cast,
716                ),
717                alloc,
718            )
719        }
720    }
721
722    /// Constructs a new `Arc` with uninitialized contents, with the memory
723    /// being filled with `0` bytes, in the provided allocator.
724    ///
725    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
726    /// of this method.
727    ///
728    /// # Examples
729    ///
730    /// ```
731    /// #![feature(allocator_api)]
732    ///
733    /// use std::sync::Arc;
734    /// use std::alloc::System;
735    ///
736    /// let zero = Arc::<u32, _>::new_zeroed_in(System);
737    /// let zero = unsafe { zero.assume_init() };
738    ///
739    /// assert_eq!(*zero, 0)
740    /// ```
741    ///
742    /// [zeroed]: mem::MaybeUninit::zeroed
743    #[cfg(not(no_global_oom_handling))]
744    #[unstable(feature = "allocator_api", issue = "32838")]
745    // #[unstable(feature = "new_uninit", issue = "63291")]
746    #[inline]
747    pub fn new_zeroed_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
748        unsafe {
749            Arc::from_ptr_in(
750                Arc::allocate_for_layout(
751                    Layout::new::<T>(),
752                    |layout| alloc.allocate_zeroed(layout),
753                    <*mut u8>::cast,
754                ),
755                alloc,
756            )
757        }
758    }
759
760    /// Constructs a new `Arc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
761    /// to allow you to construct a `T` which holds a weak pointer to itself.
762    ///
763    /// Generally, a structure circularly referencing itself, either directly or
764    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
765    /// Using this function, you get access to the weak pointer during the
766    /// initialization of `T`, before the `Arc<T, A>` is created, such that you can
767    /// clone and store it inside the `T`.
768    ///
769    /// `new_cyclic_in` first allocates the managed allocation for the `Arc<T, A>`,
770    /// then calls your closure, giving it a `Weak<T, A>` to this allocation,
771    /// and only afterwards completes the construction of the `Arc<T, A>` by placing
772    /// the `T` returned from your closure into the allocation.
773    ///
774    /// Since the new `Arc<T, A>` is not fully-constructed until `Arc<T, A>::new_cyclic_in`
775    /// returns, calling [`upgrade`] on the weak reference inside your closure will
776    /// fail and result in a `None` value.
777    ///
778    /// # Panics
779    ///
780    /// If `data_fn` panics, the panic is propagated to the caller, and the
781    /// temporary [`Weak<T>`] is dropped normally.
782    ///
783    /// # Example
784    ///
785    /// See [`new_cyclic`]
786    ///
787    /// [`new_cyclic`]: Arc::new_cyclic
788    /// [`upgrade`]: Weak::upgrade
789    #[cfg(not(no_global_oom_handling))]
790    #[inline]
791    #[unstable(feature = "allocator_api", issue = "32838")]
792    pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Arc<T, A>
793    where
794        F: FnOnce(&Weak<T, A>) -> T,
795    {
796        // Construct the inner in the "uninitialized" state with a single
797        // weak reference.
798        let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
799            ArcInner {
800                strong: atomic::AtomicUsize::new(0),
801                weak: atomic::AtomicUsize::new(1),
802                data: mem::MaybeUninit::<T>::uninit(),
803            },
804            alloc,
805        ));
806        let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
807        let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();
808
809        let weak = Weak { ptr: init_ptr, alloc };
810
811        // It's important we don't give up ownership of the weak pointer, or
812        // else the memory might be freed by the time `data_fn` returns. If
813        // we really wanted to pass ownership, we could create an additional
814        // weak pointer for ourselves, but this would result in additional
815        // updates to the weak reference count which might not be necessary
816        // otherwise.
817        let data = data_fn(&weak);
818
819        // Now we can properly initialize the inner value and turn our weak
820        // reference into a strong reference.
821        let strong = unsafe {
822            let inner = init_ptr.as_ptr();
823            ptr::write(&raw mut (*inner).data, data);
824
825            // The above write to the data field must be visible to any threads which
826            // observe a non-zero strong count. Therefore we need at least "Release" ordering
827            // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
828            //
829            // "Acquire" ordering is not required. When considering the possible behaviors
830            // of `data_fn` we only need to look at what it could do with a reference to a
831            // non-upgradeable `Weak`:
832            // - It can *clone* the `Weak`, increasing the weak reference count.
833            // - It can drop those clones, decreasing the weak reference count (but never to zero).
834            //
835            // These side effects do not impact us in any way, and no other side effects are
836            // possible with safe code alone.
837            let prev_value = (*inner).strong.fetch_add(1, Release);
838            debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
839
840            // Strong references should collectively own a shared weak reference,
841            // so don't run the destructor for our old weak reference.
842            // Calling into_raw_with_allocator has the double effect of giving us back the allocator,
843            // and forgetting the weak reference.
844            let alloc = weak.into_raw_with_allocator().1;
845
846            Arc::from_inner_in(init_ptr, alloc)
847        };
848
849        strong
850    }
851
852    /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator. If `T` does not implement `Unpin`,
853    /// then `data` will be pinned in memory and unable to be moved.
854    #[cfg(not(no_global_oom_handling))]
855    #[unstable(feature = "allocator_api", issue = "32838")]
856    #[inline]
857    pub fn pin_in(data: T, alloc: A) -> Pin<Arc<T, A>>
858    where
859        A: 'static,
860    {
861        unsafe { Pin::new_unchecked(Arc::new_in(data, alloc)) }
862    }
863
864    /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator, return an error if allocation
865    /// fails.
866    #[inline]
867    #[unstable(feature = "allocator_api", issue = "32838")]
868    pub fn try_pin_in(data: T, alloc: A) -> Result<Pin<Arc<T, A>>, AllocError>
869    where
870        A: 'static,
871    {
872        unsafe { Ok(Pin::new_unchecked(Arc::try_new_in(data, alloc)?)) }
873    }
874
875    /// Constructs a new `Arc<T, A>` in the provided allocator, returning an error if allocation fails.
876    ///
877    /// # Examples
878    ///
879    /// ```
880    /// #![feature(allocator_api)]
881    ///
882    /// use std::sync::Arc;
883    /// use std::alloc::System;
884    ///
885    /// let five = Arc::try_new_in(5, System)?;
886    /// # Ok::<(), std::alloc::AllocError>(())
887    /// ```
888    #[inline]
889    #[unstable(feature = "allocator_api", issue = "32838")]
890    #[inline]
891    pub fn try_new_in(data: T, alloc: A) -> Result<Arc<T, A>, AllocError> {
892        // Start the weak pointer count as 1 which is the weak pointer that's
893        // held by all the strong pointers (kinda), see std/rc.rs for more info
894        let x = Box::try_new_in(
895            ArcInner {
896                strong: atomic::AtomicUsize::new(1),
897                weak: atomic::AtomicUsize::new(1),
898                data,
899            },
900            alloc,
901        )?;
902        let (ptr, alloc) = Box::into_unique(x);
903        Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
904    }
905
906    /// Constructs a new `Arc` with uninitialized contents, in the provided allocator, returning an
907    /// error if allocation fails.
908    ///
909    /// # Examples
910    ///
911    /// ```
912    /// #![feature(allocator_api)]
913    /// #![feature(get_mut_unchecked)]
914    ///
915    /// use std::sync::Arc;
916    /// use std::alloc::System;
917    ///
918    /// let mut five = Arc::<u32, _>::try_new_uninit_in(System)?;
919    ///
920    /// let five = unsafe {
921    ///     // Deferred initialization:
922    ///     Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
923    ///
924    ///     five.assume_init()
925    /// };
926    ///
927    /// assert_eq!(*five, 5);
928    /// # Ok::<(), std::alloc::AllocError>(())
929    /// ```
930    #[unstable(feature = "allocator_api", issue = "32838")]
931    // #[unstable(feature = "new_uninit", issue = "63291")]
932    #[inline]
933    pub fn try_new_uninit_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
934        unsafe {
935            Ok(Arc::from_ptr_in(
936                Arc::try_allocate_for_layout(
937                    Layout::new::<T>(),
938                    |layout| alloc.allocate(layout),
939                    <*mut u8>::cast,
940                )?,
941                alloc,
942            ))
943        }
944    }
945
946    /// Constructs a new `Arc` with uninitialized contents, with the memory
947    /// being filled with `0` bytes, in the provided allocator, returning an error if allocation
948    /// fails.
949    ///
950    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
951    /// of this method.
952    ///
953    /// # Examples
954    ///
955    /// ```
956    /// #![feature(allocator_api)]
957    ///
958    /// use std::sync::Arc;
959    /// use std::alloc::System;
960    ///
961    /// let zero = Arc::<u32, _>::try_new_zeroed_in(System)?;
962    /// let zero = unsafe { zero.assume_init() };
963    ///
964    /// assert_eq!(*zero, 0);
965    /// # Ok::<(), std::alloc::AllocError>(())
966    /// ```
967    ///
968    /// [zeroed]: mem::MaybeUninit::zeroed
969    #[unstable(feature = "allocator_api", issue = "32838")]
970    // #[unstable(feature = "new_uninit", issue = "63291")]
971    #[inline]
972    pub fn try_new_zeroed_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
973        unsafe {
974            Ok(Arc::from_ptr_in(
975                Arc::try_allocate_for_layout(
976                    Layout::new::<T>(),
977                    |layout| alloc.allocate_zeroed(layout),
978                    <*mut u8>::cast,
979                )?,
980                alloc,
981            ))
982        }
983    }
984    /// Returns the inner value, if the `Arc` has exactly one strong reference.
985    ///
986    /// Otherwise, an [`Err`] is returned with the same `Arc` that was
987    /// passed in.
988    ///
989    /// This will succeed even if there are outstanding weak references.
990    ///
991    /// It is strongly recommended to use [`Arc::into_inner`] instead if you don't
992    /// keep the `Arc` in the [`Err`] case.
993    /// Immediately dropping the [`Err`]-value, as the expression
994    /// `Arc::try_unwrap(this).ok()` does, can cause the strong count to
995    /// drop to zero and the inner value of the `Arc` to be dropped.
996    /// For instance, if two threads execute such an expression in parallel,
997    /// there is a race condition without the possibility of unsafety:
998    /// The threads could first both check whether they own the last instance
999    /// in `Arc::try_unwrap`, determine that they both do not, and then both
1000    /// discard and drop their instance in the call to [`ok`][`Result::ok`].
1001    /// In this scenario, the value inside the `Arc` is safely destroyed
1002    /// by exactly one of the threads, but neither thread will ever be able
1003    /// to use the value.
1004    ///
1005    /// # Examples
1006    ///
1007    /// ```
1008    /// use std::sync::Arc;
1009    ///
1010    /// let x = Arc::new(3);
1011    /// assert_eq!(Arc::try_unwrap(x), Ok(3));
1012    ///
1013    /// let x = Arc::new(4);
1014    /// let _y = Arc::clone(&x);
1015    /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
1016    /// ```
1017    #[inline]
1018    #[stable(feature = "arc_unique", since = "1.4.0")]
1019    pub fn try_unwrap(this: Self) -> Result<T, Self> {
1020        if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() {
1021            return Err(this);
1022        }
1023
1024        acquire!(this.inner().strong);
1025
1026        let this = ManuallyDrop::new(this);
1027        let elem: T = unsafe { ptr::read(&this.ptr.as_ref().data) };
1028        let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator
1029
1030        // Make a weak pointer to clean up the implicit strong-weak reference
1031        let _weak = Weak { ptr: this.ptr, alloc };
1032
1033        Ok(elem)
1034    }
1035
1036    /// Returns the inner value, if the `Arc` has exactly one strong reference.
1037    ///
1038    /// Otherwise, [`None`] is returned and the `Arc` is dropped.
1039    ///
1040    /// This will succeed even if there are outstanding weak references.
1041    ///
1042    /// If `Arc::into_inner` is called on every clone of this `Arc`,
1043    /// it is guaranteed that exactly one of the calls returns the inner value.
1044    /// This means in particular that the inner value is not dropped.
1045    ///
1046    /// [`Arc::try_unwrap`] is conceptually similar to `Arc::into_inner`, but it
1047    /// is meant for different use-cases. If used as a direct replacement
1048    /// for `Arc::into_inner` anyway, such as with the expression
1049    /// <code>[Arc::try_unwrap]\(this).[ok][Result::ok]()</code>, then it does
1050    /// **not** give the same guarantee as described in the previous paragraph.
1051    /// For more information, see the examples below and read the documentation
1052    /// of [`Arc::try_unwrap`].
1053    ///
1054    /// # Examples
1055    ///
1056    /// Minimal example demonstrating the guarantee that `Arc::into_inner` gives.
1057    /// ```
1058    /// use std::sync::Arc;
1059    ///
1060    /// let x = Arc::new(3);
1061    /// let y = Arc::clone(&x);
1062    ///
1063    /// // Two threads calling `Arc::into_inner` on both clones of an `Arc`:
1064    /// let x_thread = std::thread::spawn(|| Arc::into_inner(x));
1065    /// let y_thread = std::thread::spawn(|| Arc::into_inner(y));
1066    ///
1067    /// let x_inner_value = x_thread.join().unwrap();
1068    /// let y_inner_value = y_thread.join().unwrap();
1069    ///
1070    /// // One of the threads is guaranteed to receive the inner value:
1071    /// assert!(matches!(
1072    ///     (x_inner_value, y_inner_value),
1073    ///     (None, Some(3)) | (Some(3), None)
1074    /// ));
1075    /// // The result could also be `(None, None)` if the threads called
1076    /// // `Arc::try_unwrap(x).ok()` and `Arc::try_unwrap(y).ok()` instead.
1077    /// ```
1078    ///
1079    /// A more practical example demonstrating the need for `Arc::into_inner`:
1080    /// ```
1081    /// use std::sync::Arc;
1082    ///
1083    /// // Definition of a simple singly linked list using `Arc`:
1084    /// #[derive(Clone)]
1085    /// struct LinkedList<T>(Option<Arc<Node<T>>>);
1086    /// struct Node<T>(T, Option<Arc<Node<T>>>);
1087    ///
1088    /// // Dropping a long `LinkedList<T>` relying on the destructor of `Arc`
1089    /// // can cause a stack overflow. To prevent this, we can provide a
1090    /// // manual `Drop` implementation that does the destruction in a loop:
1091    /// impl<T> Drop for LinkedList<T> {
1092    ///     fn drop(&mut self) {
1093    ///         let mut link = self.0.take();
1094    ///         while let Some(arc_node) = link.take() {
1095    ///             if let Some(Node(_value, next)) = Arc::into_inner(arc_node) {
1096    ///                 link = next;
1097    ///             }
1098    ///         }
1099    ///     }
1100    /// }
1101    ///
1102    /// // Implementation of `new` and `push` omitted
1103    /// impl<T> LinkedList<T> {
1104    ///     /* ... */
1105    /// #   fn new() -> Self {
1106    /// #       LinkedList(None)
1107    /// #   }
1108    /// #   fn push(&mut self, x: T) {
1109    /// #       self.0 = Some(Arc::new(Node(x, self.0.take())));
1110    /// #   }
1111    /// }
1112    ///
1113    /// // The following code could have still caused a stack overflow
1114    /// // despite the manual `Drop` impl if that `Drop` impl had used
1115    /// // `Arc::try_unwrap(arc).ok()` instead of `Arc::into_inner(arc)`.
1116    ///
1117    /// // Create a long list and clone it
1118    /// let mut x = LinkedList::new();
1119    /// let size = 100000;
1120    /// # let size = if cfg!(miri) { 100 } else { size };
1121    /// for i in 0..size {
1122    ///     x.push(i); // Adds i to the front of x
1123    /// }
1124    /// let y = x.clone();
1125    ///
1126    /// // Drop the clones in parallel
1127    /// let x_thread = std::thread::spawn(|| drop(x));
1128    /// let y_thread = std::thread::spawn(|| drop(y));
1129    /// x_thread.join().unwrap();
1130    /// y_thread.join().unwrap();
1131    /// ```
1132    #[inline]
1133    #[stable(feature = "arc_into_inner", since = "1.70.0")]
1134    pub fn into_inner(this: Self) -> Option<T> {
1135        // Make sure that the ordinary `Drop` implementation isn’t called as well
1136        let mut this = mem::ManuallyDrop::new(this);
1137
1138        // Following the implementation of `drop` and `drop_slow`
1139        if this.inner().strong.fetch_sub(1, Release) != 1 {
1140            return None;
1141        }
1142
1143        acquire!(this.inner().strong);
1144
1145        // SAFETY: This mirrors the line
1146        //
1147        //     unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
1148        //
1149        // in `drop_slow`. Instead of dropping the value behind the pointer,
1150        // it is read and eventually returned; `ptr::read` has the same
1151        // safety conditions as `ptr::drop_in_place`.
1152
1153        let inner = unsafe { ptr::read(Self::get_mut_unchecked(&mut this)) };
1154        let alloc = unsafe { ptr::read(&this.alloc) };
1155
1156        drop(Weak { ptr: this.ptr, alloc });
1157
1158        Some(inner)
1159    }
1160}
1161
1162impl<T> Arc<[T]> {
1163    /// Constructs a new atomically reference-counted slice with uninitialized contents.
1164    ///
1165    /// # Examples
1166    ///
1167    /// ```
1168    /// #![feature(get_mut_unchecked)]
1169    ///
1170    /// use std::sync::Arc;
1171    ///
1172    /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1173    ///
1174    /// // Deferred initialization:
1175    /// let data = Arc::get_mut(&mut values).unwrap();
1176    /// data[0].write(1);
1177    /// data[1].write(2);
1178    /// data[2].write(3);
1179    ///
1180    /// let values = unsafe { values.assume_init() };
1181    ///
1182    /// assert_eq!(*values, [1, 2, 3])
1183    /// ```
1184    #[cfg(not(no_global_oom_handling))]
1185    #[inline]
1186    #[stable(feature = "new_uninit", since = "1.82.0")]
1187    #[must_use]
1188    pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1189        unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
1190    }
1191
1192    /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1193    /// filled with `0` bytes.
1194    ///
1195    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1196    /// incorrect usage of this method.
1197    ///
1198    /// # Examples
1199    ///
1200    /// ```
1201    /// #![feature(new_zeroed_alloc)]
1202    ///
1203    /// use std::sync::Arc;
1204    ///
1205    /// let values = Arc::<[u32]>::new_zeroed_slice(3);
1206    /// let values = unsafe { values.assume_init() };
1207    ///
1208    /// assert_eq!(*values, [0, 0, 0])
1209    /// ```
1210    ///
1211    /// [zeroed]: mem::MaybeUninit::zeroed
1212    #[cfg(not(no_global_oom_handling))]
1213    #[inline]
1214    #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
1215    #[must_use]
1216    pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1217        unsafe {
1218            Arc::from_ptr(Arc::allocate_for_layout(
1219                Layout::array::<T>(len).unwrap(),
1220                |layout| Global.allocate_zeroed(layout),
1221                |mem| {
1222                    ptr::slice_from_raw_parts_mut(mem as *mut T, len)
1223                        as *mut ArcInner<[mem::MaybeUninit<T>]>
1224                },
1225            ))
1226        }
1227    }
1228
1229    /// Converts the reference-counted slice into a reference-counted array.
1230    ///
1231    /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.
1232    ///
1233    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
1234    #[unstable(feature = "slice_as_array", issue = "133508")]
1235    #[inline]
1236    #[must_use]
1237    pub fn into_array<const N: usize>(self) -> Option<Arc<[T; N]>> {
1238        if self.len() == N {
1239            let ptr = Self::into_raw(self) as *const [T; N];
1240
1241            // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length.
1242            let me = unsafe { Arc::from_raw(ptr) };
1243            Some(me)
1244        } else {
1245            None
1246        }
1247    }
1248}
1249
1250impl<T, A: Allocator> Arc<[T], A> {
1251    /// Constructs a new atomically reference-counted slice with uninitialized contents in the
1252    /// provided allocator.
1253    ///
1254    /// # Examples
1255    ///
1256    /// ```
1257    /// #![feature(get_mut_unchecked)]
1258    /// #![feature(allocator_api)]
1259    ///
1260    /// use std::sync::Arc;
1261    /// use std::alloc::System;
1262    ///
1263    /// let mut values = Arc::<[u32], _>::new_uninit_slice_in(3, System);
1264    ///
1265    /// let values = unsafe {
1266    ///     // Deferred initialization:
1267    ///     Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
1268    ///     Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
1269    ///     Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
1270    ///
1271    ///     values.assume_init()
1272    /// };
1273    ///
1274    /// assert_eq!(*values, [1, 2, 3])
1275    /// ```
1276    #[cfg(not(no_global_oom_handling))]
1277    #[unstable(feature = "allocator_api", issue = "32838")]
1278    #[inline]
1279    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1280        unsafe { Arc::from_ptr_in(Arc::allocate_for_slice_in(len, &alloc), alloc) }
1281    }
1282
1283    /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1284    /// filled with `0` bytes, in the provided allocator.
1285    ///
1286    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1287    /// incorrect usage of this method.
1288    ///
1289    /// # Examples
1290    ///
1291    /// ```
1292    /// #![feature(allocator_api)]
1293    ///
1294    /// use std::sync::Arc;
1295    /// use std::alloc::System;
1296    ///
1297    /// let values = Arc::<[u32], _>::new_zeroed_slice_in(3, System);
1298    /// let values = unsafe { values.assume_init() };
1299    ///
1300    /// assert_eq!(*values, [0, 0, 0])
1301    /// ```
1302    ///
1303    /// [zeroed]: mem::MaybeUninit::zeroed
1304    #[cfg(not(no_global_oom_handling))]
1305    #[unstable(feature = "allocator_api", issue = "32838")]
1306    #[inline]
1307    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1308        unsafe {
1309            Arc::from_ptr_in(
1310                Arc::allocate_for_layout(
1311                    Layout::array::<T>(len).unwrap(),
1312                    |layout| alloc.allocate_zeroed(layout),
1313                    |mem| {
1314                        ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1315                            as *mut ArcInner<[mem::MaybeUninit<T>]>
1316                    },
1317                ),
1318                alloc,
1319            )
1320        }
1321    }
1322}
1323
1324impl<T, A: Allocator> Arc<mem::MaybeUninit<T>, A> {
1325    /// Converts to `Arc<T>`.
1326    ///
1327    /// # Safety
1328    ///
1329    /// As with [`MaybeUninit::assume_init`],
1330    /// it is up to the caller to guarantee that the inner value
1331    /// really is in an initialized state.
1332    /// Calling this when the content is not yet fully initialized
1333    /// causes immediate undefined behavior.
1334    ///
1335    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1336    ///
1337    /// # Examples
1338    ///
1339    /// ```
1340    /// #![feature(get_mut_unchecked)]
1341    ///
1342    /// use std::sync::Arc;
1343    ///
1344    /// let mut five = Arc::<u32>::new_uninit();
1345    ///
1346    /// // Deferred initialization:
1347    /// Arc::get_mut(&mut five).unwrap().write(5);
1348    ///
1349    /// let five = unsafe { five.assume_init() };
1350    ///
1351    /// assert_eq!(*five, 5)
1352    /// ```
1353    #[stable(feature = "new_uninit", since = "1.82.0")]
1354    #[must_use = "`self` will be dropped if the result is not used"]
1355    #[inline]
1356    pub unsafe fn assume_init(self) -> Arc<T, A> {
1357        let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1358        unsafe { Arc::from_inner_in(ptr.cast(), alloc) }
1359    }
1360}
1361
1362impl<T, A: Allocator> Arc<[mem::MaybeUninit<T>], A> {
1363    /// Converts to `Arc<[T]>`.
1364    ///
1365    /// # Safety
1366    ///
1367    /// As with [`MaybeUninit::assume_init`],
1368    /// it is up to the caller to guarantee that the inner value
1369    /// really is in an initialized state.
1370    /// Calling this when the content is not yet fully initialized
1371    /// causes immediate undefined behavior.
1372    ///
1373    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1374    ///
1375    /// # Examples
1376    ///
1377    /// ```
1378    /// #![feature(get_mut_unchecked)]
1379    ///
1380    /// use std::sync::Arc;
1381    ///
1382    /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1383    ///
1384    /// // Deferred initialization:
1385    /// let data = Arc::get_mut(&mut values).unwrap();
1386    /// data[0].write(1);
1387    /// data[1].write(2);
1388    /// data[2].write(3);
1389    ///
1390    /// let values = unsafe { values.assume_init() };
1391    ///
1392    /// assert_eq!(*values, [1, 2, 3])
1393    /// ```
1394    #[stable(feature = "new_uninit", since = "1.82.0")]
1395    #[must_use = "`self` will be dropped if the result is not used"]
1396    #[inline]
1397    pub unsafe fn assume_init(self) -> Arc<[T], A> {
1398        let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1399        unsafe { Arc::from_ptr_in(ptr.as_ptr() as _, alloc) }
1400    }
1401}
1402
1403impl<T: ?Sized> Arc<T> {
1404    /// Constructs an `Arc<T>` from a raw pointer.
1405    ///
1406    /// The raw pointer must have been previously returned by a call to
1407    /// [`Arc<U>::into_raw`][into_raw] with the following requirements:
1408    ///
1409    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1410    ///   is trivially true if `U` is `T`.
1411    /// * If `U` is unsized, its data pointer must have the same size and
1412    ///   alignment as `T`. This is trivially true if `Arc<U>` was constructed
1413    ///   through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1414    ///   coercion].
1415    ///
1416    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1417    /// and alignment, this is basically like transmuting references of
1418    /// different types. See [`mem::transmute`][transmute] for more information
1419    /// on what restrictions apply in this case.
1420    ///
1421    /// The raw pointer must point to a block of memory allocated by the global allocator.
1422    ///
1423    /// The user of `from_raw` has to make sure a specific value of `T` is only
1424    /// dropped once.
1425    ///
1426    /// This function is unsafe because improper use may lead to memory unsafety,
1427    /// even if the returned `Arc<T>` is never accessed.
1428    ///
1429    /// [into_raw]: Arc::into_raw
1430    /// [transmute]: core::mem::transmute
1431    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1432    ///
1433    /// # Examples
1434    ///
1435    /// ```
1436    /// use std::sync::Arc;
1437    ///
1438    /// let x = Arc::new("hello".to_owned());
1439    /// let x_ptr = Arc::into_raw(x);
1440    ///
1441    /// unsafe {
1442    ///     // Convert back to an `Arc` to prevent leak.
1443    ///     let x = Arc::from_raw(x_ptr);
1444    ///     assert_eq!(&*x, "hello");
1445    ///
1446    ///     // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1447    /// }
1448    ///
1449    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1450    /// ```
1451    ///
1452    /// Convert a slice back into its original array:
1453    ///
1454    /// ```
1455    /// use std::sync::Arc;
1456    ///
1457    /// let x: Arc<[u32]> = Arc::new([1, 2, 3]);
1458    /// let x_ptr: *const [u32] = Arc::into_raw(x);
1459    ///
1460    /// unsafe {
1461    ///     let x: Arc<[u32; 3]> = Arc::from_raw(x_ptr.cast::<[u32; 3]>());
1462    ///     assert_eq!(&*x, &[1, 2, 3]);
1463    /// }
1464    /// ```
1465    #[inline]
1466    #[stable(feature = "rc_raw", since = "1.17.0")]
1467    pub unsafe fn from_raw(ptr: *const T) -> Self {
1468        unsafe { Arc::from_raw_in(ptr, Global) }
1469    }
1470
1471    /// Increments the strong reference count on the `Arc<T>` associated with the
1472    /// provided pointer by one.
1473    ///
1474    /// # Safety
1475    ///
1476    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1477    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1478    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1479    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1480    /// allocated by the global allocator.
1481    ///
1482    /// [from_raw_in]: Arc::from_raw_in
1483    ///
1484    /// # Examples
1485    ///
1486    /// ```
1487    /// use std::sync::Arc;
1488    ///
1489    /// let five = Arc::new(5);
1490    ///
1491    /// unsafe {
1492    ///     let ptr = Arc::into_raw(five);
1493    ///     Arc::increment_strong_count(ptr);
1494    ///
1495    ///     // This assertion is deterministic because we haven't shared
1496    ///     // the `Arc` between threads.
1497    ///     let five = Arc::from_raw(ptr);
1498    ///     assert_eq!(2, Arc::strong_count(&five));
1499    /// #   // Prevent leaks for Miri.
1500    /// #   Arc::decrement_strong_count(ptr);
1501    /// }
1502    /// ```
1503    #[inline]
1504    #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1505    pub unsafe fn increment_strong_count(ptr: *const T) {
1506        unsafe { Arc::increment_strong_count_in(ptr, Global) }
1507    }
1508
1509    /// Decrements the strong reference count on the `Arc<T>` associated with the
1510    /// provided pointer by one.
1511    ///
1512    /// # Safety
1513    ///
1514    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1515    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1516    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1517    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1518    /// allocated by the global allocator. This method can be used to release the final
1519    /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1520    /// released.
1521    ///
1522    /// [from_raw_in]: Arc::from_raw_in
1523    ///
1524    /// # Examples
1525    ///
1526    /// ```
1527    /// use std::sync::Arc;
1528    ///
1529    /// let five = Arc::new(5);
1530    ///
1531    /// unsafe {
1532    ///     let ptr = Arc::into_raw(five);
1533    ///     Arc::increment_strong_count(ptr);
1534    ///
1535    ///     // Those assertions are deterministic because we haven't shared
1536    ///     // the `Arc` between threads.
1537    ///     let five = Arc::from_raw(ptr);
1538    ///     assert_eq!(2, Arc::strong_count(&five));
1539    ///     Arc::decrement_strong_count(ptr);
1540    ///     assert_eq!(1, Arc::strong_count(&five));
1541    /// }
1542    /// ```
1543    #[inline]
1544    #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1545    pub unsafe fn decrement_strong_count(ptr: *const T) {
1546        unsafe { Arc::decrement_strong_count_in(ptr, Global) }
1547    }
1548}
1549
1550impl<T: ?Sized, A: Allocator> Arc<T, A> {
1551    /// Returns a reference to the underlying allocator.
1552    ///
1553    /// Note: this is an associated function, which means that you have
1554    /// to call it as `Arc::allocator(&a)` instead of `a.allocator()`. This
1555    /// is so that there is no conflict with a method on the inner type.
1556    #[inline]
1557    #[unstable(feature = "allocator_api", issue = "32838")]
1558    pub fn allocator(this: &Self) -> &A {
1559        &this.alloc
1560    }
1561
1562    /// Consumes the `Arc`, returning the wrapped pointer.
1563    ///
1564    /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1565    /// [`Arc::from_raw`].
1566    ///
1567    /// # Examples
1568    ///
1569    /// ```
1570    /// use std::sync::Arc;
1571    ///
1572    /// let x = Arc::new("hello".to_owned());
1573    /// let x_ptr = Arc::into_raw(x);
1574    /// assert_eq!(unsafe { &*x_ptr }, "hello");
1575    /// # // Prevent leaks for Miri.
1576    /// # drop(unsafe { Arc::from_raw(x_ptr) });
1577    /// ```
1578    #[must_use = "losing the pointer will leak memory"]
1579    #[stable(feature = "rc_raw", since = "1.17.0")]
1580    #[rustc_never_returns_null_ptr]
1581    pub fn into_raw(this: Self) -> *const T {
1582        let this = ManuallyDrop::new(this);
1583        Self::as_ptr(&*this)
1584    }
1585
1586    /// Consumes the `Arc`, returning the wrapped pointer and allocator.
1587    ///
1588    /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1589    /// [`Arc::from_raw_in`].
1590    ///
1591    /// # Examples
1592    ///
1593    /// ```
1594    /// #![feature(allocator_api)]
1595    /// use std::sync::Arc;
1596    /// use std::alloc::System;
1597    ///
1598    /// let x = Arc::new_in("hello".to_owned(), System);
1599    /// let (ptr, alloc) = Arc::into_raw_with_allocator(x);
1600    /// assert_eq!(unsafe { &*ptr }, "hello");
1601    /// let x = unsafe { Arc::from_raw_in(ptr, alloc) };
1602    /// assert_eq!(&*x, "hello");
1603    /// ```
1604    #[must_use = "losing the pointer will leak memory"]
1605    #[unstable(feature = "allocator_api", issue = "32838")]
1606    pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
1607        let this = mem::ManuallyDrop::new(this);
1608        let ptr = Self::as_ptr(&this);
1609        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
1610        let alloc = unsafe { ptr::read(&this.alloc) };
1611        (ptr, alloc)
1612    }
1613
1614    /// Provides a raw pointer to the data.
1615    ///
1616    /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for
1617    /// as long as there are strong counts in the `Arc`.
1618    ///
1619    /// # Examples
1620    ///
1621    /// ```
1622    /// use std::sync::Arc;
1623    ///
1624    /// let x = Arc::new("hello".to_owned());
1625    /// let y = Arc::clone(&x);
1626    /// let x_ptr = Arc::as_ptr(&x);
1627    /// assert_eq!(x_ptr, Arc::as_ptr(&y));
1628    /// assert_eq!(unsafe { &*x_ptr }, "hello");
1629    /// ```
1630    #[must_use]
1631    #[stable(feature = "rc_as_ptr", since = "1.45.0")]
1632    #[rustc_never_returns_null_ptr]
1633    pub fn as_ptr(this: &Self) -> *const T {
1634        let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
1635
1636        // SAFETY: This cannot go through Deref::deref or RcInnerPtr::inner because
1637        // this is required to retain raw/mut provenance such that e.g. `get_mut` can
1638        // write through the pointer after the Rc is recovered through `from_raw`.
1639        unsafe { &raw mut (*ptr).data }
1640    }
1641
1642    /// Constructs an `Arc<T, A>` from a raw pointer.
1643    ///
1644    /// The raw pointer must have been previously returned by a call to [`Arc<U,
1645    /// A>::into_raw`][into_raw] with the following requirements:
1646    ///
1647    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1648    ///   is trivially true if `U` is `T`.
1649    /// * If `U` is unsized, its data pointer must have the same size and
1650    ///   alignment as `T`. This is trivially true if `Arc<U>` was constructed
1651    ///   through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1652    ///   coercion].
1653    ///
1654    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1655    /// and alignment, this is basically like transmuting references of
1656    /// different types. See [`mem::transmute`][transmute] for more information
1657    /// on what restrictions apply in this case.
1658    ///
1659    /// The raw pointer must point to a block of memory allocated by `alloc`
1660    ///
1661    /// The user of `from_raw` has to make sure a specific value of `T` is only
1662    /// dropped once.
1663    ///
1664    /// This function is unsafe because improper use may lead to memory unsafety,
1665    /// even if the returned `Arc<T>` is never accessed.
1666    ///
1667    /// [into_raw]: Arc::into_raw
1668    /// [transmute]: core::mem::transmute
1669    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1670    ///
1671    /// # Examples
1672    ///
1673    /// ```
1674    /// #![feature(allocator_api)]
1675    ///
1676    /// use std::sync::Arc;
1677    /// use std::alloc::System;
1678    ///
1679    /// let x = Arc::new_in("hello".to_owned(), System);
1680    /// let x_ptr = Arc::into_raw(x);
1681    ///
1682    /// unsafe {
1683    ///     // Convert back to an `Arc` to prevent leak.
1684    ///     let x = Arc::from_raw_in(x_ptr, System);
1685    ///     assert_eq!(&*x, "hello");
1686    ///
1687    ///     // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1688    /// }
1689    ///
1690    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1691    /// ```
1692    ///
1693    /// Convert a slice back into its original array:
1694    ///
1695    /// ```
1696    /// #![feature(allocator_api)]
1697    ///
1698    /// use std::sync::Arc;
1699    /// use std::alloc::System;
1700    ///
1701    /// let x: Arc<[u32], _> = Arc::new_in([1, 2, 3], System);
1702    /// let x_ptr: *const [u32] = Arc::into_raw(x);
1703    ///
1704    /// unsafe {
1705    ///     let x: Arc<[u32; 3], _> = Arc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
1706    ///     assert_eq!(&*x, &[1, 2, 3]);
1707    /// }
1708    /// ```
1709    #[inline]
1710    #[unstable(feature = "allocator_api", issue = "32838")]
1711    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
1712        unsafe {
1713            let offset = data_offset(ptr);
1714
1715            // Reverse the offset to find the original ArcInner.
1716            let arc_ptr = ptr.byte_sub(offset) as *mut ArcInner<T>;
1717
1718            Self::from_ptr_in(arc_ptr, alloc)
1719        }
1720    }
1721
1722    /// Creates a new [`Weak`] pointer to this allocation.
1723    ///
1724    /// # Examples
1725    ///
1726    /// ```
1727    /// use std::sync::Arc;
1728    ///
1729    /// let five = Arc::new(5);
1730    ///
1731    /// let weak_five = Arc::downgrade(&five);
1732    /// ```
1733    #[must_use = "this returns a new `Weak` pointer, \
1734                  without modifying the original `Arc`"]
1735    #[stable(feature = "arc_weak", since = "1.4.0")]
1736    pub fn downgrade(this: &Self) -> Weak<T, A>
1737    where
1738        A: Clone,
1739    {
1740        // This Relaxed is OK because we're checking the value in the CAS
1741        // below.
1742        let mut cur = this.inner().weak.load(Relaxed);
1743
1744        loop {
1745            // check if the weak counter is currently "locked"; if so, spin.
1746            if cur == usize::MAX {
1747                hint::spin_loop();
1748                cur = this.inner().weak.load(Relaxed);
1749                continue;
1750            }
1751
1752            // We can't allow the refcount to increase much past `MAX_REFCOUNT`.
1753            assert!(cur <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
1754
1755            // NOTE: this code currently ignores the possibility of overflow
1756            // into usize::MAX; in general both Rc and Arc need to be adjusted
1757            // to deal with overflow.
1758
1759            // Unlike with Clone(), we need this to be an Acquire read to
1760            // synchronize with the write coming from `is_unique`, so that the
1761            // events prior to that write happen before this read.
1762            match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
1763                Ok(_) => {
1764                    // Make sure we do not create a dangling Weak
1765                    debug_assert!(!is_dangling(this.ptr.as_ptr()));
1766                    return Weak { ptr: this.ptr, alloc: this.alloc.clone() };
1767                }
1768                Err(old) => cur = old,
1769            }
1770        }
1771    }
1772
1773    /// Gets the number of [`Weak`] pointers to this allocation.
1774    ///
1775    /// # Safety
1776    ///
1777    /// This method by itself is safe, but using it correctly requires extra care.
1778    /// Another thread can change the weak count at any time,
1779    /// including potentially between calling this method and acting on the result.
1780    ///
1781    /// # Examples
1782    ///
1783    /// ```
1784    /// use std::sync::Arc;
1785    ///
1786    /// let five = Arc::new(5);
1787    /// let _weak_five = Arc::downgrade(&five);
1788    ///
1789    /// // This assertion is deterministic because we haven't shared
1790    /// // the `Arc` or `Weak` between threads.
1791    /// assert_eq!(1, Arc::weak_count(&five));
1792    /// ```
1793    #[inline]
1794    #[must_use]
1795    #[stable(feature = "arc_counts", since = "1.15.0")]
1796    pub fn weak_count(this: &Self) -> usize {
1797        let cnt = this.inner().weak.load(Relaxed);
1798        // If the weak count is currently locked, the value of the
1799        // count was 0 just before taking the lock.
1800        if cnt == usize::MAX { 0 } else { cnt - 1 }
1801    }
1802
1803    /// Gets the number of strong (`Arc`) pointers to this allocation.
1804    ///
1805    /// # Safety
1806    ///
1807    /// This method by itself is safe, but using it correctly requires extra care.
1808    /// Another thread can change the strong count at any time,
1809    /// including potentially between calling this method and acting on the result.
1810    ///
1811    /// # Examples
1812    ///
1813    /// ```
1814    /// use std::sync::Arc;
1815    ///
1816    /// let five = Arc::new(5);
1817    /// let _also_five = Arc::clone(&five);
1818    ///
1819    /// // This assertion is deterministic because we haven't shared
1820    /// // the `Arc` between threads.
1821    /// assert_eq!(2, Arc::strong_count(&five));
1822    /// ```
1823    #[inline]
1824    #[must_use]
1825    #[stable(feature = "arc_counts", since = "1.15.0")]
1826    pub fn strong_count(this: &Self) -> usize {
1827        this.inner().strong.load(Relaxed)
1828    }
1829
1830    /// Increments the strong reference count on the `Arc<T>` associated with the
1831    /// provided pointer by one.
1832    ///
1833    /// # Safety
1834    ///
1835    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1836    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1837    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1838    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1839    /// allocated by `alloc`.
1840    ///
1841    /// [from_raw_in]: Arc::from_raw_in
1842    ///
1843    /// # Examples
1844    ///
1845    /// ```
1846    /// #![feature(allocator_api)]
1847    ///
1848    /// use std::sync::Arc;
1849    /// use std::alloc::System;
1850    ///
1851    /// let five = Arc::new_in(5, System);
1852    ///
1853    /// unsafe {
1854    ///     let ptr = Arc::into_raw(five);
1855    ///     Arc::increment_strong_count_in(ptr, System);
1856    ///
1857    ///     // This assertion is deterministic because we haven't shared
1858    ///     // the `Arc` between threads.
1859    ///     let five = Arc::from_raw_in(ptr, System);
1860    ///     assert_eq!(2, Arc::strong_count(&five));
1861    /// #   // Prevent leaks for Miri.
1862    /// #   Arc::decrement_strong_count_in(ptr, System);
1863    /// }
1864    /// ```
1865    #[inline]
1866    #[unstable(feature = "allocator_api", issue = "32838")]
1867    pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
1868    where
1869        A: Clone,
1870    {
1871        // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
1872        let arc = unsafe { mem::ManuallyDrop::new(Arc::from_raw_in(ptr, alloc)) };
1873        // Now increase refcount, but don't drop new refcount either
1874        let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
1875    }
1876
1877    /// Decrements the strong reference count on the `Arc<T>` associated with the
1878    /// provided pointer by one.
1879    ///
1880    /// # Safety
1881    ///
1882    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1883    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1884    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1885    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1886    /// allocated by `alloc`. This method can be used to release the final
1887    /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1888    /// released.
1889    ///
1890    /// [from_raw_in]: Arc::from_raw_in
1891    ///
1892    /// # Examples
1893    ///
1894    /// ```
1895    /// #![feature(allocator_api)]
1896    ///
1897    /// use std::sync::Arc;
1898    /// use std::alloc::System;
1899    ///
1900    /// let five = Arc::new_in(5, System);
1901    ///
1902    /// unsafe {
1903    ///     let ptr = Arc::into_raw(five);
1904    ///     Arc::increment_strong_count_in(ptr, System);
1905    ///
1906    ///     // Those assertions are deterministic because we haven't shared
1907    ///     // the `Arc` between threads.
1908    ///     let five = Arc::from_raw_in(ptr, System);
1909    ///     assert_eq!(2, Arc::strong_count(&five));
1910    ///     Arc::decrement_strong_count_in(ptr, System);
1911    ///     assert_eq!(1, Arc::strong_count(&five));
1912    /// }
1913    /// ```
1914    #[inline]
1915    #[unstable(feature = "allocator_api", issue = "32838")]
1916    pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
1917        unsafe { drop(Arc::from_raw_in(ptr, alloc)) };
1918    }
1919
1920    #[inline]
1921    fn inner(&self) -> &ArcInner<T> {
1922        // This unsafety is ok because while this arc is alive we're guaranteed
1923        // that the inner pointer is valid. Furthermore, we know that the
1924        // `ArcInner` structure itself is `Sync` because the inner data is
1925        // `Sync` as well, so we're ok loaning out an immutable pointer to these
1926        // contents.
1927        unsafe { self.ptr.as_ref() }
1928    }
1929
1930    // Non-inlined part of `drop`.
1931    #[inline(never)]
1932    unsafe fn drop_slow(&mut self) {
1933        // Drop the weak ref collectively held by all strong references when this
1934        // variable goes out of scope. This ensures that the memory is deallocated
1935        // even if the destructor of `T` panics.
1936        // Take a reference to `self.alloc` instead of cloning because 1. it'll last long
1937        // enough, and 2. you should be able to drop `Arc`s with unclonable allocators
1938        let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
1939
1940        // Destroy the data at this time, even though we must not free the box
1941        // allocation itself (there might still be weak pointers lying around).
1942        // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
1943        unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
1944    }
1945
1946    /// Returns `true` if the two `Arc`s point to the same allocation in a vein similar to
1947    /// [`ptr::eq`]. This function ignores the metadata of  `dyn Trait` pointers.
1948    ///
1949    /// # Examples
1950    ///
1951    /// ```
1952    /// use std::sync::Arc;
1953    ///
1954    /// let five = Arc::new(5);
1955    /// let same_five = Arc::clone(&five);
1956    /// let other_five = Arc::new(5);
1957    ///
1958    /// assert!(Arc::ptr_eq(&five, &same_five));
1959    /// assert!(!Arc::ptr_eq(&five, &other_five));
1960    /// ```
1961    ///
1962    /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
1963    #[inline]
1964    #[must_use]
1965    #[stable(feature = "ptr_eq", since = "1.17.0")]
1966    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1967        ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
1968    }
1969}
1970
1971impl<T: ?Sized> Arc<T> {
1972    /// Allocates an `ArcInner<T>` with sufficient space for
1973    /// a possibly-unsized inner value where the value has the layout provided.
1974    ///
1975    /// The function `mem_to_arcinner` is called with the data pointer
1976    /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1977    #[cfg(not(no_global_oom_handling))]
1978    unsafe fn allocate_for_layout(
1979        value_layout: Layout,
1980        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1981        mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1982    ) -> *mut ArcInner<T> {
1983        let layout = arcinner_layout_for_value_layout(value_layout);
1984
1985        let ptr = allocate(layout).unwrap_or_else(|_| handle_alloc_error(layout));
1986
1987        unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) }
1988    }
1989
1990    /// Allocates an `ArcInner<T>` with sufficient space for
1991    /// a possibly-unsized inner value where the value has the layout provided,
1992    /// returning an error if allocation fails.
1993    ///
1994    /// The function `mem_to_arcinner` is called with the data pointer
1995    /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1996    unsafe fn try_allocate_for_layout(
1997        value_layout: Layout,
1998        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1999        mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
2000    ) -> Result<*mut ArcInner<T>, AllocError> {
2001        let layout = arcinner_layout_for_value_layout(value_layout);
2002
2003        let ptr = allocate(layout)?;
2004
2005        let inner = unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) };
2006
2007        Ok(inner)
2008    }
2009
2010    unsafe fn initialize_arcinner(
2011        ptr: NonNull<[u8]>,
2012        layout: Layout,
2013        mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
2014    ) -> *mut ArcInner<T> {
2015        let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr());
2016        debug_assert_eq!(unsafe { Layout::for_value_raw(inner) }, layout);
2017
2018        unsafe {
2019            (&raw mut (*inner).strong).write(atomic::AtomicUsize::new(1));
2020            (&raw mut (*inner).weak).write(atomic::AtomicUsize::new(1));
2021        }
2022
2023        inner
2024    }
2025}
2026
2027impl<T: ?Sized, A: Allocator> Arc<T, A> {
2028    /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
2029    #[inline]
2030    #[cfg(not(no_global_oom_handling))]
2031    unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut ArcInner<T> {
2032        // Allocate for the `ArcInner<T>` using the given value.
2033        unsafe {
2034            Arc::allocate_for_layout(
2035                Layout::for_value_raw(ptr),
2036                |layout| alloc.allocate(layout),
2037                |mem| mem.with_metadata_of(ptr as *const ArcInner<T>),
2038            )
2039        }
2040    }
2041
2042    #[cfg(not(no_global_oom_handling))]
2043    fn from_box_in(src: Box<T, A>) -> Arc<T, A> {
2044        unsafe {
2045            let value_size = size_of_val(&*src);
2046            let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));
2047
2048            // Copy value as bytes
2049            ptr::copy_nonoverlapping(
2050                (&raw const *src) as *const u8,
2051                (&raw mut (*ptr).data) as *mut u8,
2052                value_size,
2053            );
2054
2055            // Free the allocation without dropping its contents
2056            let (bptr, alloc) = Box::into_raw_with_allocator(src);
2057            let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
2058            drop(src);
2059
2060            Self::from_ptr_in(ptr, alloc)
2061        }
2062    }
2063}
2064
2065impl<T> Arc<[T]> {
2066    /// Allocates an `ArcInner<[T]>` with the given length.
2067    #[cfg(not(no_global_oom_handling))]
2068    unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
2069        unsafe {
2070            Self::allocate_for_layout(
2071                Layout::array::<T>(len).unwrap(),
2072                |layout| Global.allocate(layout),
2073                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2074            )
2075        }
2076    }
2077
2078    /// Copy elements from slice into newly allocated `Arc<[T]>`
2079    ///
2080    /// Unsafe because the caller must either take ownership or bind `T: Copy`.
2081    #[cfg(not(no_global_oom_handling))]
2082    unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
2083        unsafe {
2084            let ptr = Self::allocate_for_slice(v.len());
2085
2086            ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).data) as *mut T, v.len());
2087
2088            Self::from_ptr(ptr)
2089        }
2090    }
2091
2092    /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
2093    ///
2094    /// Behavior is undefined should the size be wrong.
2095    #[cfg(not(no_global_oom_handling))]
2096    unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Arc<[T]> {
2097        // Panic guard while cloning T elements.
2098        // In the event of a panic, elements that have been written
2099        // into the new ArcInner will be dropped, then the memory freed.
2100        struct Guard<T> {
2101            mem: NonNull<u8>,
2102            elems: *mut T,
2103            layout: Layout,
2104            n_elems: usize,
2105        }
2106
2107        impl<T> Drop for Guard<T> {
2108            fn drop(&mut self) {
2109                unsafe {
2110                    let slice = from_raw_parts_mut(self.elems, self.n_elems);
2111                    ptr::drop_in_place(slice);
2112
2113                    Global.deallocate(self.mem, self.layout);
2114                }
2115            }
2116        }
2117
2118        unsafe {
2119            let ptr = Self::allocate_for_slice(len);
2120
2121            let mem = ptr as *mut _ as *mut u8;
2122            let layout = Layout::for_value_raw(ptr);
2123
2124            // Pointer to first element
2125            let elems = (&raw mut (*ptr).data) as *mut T;
2126
2127            let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
2128
2129            for (i, item) in iter.enumerate() {
2130                ptr::write(elems.add(i), item);
2131                guard.n_elems += 1;
2132            }
2133
2134            // All clear. Forget the guard so it doesn't free the new ArcInner.
2135            mem::forget(guard);
2136
2137            Self::from_ptr(ptr)
2138        }
2139    }
2140}
2141
2142impl<T, A: Allocator> Arc<[T], A> {
2143    /// Allocates an `ArcInner<[T]>` with the given length.
2144    #[inline]
2145    #[cfg(not(no_global_oom_handling))]
2146    unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut ArcInner<[T]> {
2147        unsafe {
2148            Arc::allocate_for_layout(
2149                Layout::array::<T>(len).unwrap(),
2150                |layout| alloc.allocate(layout),
2151                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2152            )
2153        }
2154    }
2155}
2156
2157/// Specialization trait used for `From<&[T]>`.
2158#[cfg(not(no_global_oom_handling))]
2159trait ArcFromSlice<T> {
2160    fn from_slice(slice: &[T]) -> Self;
2161}
2162
2163#[cfg(not(no_global_oom_handling))]
2164impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
2165    #[inline]
2166    default fn from_slice(v: &[T]) -> Self {
2167        unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
2168    }
2169}
2170
2171#[cfg(not(no_global_oom_handling))]
2172impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
2173    #[inline]
2174    fn from_slice(v: &[T]) -> Self {
2175        unsafe { Arc::copy_from_slice(v) }
2176    }
2177}
2178
2179#[stable(feature = "rust1", since = "1.0.0")]
2180impl<T: ?Sized, A: Allocator + Clone> Clone for Arc<T, A> {
2181    /// Makes a clone of the `Arc` pointer.
2182    ///
2183    /// This creates another pointer to the same allocation, increasing the
2184    /// strong reference count.
2185    ///
2186    /// # Examples
2187    ///
2188    /// ```
2189    /// use std::sync::Arc;
2190    ///
2191    /// let five = Arc::new(5);
2192    ///
2193    /// let _ = Arc::clone(&five);
2194    /// ```
2195    #[inline]
2196    fn clone(&self) -> Arc<T, A> {
2197        // Using a relaxed ordering is alright here, as knowledge of the
2198        // original reference prevents other threads from erroneously deleting
2199        // the object.
2200        //
2201        // As explained in the [Boost documentation][1], Increasing the
2202        // reference counter can always be done with memory_order_relaxed: New
2203        // references to an object can only be formed from an existing
2204        // reference, and passing an existing reference from one thread to
2205        // another must already provide any required synchronization.
2206        //
2207        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2208        let old_size = self.inner().strong.fetch_add(1, Relaxed);
2209
2210        // However we need to guard against massive refcounts in case someone is `mem::forget`ing
2211        // Arcs. If we don't do this the count can overflow and users will use-after free. This
2212        // branch will never be taken in any realistic program. We abort because such a program is
2213        // incredibly degenerate, and we don't care to support it.
2214        //
2215        // This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`.
2216        // But we do that check *after* having done the increment, so there is a chance here that
2217        // the worst already happened and we actually do overflow the `usize` counter. However, that
2218        // requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment
2219        // above and the `abort` below, which seems exceedingly unlikely.
2220        //
2221        // This is a global invariant, and also applies when using a compare-exchange loop to increment
2222        // counters in other methods.
2223        // Otherwise, the counter could be brought to an almost-overflow using a compare-exchange loop,
2224        // and then overflow using a few `fetch_add`s.
2225        if old_size > MAX_REFCOUNT {
2226            abort();
2227        }
2228
2229        unsafe { Self::from_inner_in(self.ptr, self.alloc.clone()) }
2230    }
2231}
2232
2233#[unstable(feature = "ergonomic_clones", issue = "132290")]
2234impl<T: ?Sized, A: Allocator + Clone> UseCloned for Arc<T, A> {}
2235
2236#[stable(feature = "rust1", since = "1.0.0")]
2237impl<T: ?Sized, A: Allocator> Deref for Arc<T, A> {
2238    type Target = T;
2239
2240    #[inline]
2241    fn deref(&self) -> &T {
2242        &self.inner().data
2243    }
2244}
2245
2246#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2247unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Arc<T, A> {}
2248
2249#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2250unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}
2251
2252#[unstable(feature = "deref_pure_trait", issue = "87121")]
2253unsafe impl<T: ?Sized, A: Allocator> DerefPure for Arc<T, A> {}
2254
2255#[unstable(feature = "legacy_receiver_trait", issue = "none")]
2256impl<T: ?Sized> LegacyReceiver for Arc<T> {}
2257
2258#[cfg(not(no_global_oom_handling))]
2259impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Arc<T, A> {
2260    /// Makes a mutable reference into the given `Arc`.
2261    ///
2262    /// If there are other `Arc` pointers to the same allocation, then `make_mut` will
2263    /// [`clone`] the inner value to a new allocation to ensure unique ownership.  This is also
2264    /// referred to as clone-on-write.
2265    ///
2266    /// However, if there are no other `Arc` pointers to this allocation, but some [`Weak`]
2267    /// pointers, then the [`Weak`] pointers will be dissociated and the inner value will not
2268    /// be cloned.
2269    ///
2270    /// See also [`get_mut`], which will fail rather than cloning the inner value
2271    /// or dissociating [`Weak`] pointers.
2272    ///
2273    /// [`clone`]: Clone::clone
2274    /// [`get_mut`]: Arc::get_mut
2275    ///
2276    /// # Examples
2277    ///
2278    /// ```
2279    /// use std::sync::Arc;
2280    ///
2281    /// let mut data = Arc::new(5);
2282    ///
2283    /// *Arc::make_mut(&mut data) += 1;         // Won't clone anything
2284    /// let mut other_data = Arc::clone(&data); // Won't clone inner data
2285    /// *Arc::make_mut(&mut data) += 1;         // Clones inner data
2286    /// *Arc::make_mut(&mut data) += 1;         // Won't clone anything
2287    /// *Arc::make_mut(&mut other_data) *= 2;   // Won't clone anything
2288    ///
2289    /// // Now `data` and `other_data` point to different allocations.
2290    /// assert_eq!(*data, 8);
2291    /// assert_eq!(*other_data, 12);
2292    /// ```
2293    ///
2294    /// [`Weak`] pointers will be dissociated:
2295    ///
2296    /// ```
2297    /// use std::sync::Arc;
2298    ///
2299    /// let mut data = Arc::new(75);
2300    /// let weak = Arc::downgrade(&data);
2301    ///
2302    /// assert!(75 == *data);
2303    /// assert!(75 == *weak.upgrade().unwrap());
2304    ///
2305    /// *Arc::make_mut(&mut data) += 1;
2306    ///
2307    /// assert!(76 == *data);
2308    /// assert!(weak.upgrade().is_none());
2309    /// ```
2310    #[inline]
2311    #[stable(feature = "arc_unique", since = "1.4.0")]
2312    pub fn make_mut(this: &mut Self) -> &mut T {
2313        let size_of_val = size_of_val::<T>(&**this);
2314
2315        // Note that we hold both a strong reference and a weak reference.
2316        // Thus, releasing our strong reference only will not, by itself, cause
2317        // the memory to be deallocated.
2318        //
2319        // Use Acquire to ensure that we see any writes to `weak` that happen
2320        // before release writes (i.e., decrements) to `strong`. Since we hold a
2321        // weak count, there's no chance the ArcInner itself could be
2322        // deallocated.
2323        if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
2324            // Another strong pointer exists, so we must clone.
2325
2326            let this_data_ref: &T = &**this;
2327            // `in_progress` drops the allocation if we panic before finishing initializing it.
2328            let mut in_progress: UniqueArcUninit<T, A> =
2329                UniqueArcUninit::new(this_data_ref, this.alloc.clone());
2330
2331            let initialized_clone = unsafe {
2332                // Clone. If the clone panics, `in_progress` will be dropped and clean up.
2333                this_data_ref.clone_to_uninit(in_progress.data_ptr().cast());
2334                // Cast type of pointer, now that it is initialized.
2335                in_progress.into_arc()
2336            };
2337            *this = initialized_clone;
2338        } else if this.inner().weak.load(Relaxed) != 1 {
2339            // Relaxed suffices in the above because this is fundamentally an
2340            // optimization: we are always racing with weak pointers being
2341            // dropped. Worst case, we end up allocated a new Arc unnecessarily.
2342
2343            // We removed the last strong ref, but there are additional weak
2344            // refs remaining. We'll move the contents to a new Arc, and
2345            // invalidate the other weak refs.
2346
2347            // Note that it is not possible for the read of `weak` to yield
2348            // usize::MAX (i.e., locked), since the weak count can only be
2349            // locked by a thread with a strong reference.
2350
2351            // Materialize our own implicit weak pointer, so that it can clean
2352            // up the ArcInner as needed.
2353            let _weak = Weak { ptr: this.ptr, alloc: this.alloc.clone() };
2354
2355            // Can just steal the data, all that's left is Weaks
2356            //
2357            // We don't need panic-protection like the above branch does, but we might as well
2358            // use the same mechanism.
2359            let mut in_progress: UniqueArcUninit<T, A> =
2360                UniqueArcUninit::new(&**this, this.alloc.clone());
2361            unsafe {
2362                // Initialize `in_progress` with move of **this.
2363                // We have to express this in terms of bytes because `T: ?Sized`; there is no
2364                // operation that just copies a value based on its `size_of_val()`.
2365                ptr::copy_nonoverlapping(
2366                    ptr::from_ref(&**this).cast::<u8>(),
2367                    in_progress.data_ptr().cast::<u8>(),
2368                    size_of_val,
2369                );
2370
2371                ptr::write(this, in_progress.into_arc());
2372            }
2373        } else {
2374            // We were the sole reference of either kind; bump back up the
2375            // strong ref count.
2376            this.inner().strong.store(1, Release);
2377        }
2378
2379        // As with `get_mut()`, the unsafety is ok because our reference was
2380        // either unique to begin with, or became one upon cloning the contents.
2381        unsafe { Self::get_mut_unchecked(this) }
2382    }
2383}
2384
2385impl<T: Clone, A: Allocator> Arc<T, A> {
2386    /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
2387    /// clone.
2388    ///
2389    /// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to
2390    /// `(*arc_t).clone()`, but will avoid cloning the inner value where possible.
2391    ///
2392    /// # Examples
2393    ///
2394    /// ```
2395    /// # use std::{ptr, sync::Arc};
2396    /// let inner = String::from("test");
2397    /// let ptr = inner.as_ptr();
2398    ///
2399    /// let arc = Arc::new(inner);
2400    /// let inner = Arc::unwrap_or_clone(arc);
2401    /// // The inner value was not cloned
2402    /// assert!(ptr::eq(ptr, inner.as_ptr()));
2403    ///
2404    /// let arc = Arc::new(inner);
2405    /// let arc2 = arc.clone();
2406    /// let inner = Arc::unwrap_or_clone(arc);
2407    /// // Because there were 2 references, we had to clone the inner value.
2408    /// assert!(!ptr::eq(ptr, inner.as_ptr()));
2409    /// // `arc2` is the last reference, so when we unwrap it we get back
2410    /// // the original `String`.
2411    /// let inner = Arc::unwrap_or_clone(arc2);
2412    /// assert!(ptr::eq(ptr, inner.as_ptr()));
2413    /// ```
2414    #[inline]
2415    #[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
2416    pub fn unwrap_or_clone(this: Self) -> T {
2417        Arc::try_unwrap(this).unwrap_or_else(|arc| (*arc).clone())
2418    }
2419}
2420
2421impl<T: ?Sized, A: Allocator> Arc<T, A> {
2422    /// Returns a mutable reference into the given `Arc`, if there are
2423    /// no other `Arc` or [`Weak`] pointers to the same allocation.
2424    ///
2425    /// Returns [`None`] otherwise, because it is not safe to
2426    /// mutate a shared value.
2427    ///
2428    /// See also [`make_mut`][make_mut], which will [`clone`][clone]
2429    /// the inner value when there are other `Arc` pointers.
2430    ///
2431    /// [make_mut]: Arc::make_mut
2432    /// [clone]: Clone::clone
2433    ///
2434    /// # Examples
2435    ///
2436    /// ```
2437    /// use std::sync::Arc;
2438    ///
2439    /// let mut x = Arc::new(3);
2440    /// *Arc::get_mut(&mut x).unwrap() = 4;
2441    /// assert_eq!(*x, 4);
2442    ///
2443    /// let _y = Arc::clone(&x);
2444    /// assert!(Arc::get_mut(&mut x).is_none());
2445    /// ```
2446    #[inline]
2447    #[stable(feature = "arc_unique", since = "1.4.0")]
2448    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
2449        if Self::is_unique(this) {
2450            // This unsafety is ok because we're guaranteed that the pointer
2451            // returned is the *only* pointer that will ever be returned to T. Our
2452            // reference count is guaranteed to be 1 at this point, and we required
2453            // the Arc itself to be `mut`, so we're returning the only possible
2454            // reference to the inner data.
2455            unsafe { Some(Arc::get_mut_unchecked(this)) }
2456        } else {
2457            None
2458        }
2459    }
2460
2461    /// Returns a mutable reference into the given `Arc`,
2462    /// without any check.
2463    ///
2464    /// See also [`get_mut`], which is safe and does appropriate checks.
2465    ///
2466    /// [`get_mut`]: Arc::get_mut
2467    ///
2468    /// # Safety
2469    ///
2470    /// If any other `Arc` or [`Weak`] pointers to the same allocation exist, then
2471    /// they must not be dereferenced or have active borrows for the duration
2472    /// of the returned borrow, and their inner type must be exactly the same as the
2473    /// inner type of this Rc (including lifetimes). This is trivially the case if no
2474    /// such pointers exist, for example immediately after `Arc::new`.
2475    ///
2476    /// # Examples
2477    ///
2478    /// ```
2479    /// #![feature(get_mut_unchecked)]
2480    ///
2481    /// use std::sync::Arc;
2482    ///
2483    /// let mut x = Arc::new(String::new());
2484    /// unsafe {
2485    ///     Arc::get_mut_unchecked(&mut x).push_str("foo")
2486    /// }
2487    /// assert_eq!(*x, "foo");
2488    /// ```
2489    /// Other `Arc` pointers to the same allocation must be to the same type.
2490    /// ```no_run
2491    /// #![feature(get_mut_unchecked)]
2492    ///
2493    /// use std::sync::Arc;
2494    ///
2495    /// let x: Arc<str> = Arc::from("Hello, world!");
2496    /// let mut y: Arc<[u8]> = x.clone().into();
2497    /// unsafe {
2498    ///     // this is Undefined Behavior, because x's inner type is str, not [u8]
2499    ///     Arc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
2500    /// }
2501    /// println!("{}", &*x); // Invalid UTF-8 in a str
2502    /// ```
2503    /// Other `Arc` pointers to the same allocation must be to the exact same type, including lifetimes.
2504    /// ```no_run
2505    /// #![feature(get_mut_unchecked)]
2506    ///
2507    /// use std::sync::Arc;
2508    ///
2509    /// let x: Arc<&str> = Arc::new("Hello, world!");
2510    /// {
2511    ///     let s = String::from("Oh, no!");
2512    ///     let mut y: Arc<&str> = x.clone();
2513    ///     unsafe {
2514    ///         // this is Undefined Behavior, because x's inner type
2515    ///         // is &'long str, not &'short str
2516    ///         *Arc::get_mut_unchecked(&mut y) = &s;
2517    ///     }
2518    /// }
2519    /// println!("{}", &*x); // Use-after-free
2520    /// ```
2521    #[inline]
2522    #[unstable(feature = "get_mut_unchecked", issue = "63292")]
2523    pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
2524        // We are careful to *not* create a reference covering the "count" fields, as
2525        // this would alias with concurrent access to the reference counts (e.g. by `Weak`).
2526        unsafe { &mut (*this.ptr.as_ptr()).data }
2527    }
2528
2529    /// Determine whether this is the unique reference to the underlying data.
2530    ///
2531    /// Returns `true` if there are no other `Arc` or [`Weak`] pointers to the same allocation;
2532    /// returns `false` otherwise.
2533    ///
2534    /// If this function returns `true`, then is guaranteed to be safe to call [`get_mut_unchecked`]
2535    /// on this `Arc`, so long as no clones occur in between.
2536    ///
2537    /// # Examples
2538    ///
2539    /// ```
2540    /// #![feature(arc_is_unique)]
2541    ///
2542    /// use std::sync::Arc;
2543    ///
2544    /// let x = Arc::new(3);
2545    /// assert!(Arc::is_unique(&x));
2546    ///
2547    /// let y = Arc::clone(&x);
2548    /// assert!(!Arc::is_unique(&x));
2549    /// drop(y);
2550    ///
2551    /// // Weak references also count, because they could be upgraded at any time.
2552    /// let z = Arc::downgrade(&x);
2553    /// assert!(!Arc::is_unique(&x));
2554    /// ```
2555    ///
2556    /// # Pointer invalidation
2557    ///
2558    /// This function will always return the same value as `Arc::get_mut(arc).is_some()`. However,
2559    /// unlike that operation it does not produce any mutable references to the underlying data,
2560    /// meaning no pointers to the data inside the `Arc` are invalidated by the call. Thus, the
2561    /// following code is valid, even though it would be UB if it used `Arc::get_mut`:
2562    ///
2563    /// ```
2564    /// #![feature(arc_is_unique)]
2565    ///
2566    /// use std::sync::Arc;
2567    ///
2568    /// let arc = Arc::new(5);
2569    /// let pointer: *const i32 = &*arc;
2570    /// assert!(Arc::is_unique(&arc));
2571    /// assert_eq!(unsafe { *pointer }, 5);
2572    /// ```
2573    ///
2574    /// # Atomic orderings
2575    ///
2576    /// Concurrent drops to other `Arc` pointers to the same allocation will synchronize with this
2577    /// call - that is, this call performs an `Acquire` operation on the underlying strong and weak
2578    /// ref counts. This ensures that calling `get_mut_unchecked` is safe.
2579    ///
2580    /// Note that this operation requires locking the weak ref count, so concurrent calls to
2581    /// `downgrade` may spin-loop for a short period of time.
2582    ///
2583    /// [`get_mut_unchecked`]: Self::get_mut_unchecked
2584    #[inline]
2585    #[unstable(feature = "arc_is_unique", issue = "138938")]
2586    pub fn is_unique(this: &Self) -> bool {
2587        // lock the weak pointer count if we appear to be the sole weak pointer
2588        // holder.
2589        //
2590        // The acquire label here ensures a happens-before relationship with any
2591        // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
2592        // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
2593        // weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
2594        if this.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
2595            // This needs to be an `Acquire` to synchronize with the decrement of the `strong`
2596            // counter in `drop` -- the only access that happens when any but the last reference
2597            // is being dropped.
2598            let unique = this.inner().strong.load(Acquire) == 1;
2599
2600            // The release write here synchronizes with a read in `downgrade`,
2601            // effectively preventing the above read of `strong` from happening
2602            // after the write.
2603            this.inner().weak.store(1, Release); // release the lock
2604            unique
2605        } else {
2606            false
2607        }
2608    }
2609}
2610
2611#[stable(feature = "rust1", since = "1.0.0")]
2612unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Arc<T, A> {
2613    /// Drops the `Arc`.
2614    ///
2615    /// This will decrement the strong reference count. If the strong reference
2616    /// count reaches zero then the only other references (if any) are
2617    /// [`Weak`], so we `drop` the inner value.
2618    ///
2619    /// # Examples
2620    ///
2621    /// ```
2622    /// use std::sync::Arc;
2623    ///
2624    /// struct Foo;
2625    ///
2626    /// impl Drop for Foo {
2627    ///     fn drop(&mut self) {
2628    ///         println!("dropped!");
2629    ///     }
2630    /// }
2631    ///
2632    /// let foo  = Arc::new(Foo);
2633    /// let foo2 = Arc::clone(&foo);
2634    ///
2635    /// drop(foo);    // Doesn't print anything
2636    /// drop(foo2);   // Prints "dropped!"
2637    /// ```
2638    #[inline]
2639    fn drop(&mut self) {
2640        // Because `fetch_sub` is already atomic, we do not need to synchronize
2641        // with other threads unless we are going to delete the object. This
2642        // same logic applies to the below `fetch_sub` to the `weak` count.
2643        if self.inner().strong.fetch_sub(1, Release) != 1 {
2644            return;
2645        }
2646
2647        // This fence is needed to prevent reordering of use of the data and
2648        // deletion of the data. Because it is marked `Release`, the decreasing
2649        // of the reference count synchronizes with this `Acquire` fence. This
2650        // means that use of the data happens before decreasing the reference
2651        // count, which happens before this fence, which happens before the
2652        // deletion of the data.
2653        //
2654        // As explained in the [Boost documentation][1],
2655        //
2656        // > It is important to enforce any possible access to the object in one
2657        // > thread (through an existing reference) to *happen before* deleting
2658        // > the object in a different thread. This is achieved by a "release"
2659        // > operation after dropping a reference (any access to the object
2660        // > through this reference must obviously happened before), and an
2661        // > "acquire" operation before deleting the object.
2662        //
2663        // In particular, while the contents of an Arc are usually immutable, it's
2664        // possible to have interior writes to something like a Mutex<T>. Since a
2665        // Mutex is not acquired when it is deleted, we can't rely on its
2666        // synchronization logic to make writes in thread A visible to a destructor
2667        // running in thread B.
2668        //
2669        // Also note that the Acquire fence here could probably be replaced with an
2670        // Acquire load, which could improve performance in highly-contended
2671        // situations. See [2].
2672        //
2673        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2674        // [2]: (https://github.com/rust-lang/rust/pull/41714)
2675        acquire!(self.inner().strong);
2676
2677        // Make sure we aren't trying to "drop" the shared static for empty slices
2678        // used by Default::default.
2679        debug_assert!(
2680            !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
2681            "Arcs backed by a static should never reach a strong count of 0. \
2682            Likely decrement_strong_count or from_raw were called too many times.",
2683        );
2684
2685        unsafe {
2686            self.drop_slow();
2687        }
2688    }
2689}
2690
2691impl<A: Allocator> Arc<dyn Any + Send + Sync, A> {
2692    /// Attempts to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
2693    ///
2694    /// # Examples
2695    ///
2696    /// ```
2697    /// use std::any::Any;
2698    /// use std::sync::Arc;
2699    ///
2700    /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
2701    ///     if let Ok(string) = value.downcast::<String>() {
2702    ///         println!("String ({}): {}", string.len(), string);
2703    ///     }
2704    /// }
2705    ///
2706    /// let my_string = "Hello World".to_string();
2707    /// print_if_string(Arc::new(my_string));
2708    /// print_if_string(Arc::new(0i8));
2709    /// ```
2710    #[inline]
2711    #[stable(feature = "rc_downcast", since = "1.29.0")]
2712    pub fn downcast<T>(self) -> Result<Arc<T, A>, Self>
2713    where
2714        T: Any + Send + Sync,
2715    {
2716        if (*self).is::<T>() {
2717            unsafe {
2718                let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2719                Ok(Arc::from_inner_in(ptr.cast(), alloc))
2720            }
2721        } else {
2722            Err(self)
2723        }
2724    }
2725
2726    /// Downcasts the `Arc<dyn Any + Send + Sync>` to a concrete type.
2727    ///
2728    /// For a safe alternative see [`downcast`].
2729    ///
2730    /// # Examples
2731    ///
2732    /// ```
2733    /// #![feature(downcast_unchecked)]
2734    ///
2735    /// use std::any::Any;
2736    /// use std::sync::Arc;
2737    ///
2738    /// let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize);
2739    ///
2740    /// unsafe {
2741    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2742    /// }
2743    /// ```
2744    ///
2745    /// # Safety
2746    ///
2747    /// The contained value must be of type `T`. Calling this method
2748    /// with the incorrect type is *undefined behavior*.
2749    ///
2750    ///
2751    /// [`downcast`]: Self::downcast
2752    #[inline]
2753    #[unstable(feature = "downcast_unchecked", issue = "90850")]
2754    pub unsafe fn downcast_unchecked<T>(self) -> Arc<T, A>
2755    where
2756        T: Any + Send + Sync,
2757    {
2758        unsafe {
2759            let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2760            Arc::from_inner_in(ptr.cast(), alloc)
2761        }
2762    }
2763}
2764
2765impl<T> Weak<T> {
2766    /// Constructs a new `Weak<T>`, without allocating any memory.
2767    /// Calling [`upgrade`] on the return value always gives [`None`].
2768    ///
2769    /// [`upgrade`]: Weak::upgrade
2770    ///
2771    /// # Examples
2772    ///
2773    /// ```
2774    /// use std::sync::Weak;
2775    ///
2776    /// let empty: Weak<i64> = Weak::new();
2777    /// assert!(empty.upgrade().is_none());
2778    /// ```
2779    #[inline]
2780    #[stable(feature = "downgraded_weak", since = "1.10.0")]
2781    #[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
2782    #[must_use]
2783    pub const fn new() -> Weak<T> {
2784        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc: Global }
2785    }
2786}
2787
2788impl<T, A: Allocator> Weak<T, A> {
2789    /// Constructs a new `Weak<T, A>`, without allocating any memory, technically in the provided
2790    /// allocator.
2791    /// Calling [`upgrade`] on the return value always gives [`None`].
2792    ///
2793    /// [`upgrade`]: Weak::upgrade
2794    ///
2795    /// # Examples
2796    ///
2797    /// ```
2798    /// #![feature(allocator_api)]
2799    ///
2800    /// use std::sync::Weak;
2801    /// use std::alloc::System;
2802    ///
2803    /// let empty: Weak<i64, _> = Weak::new_in(System);
2804    /// assert!(empty.upgrade().is_none());
2805    /// ```
2806    #[inline]
2807    #[unstable(feature = "allocator_api", issue = "32838")]
2808    pub fn new_in(alloc: A) -> Weak<T, A> {
2809        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc }
2810    }
2811}
2812
2813/// Helper type to allow accessing the reference counts without
2814/// making any assertions about the data field.
2815struct WeakInner<'a> {
2816    weak: &'a Atomic<usize>,
2817    strong: &'a Atomic<usize>,
2818}
2819
2820impl<T: ?Sized> Weak<T> {
2821    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
2822    ///
2823    /// This can be used to safely get a strong reference (by calling [`upgrade`]
2824    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2825    ///
2826    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2827    /// as these don't own anything; the method still works on them).
2828    ///
2829    /// # Safety
2830    ///
2831    /// The pointer must have originated from the [`into_raw`] and must still own its potential
2832    /// weak reference, and must point to a block of memory allocated by global allocator.
2833    ///
2834    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
2835    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
2836    /// count is not modified by this operation) and therefore it must be paired with a previous
2837    /// call to [`into_raw`].
2838    /// # Examples
2839    ///
2840    /// ```
2841    /// use std::sync::{Arc, Weak};
2842    ///
2843    /// let strong = Arc::new("hello".to_owned());
2844    ///
2845    /// let raw_1 = Arc::downgrade(&strong).into_raw();
2846    /// let raw_2 = Arc::downgrade(&strong).into_raw();
2847    ///
2848    /// assert_eq!(2, Arc::weak_count(&strong));
2849    ///
2850    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
2851    /// assert_eq!(1, Arc::weak_count(&strong));
2852    ///
2853    /// drop(strong);
2854    ///
2855    /// // Decrement the last weak count.
2856    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
2857    /// ```
2858    ///
2859    /// [`new`]: Weak::new
2860    /// [`into_raw`]: Weak::into_raw
2861    /// [`upgrade`]: Weak::upgrade
2862    #[inline]
2863    #[stable(feature = "weak_into_raw", since = "1.45.0")]
2864    pub unsafe fn from_raw(ptr: *const T) -> Self {
2865        unsafe { Weak::from_raw_in(ptr, Global) }
2866    }
2867}
2868
2869impl<T: ?Sized, A: Allocator> Weak<T, A> {
2870    /// Returns a reference to the underlying allocator.
2871    #[inline]
2872    #[unstable(feature = "allocator_api", issue = "32838")]
2873    pub fn allocator(&self) -> &A {
2874        &self.alloc
2875    }
2876
2877    /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
2878    ///
2879    /// The pointer is valid only if there are some strong references. The pointer may be dangling,
2880    /// unaligned or even [`null`] otherwise.
2881    ///
2882    /// # Examples
2883    ///
2884    /// ```
2885    /// use std::sync::Arc;
2886    /// use std::ptr;
2887    ///
2888    /// let strong = Arc::new("hello".to_owned());
2889    /// let weak = Arc::downgrade(&strong);
2890    /// // Both point to the same object
2891    /// assert!(ptr::eq(&*strong, weak.as_ptr()));
2892    /// // The strong here keeps it alive, so we can still access the object.
2893    /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
2894    ///
2895    /// drop(strong);
2896    /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
2897    /// // undefined behavior.
2898    /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
2899    /// ```
2900    ///
2901    /// [`null`]: core::ptr::null "ptr::null"
2902    #[must_use]
2903    #[stable(feature = "weak_into_raw", since = "1.45.0")]
2904    pub fn as_ptr(&self) -> *const T {
2905        let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr);
2906
2907        if is_dangling(ptr) {
2908            // If the pointer is dangling, we return the sentinel directly. This cannot be
2909            // a valid payload address, as the payload is at least as aligned as ArcInner (usize).
2910            ptr as *const T
2911        } else {
2912            // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
2913            // The payload may be dropped at this point, and we have to maintain provenance,
2914            // so use raw pointer manipulation.
2915            unsafe { &raw mut (*ptr).data }
2916        }
2917    }
2918
2919    /// Consumes the `Weak<T>` and turns it into a raw pointer.
2920    ///
2921    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2922    /// one weak reference (the weak count is not modified by this operation). It can be turned
2923    /// back into the `Weak<T>` with [`from_raw`].
2924    ///
2925    /// The same restrictions of accessing the target of the pointer as with
2926    /// [`as_ptr`] apply.
2927    ///
2928    /// # Examples
2929    ///
2930    /// ```
2931    /// use std::sync::{Arc, Weak};
2932    ///
2933    /// let strong = Arc::new("hello".to_owned());
2934    /// let weak = Arc::downgrade(&strong);
2935    /// let raw = weak.into_raw();
2936    ///
2937    /// assert_eq!(1, Arc::weak_count(&strong));
2938    /// assert_eq!("hello", unsafe { &*raw });
2939    ///
2940    /// drop(unsafe { Weak::from_raw(raw) });
2941    /// assert_eq!(0, Arc::weak_count(&strong));
2942    /// ```
2943    ///
2944    /// [`from_raw`]: Weak::from_raw
2945    /// [`as_ptr`]: Weak::as_ptr
2946    #[must_use = "losing the pointer will leak memory"]
2947    #[stable(feature = "weak_into_raw", since = "1.45.0")]
2948    pub fn into_raw(self) -> *const T {
2949        ManuallyDrop::new(self).as_ptr()
2950    }
2951
2952    /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
2953    ///
2954    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2955    /// one weak reference (the weak count is not modified by this operation). It can be turned
2956    /// back into the `Weak<T>` with [`from_raw_in`].
2957    ///
2958    /// The same restrictions of accessing the target of the pointer as with
2959    /// [`as_ptr`] apply.
2960    ///
2961    /// # Examples
2962    ///
2963    /// ```
2964    /// #![feature(allocator_api)]
2965    /// use std::sync::{Arc, Weak};
2966    /// use std::alloc::System;
2967    ///
2968    /// let strong = Arc::new_in("hello".to_owned(), System);
2969    /// let weak = Arc::downgrade(&strong);
2970    /// let (raw, alloc) = weak.into_raw_with_allocator();
2971    ///
2972    /// assert_eq!(1, Arc::weak_count(&strong));
2973    /// assert_eq!("hello", unsafe { &*raw });
2974    ///
2975    /// drop(unsafe { Weak::from_raw_in(raw, alloc) });
2976    /// assert_eq!(0, Arc::weak_count(&strong));
2977    /// ```
2978    ///
2979    /// [`from_raw_in`]: Weak::from_raw_in
2980    /// [`as_ptr`]: Weak::as_ptr
2981    #[must_use = "losing the pointer will leak memory"]
2982    #[unstable(feature = "allocator_api", issue = "32838")]
2983    pub fn into_raw_with_allocator(self) -> (*const T, A) {
2984        let this = mem::ManuallyDrop::new(self);
2985        let result = this.as_ptr();
2986        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
2987        let alloc = unsafe { ptr::read(&this.alloc) };
2988        (result, alloc)
2989    }
2990
2991    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>` in the provided
2992    /// allocator.
2993    ///
2994    /// This can be used to safely get a strong reference (by calling [`upgrade`]
2995    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2996    ///
2997    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2998    /// as these don't own anything; the method still works on them).
2999    ///
3000    /// # Safety
3001    ///
3002    /// The pointer must have originated from the [`into_raw`] and must still own its potential
3003    /// weak reference, and must point to a block of memory allocated by `alloc`.
3004    ///
3005    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3006    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3007    /// count is not modified by this operation) and therefore it must be paired with a previous
3008    /// call to [`into_raw`].
3009    /// # Examples
3010    ///
3011    /// ```
3012    /// use std::sync::{Arc, Weak};
3013    ///
3014    /// let strong = Arc::new("hello".to_owned());
3015    ///
3016    /// let raw_1 = Arc::downgrade(&strong).into_raw();
3017    /// let raw_2 = Arc::downgrade(&strong).into_raw();
3018    ///
3019    /// assert_eq!(2, Arc::weak_count(&strong));
3020    ///
3021    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3022    /// assert_eq!(1, Arc::weak_count(&strong));
3023    ///
3024    /// drop(strong);
3025    ///
3026    /// // Decrement the last weak count.
3027    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3028    /// ```
3029    ///
3030    /// [`new`]: Weak::new
3031    /// [`into_raw`]: Weak::into_raw
3032    /// [`upgrade`]: Weak::upgrade
3033    #[inline]
3034    #[unstable(feature = "allocator_api", issue = "32838")]
3035    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
3036        // See Weak::as_ptr for context on how the input pointer is derived.
3037
3038        let ptr = if is_dangling(ptr) {
3039            // This is a dangling Weak.
3040            ptr as *mut ArcInner<T>
3041        } else {
3042            // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
3043            // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
3044            let offset = unsafe { data_offset(ptr) };
3045            // Thus, we reverse the offset to get the whole RcInner.
3046            // SAFETY: the pointer originated from a Weak, so this offset is safe.
3047            unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> }
3048        };
3049
3050        // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
3051        Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
3052    }
3053}
3054
3055impl<T: ?Sized, A: Allocator> Weak<T, A> {
3056    /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
3057    /// dropping of the inner value if successful.
3058    ///
3059    /// Returns [`None`] if the inner value has since been dropped.
3060    ///
3061    /// # Examples
3062    ///
3063    /// ```
3064    /// use std::sync::Arc;
3065    ///
3066    /// let five = Arc::new(5);
3067    ///
3068    /// let weak_five = Arc::downgrade(&five);
3069    ///
3070    /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
3071    /// assert!(strong_five.is_some());
3072    ///
3073    /// // Destroy all strong pointers.
3074    /// drop(strong_five);
3075    /// drop(five);
3076    ///
3077    /// assert!(weak_five.upgrade().is_none());
3078    /// ```
3079    #[must_use = "this returns a new `Arc`, \
3080                  without modifying the original weak pointer"]
3081    #[stable(feature = "arc_weak", since = "1.4.0")]
3082    pub fn upgrade(&self) -> Option<Arc<T, A>>
3083    where
3084        A: Clone,
3085    {
3086        #[inline]
3087        fn checked_increment(n: usize) -> Option<usize> {
3088            // Any write of 0 we can observe leaves the field in permanently zero state.
3089            if n == 0 {
3090                return None;
3091            }
3092            // See comments in `Arc::clone` for why we do this (for `mem::forget`).
3093            assert!(n <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
3094            Some(n + 1)
3095        }
3096
3097        // We use a CAS loop to increment the strong count instead of a
3098        // fetch_add as this function should never take the reference count
3099        // from zero to one.
3100        //
3101        // Relaxed is fine for the failure case because we don't have any expectations about the new state.
3102        // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner
3103        // value can be initialized after `Weak` references have already been created. In that case, we
3104        // expect to observe the fully initialized value.
3105        if self.inner()?.strong.fetch_update(Acquire, Relaxed, checked_increment).is_ok() {
3106            // SAFETY: pointer is not null, verified in checked_increment
3107            unsafe { Some(Arc::from_inner_in(self.ptr, self.alloc.clone())) }
3108        } else {
3109            None
3110        }
3111    }
3112
3113    /// Gets the number of strong (`Arc`) pointers pointing to this allocation.
3114    ///
3115    /// If `self` was created using [`Weak::new`], this will return 0.
3116    #[must_use]
3117    #[stable(feature = "weak_counts", since = "1.41.0")]
3118    pub fn strong_count(&self) -> usize {
3119        if let Some(inner) = self.inner() { inner.strong.load(Relaxed) } else { 0 }
3120    }
3121
3122    /// Gets an approximation of the number of `Weak` pointers pointing to this
3123    /// allocation.
3124    ///
3125    /// If `self` was created using [`Weak::new`], or if there are no remaining
3126    /// strong pointers, this will return 0.
3127    ///
3128    /// # Accuracy
3129    ///
3130    /// Due to implementation details, the returned value can be off by 1 in
3131    /// either direction when other threads are manipulating any `Arc`s or
3132    /// `Weak`s pointing to the same allocation.
3133    #[must_use]
3134    #[stable(feature = "weak_counts", since = "1.41.0")]
3135    pub fn weak_count(&self) -> usize {
3136        if let Some(inner) = self.inner() {
3137            let weak = inner.weak.load(Acquire);
3138            let strong = inner.strong.load(Relaxed);
3139            if strong == 0 {
3140                0
3141            } else {
3142                // Since we observed that there was at least one strong pointer
3143                // after reading the weak count, we know that the implicit weak
3144                // reference (present whenever any strong references are alive)
3145                // was still around when we observed the weak count, and can
3146                // therefore safely subtract it.
3147                weak - 1
3148            }
3149        } else {
3150            0
3151        }
3152    }
3153
3154    /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
3155    /// (i.e., when this `Weak` was created by `Weak::new`).
3156    #[inline]
3157    fn inner(&self) -> Option<WeakInner<'_>> {
3158        let ptr = self.ptr.as_ptr();
3159        if is_dangling(ptr) {
3160            None
3161        } else {
3162            // We are careful to *not* create a reference covering the "data" field, as
3163            // the field may be mutated concurrently (for example, if the last `Arc`
3164            // is dropped, the data field will be dropped in-place).
3165            Some(unsafe { WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak } })
3166        }
3167    }
3168
3169    /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
3170    /// both don't point to any allocation (because they were created with `Weak::new()`). However,
3171    /// this function ignores the metadata of  `dyn Trait` pointers.
3172    ///
3173    /// # Notes
3174    ///
3175    /// Since this compares pointers it means that `Weak::new()` will equal each
3176    /// other, even though they don't point to any allocation.
3177    ///
3178    /// # Examples
3179    ///
3180    /// ```
3181    /// use std::sync::Arc;
3182    ///
3183    /// let first_rc = Arc::new(5);
3184    /// let first = Arc::downgrade(&first_rc);
3185    /// let second = Arc::downgrade(&first_rc);
3186    ///
3187    /// assert!(first.ptr_eq(&second));
3188    ///
3189    /// let third_rc = Arc::new(5);
3190    /// let third = Arc::downgrade(&third_rc);
3191    ///
3192    /// assert!(!first.ptr_eq(&third));
3193    /// ```
3194    ///
3195    /// Comparing `Weak::new`.
3196    ///
3197    /// ```
3198    /// use std::sync::{Arc, Weak};
3199    ///
3200    /// let first = Weak::new();
3201    /// let second = Weak::new();
3202    /// assert!(first.ptr_eq(&second));
3203    ///
3204    /// let third_rc = Arc::new(());
3205    /// let third = Arc::downgrade(&third_rc);
3206    /// assert!(!first.ptr_eq(&third));
3207    /// ```
3208    ///
3209    /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
3210    #[inline]
3211    #[must_use]
3212    #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
3213    pub fn ptr_eq(&self, other: &Self) -> bool {
3214        ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
3215    }
3216}
3217
3218#[stable(feature = "arc_weak", since = "1.4.0")]
3219impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
3220    /// Makes a clone of the `Weak` pointer that points to the same allocation.
3221    ///
3222    /// # Examples
3223    ///
3224    /// ```
3225    /// use std::sync::{Arc, Weak};
3226    ///
3227    /// let weak_five = Arc::downgrade(&Arc::new(5));
3228    ///
3229    /// let _ = Weak::clone(&weak_five);
3230    /// ```
3231    #[inline]
3232    fn clone(&self) -> Weak<T, A> {
3233        if let Some(inner) = self.inner() {
3234            // See comments in Arc::clone() for why this is relaxed. This can use a
3235            // fetch_add (ignoring the lock) because the weak count is only locked
3236            // where are *no other* weak pointers in existence. (So we can't be
3237            // running this code in that case).
3238            let old_size = inner.weak.fetch_add(1, Relaxed);
3239
3240            // See comments in Arc::clone() for why we do this (for mem::forget).
3241            if old_size > MAX_REFCOUNT {
3242                abort();
3243            }
3244        }
3245
3246        Weak { ptr: self.ptr, alloc: self.alloc.clone() }
3247    }
3248}
3249
3250#[unstable(feature = "ergonomic_clones", issue = "132290")]
3251impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {}
3252
3253#[stable(feature = "downgraded_weak", since = "1.10.0")]
3254impl<T> Default for Weak<T> {
3255    /// Constructs a new `Weak<T>`, without allocating memory.
3256    /// Calling [`upgrade`] on the return value always
3257    /// gives [`None`].
3258    ///
3259    /// [`upgrade`]: Weak::upgrade
3260    ///
3261    /// # Examples
3262    ///
3263    /// ```
3264    /// use std::sync::Weak;
3265    ///
3266    /// let empty: Weak<i64> = Default::default();
3267    /// assert!(empty.upgrade().is_none());
3268    /// ```
3269    fn default() -> Weak<T> {
3270        Weak::new()
3271    }
3272}
3273
3274#[stable(feature = "arc_weak", since = "1.4.0")]
3275unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
3276    /// Drops the `Weak` pointer.
3277    ///
3278    /// # Examples
3279    ///
3280    /// ```
3281    /// use std::sync::{Arc, Weak};
3282    ///
3283    /// struct Foo;
3284    ///
3285    /// impl Drop for Foo {
3286    ///     fn drop(&mut self) {
3287    ///         println!("dropped!");
3288    ///     }
3289    /// }
3290    ///
3291    /// let foo = Arc::new(Foo);
3292    /// let weak_foo = Arc::downgrade(&foo);
3293    /// let other_weak_foo = Weak::clone(&weak_foo);
3294    ///
3295    /// drop(weak_foo);   // Doesn't print anything
3296    /// drop(foo);        // Prints "dropped!"
3297    ///
3298    /// assert!(other_weak_foo.upgrade().is_none());
3299    /// ```
3300    fn drop(&mut self) {
3301        // If we find out that we were the last weak pointer, then its time to
3302        // deallocate the data entirely. See the discussion in Arc::drop() about
3303        // the memory orderings
3304        //
3305        // It's not necessary to check for the locked state here, because the
3306        // weak count can only be locked if there was precisely one weak ref,
3307        // meaning that drop could only subsequently run ON that remaining weak
3308        // ref, which can only happen after the lock is released.
3309        let inner = if let Some(inner) = self.inner() { inner } else { return };
3310
3311        if inner.weak.fetch_sub(1, Release) == 1 {
3312            acquire!(inner.weak);
3313
3314            // Make sure we aren't trying to "deallocate" the shared static for empty slices
3315            // used by Default::default.
3316            debug_assert!(
3317                !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
3318                "Arc/Weaks backed by a static should never be deallocated. \
3319                Likely decrement_strong_count or from_raw were called too many times.",
3320            );
3321
3322            unsafe {
3323                self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()))
3324            }
3325        }
3326    }
3327}
3328
3329#[stable(feature = "rust1", since = "1.0.0")]
3330trait ArcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
3331    fn eq(&self, other: &Arc<T, A>) -> bool;
3332    fn ne(&self, other: &Arc<T, A>) -> bool;
3333}
3334
3335#[stable(feature = "rust1", since = "1.0.0")]
3336impl<T: ?Sized + PartialEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3337    #[inline]
3338    default fn eq(&self, other: &Arc<T, A>) -> bool {
3339        **self == **other
3340    }
3341    #[inline]
3342    default fn ne(&self, other: &Arc<T, A>) -> bool {
3343        **self != **other
3344    }
3345}
3346
3347/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
3348/// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
3349/// store large values, that are slow to clone, but also heavy to check for equality, causing this
3350/// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
3351/// the same value, than two `&T`s.
3352///
3353/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
3354#[stable(feature = "rust1", since = "1.0.0")]
3355impl<T: ?Sized + crate::rc::MarkerEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3356    #[inline]
3357    fn eq(&self, other: &Arc<T, A>) -> bool {
3358        Arc::ptr_eq(self, other) || **self == **other
3359    }
3360
3361    #[inline]
3362    fn ne(&self, other: &Arc<T, A>) -> bool {
3363        !Arc::ptr_eq(self, other) && **self != **other
3364    }
3365}
3366
3367#[stable(feature = "rust1", since = "1.0.0")]
3368impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Arc<T, A> {
3369    /// Equality for two `Arc`s.
3370    ///
3371    /// Two `Arc`s are equal if their inner values are equal, even if they are
3372    /// stored in different allocation.
3373    ///
3374    /// If `T` also implements `Eq` (implying reflexivity of equality),
3375    /// two `Arc`s that point to the same allocation are always equal.
3376    ///
3377    /// # Examples
3378    ///
3379    /// ```
3380    /// use std::sync::Arc;
3381    ///
3382    /// let five = Arc::new(5);
3383    ///
3384    /// assert!(five == Arc::new(5));
3385    /// ```
3386    #[inline]
3387    fn eq(&self, other: &Arc<T, A>) -> bool {
3388        ArcEqIdent::eq(self, other)
3389    }
3390
3391    /// Inequality for two `Arc`s.
3392    ///
3393    /// Two `Arc`s are not equal if their inner values are not equal.
3394    ///
3395    /// If `T` also implements `Eq` (implying reflexivity of equality),
3396    /// two `Arc`s that point to the same value are always equal.
3397    ///
3398    /// # Examples
3399    ///
3400    /// ```
3401    /// use std::sync::Arc;
3402    ///
3403    /// let five = Arc::new(5);
3404    ///
3405    /// assert!(five != Arc::new(6));
3406    /// ```
3407    #[inline]
3408    fn ne(&self, other: &Arc<T, A>) -> bool {
3409        ArcEqIdent::ne(self, other)
3410    }
3411}
3412
3413#[stable(feature = "rust1", since = "1.0.0")]
3414impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Arc<T, A> {
3415    /// Partial comparison for two `Arc`s.
3416    ///
3417    /// The two are compared by calling `partial_cmp()` on their inner values.
3418    ///
3419    /// # Examples
3420    ///
3421    /// ```
3422    /// use std::sync::Arc;
3423    /// use std::cmp::Ordering;
3424    ///
3425    /// let five = Arc::new(5);
3426    ///
3427    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
3428    /// ```
3429    fn partial_cmp(&self, other: &Arc<T, A>) -> Option<Ordering> {
3430        (**self).partial_cmp(&**other)
3431    }
3432
3433    /// Less-than comparison for two `Arc`s.
3434    ///
3435    /// The two are compared by calling `<` on their inner values.
3436    ///
3437    /// # Examples
3438    ///
3439    /// ```
3440    /// use std::sync::Arc;
3441    ///
3442    /// let five = Arc::new(5);
3443    ///
3444    /// assert!(five < Arc::new(6));
3445    /// ```
3446    fn lt(&self, other: &Arc<T, A>) -> bool {
3447        *(*self) < *(*other)
3448    }
3449
3450    /// 'Less than or equal to' comparison for two `Arc`s.
3451    ///
3452    /// The two are compared by calling `<=` on their inner values.
3453    ///
3454    /// # Examples
3455    ///
3456    /// ```
3457    /// use std::sync::Arc;
3458    ///
3459    /// let five = Arc::new(5);
3460    ///
3461    /// assert!(five <= Arc::new(5));
3462    /// ```
3463    fn le(&self, other: &Arc<T, A>) -> bool {
3464        *(*self) <= *(*other)
3465    }
3466
3467    /// Greater-than comparison for two `Arc`s.
3468    ///
3469    /// The two are compared by calling `>` on their inner values.
3470    ///
3471    /// # Examples
3472    ///
3473    /// ```
3474    /// use std::sync::Arc;
3475    ///
3476    /// let five = Arc::new(5);
3477    ///
3478    /// assert!(five > Arc::new(4));
3479    /// ```
3480    fn gt(&self, other: &Arc<T, A>) -> bool {
3481        *(*self) > *(*other)
3482    }
3483
3484    /// 'Greater than or equal to' comparison for two `Arc`s.
3485    ///
3486    /// The two are compared by calling `>=` on their inner values.
3487    ///
3488    /// # Examples
3489    ///
3490    /// ```
3491    /// use std::sync::Arc;
3492    ///
3493    /// let five = Arc::new(5);
3494    ///
3495    /// assert!(five >= Arc::new(5));
3496    /// ```
3497    fn ge(&self, other: &Arc<T, A>) -> bool {
3498        *(*self) >= *(*other)
3499    }
3500}
3501#[stable(feature = "rust1", since = "1.0.0")]
3502impl<T: ?Sized + Ord, A: Allocator> Ord for Arc<T, A> {
3503    /// Comparison for two `Arc`s.
3504    ///
3505    /// The two are compared by calling `cmp()` on their inner values.
3506    ///
3507    /// # Examples
3508    ///
3509    /// ```
3510    /// use std::sync::Arc;
3511    /// use std::cmp::Ordering;
3512    ///
3513    /// let five = Arc::new(5);
3514    ///
3515    /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
3516    /// ```
3517    fn cmp(&self, other: &Arc<T, A>) -> Ordering {
3518        (**self).cmp(&**other)
3519    }
3520}
3521#[stable(feature = "rust1", since = "1.0.0")]
3522impl<T: ?Sized + Eq, A: Allocator> Eq for Arc<T, A> {}
3523
3524#[stable(feature = "rust1", since = "1.0.0")]
3525impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Arc<T, A> {
3526    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3527        fmt::Display::fmt(&**self, f)
3528    }
3529}
3530
3531#[stable(feature = "rust1", since = "1.0.0")]
3532impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Arc<T, A> {
3533    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3534        fmt::Debug::fmt(&**self, f)
3535    }
3536}
3537
3538#[stable(feature = "rust1", since = "1.0.0")]
3539impl<T: ?Sized, A: Allocator> fmt::Pointer for Arc<T, A> {
3540    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3541        fmt::Pointer::fmt(&(&raw const **self), f)
3542    }
3543}
3544
3545#[cfg(not(no_global_oom_handling))]
3546#[stable(feature = "rust1", since = "1.0.0")]
3547impl<T: Default> Default for Arc<T> {
3548    /// Creates a new `Arc<T>`, with the `Default` value for `T`.
3549    ///
3550    /// # Examples
3551    ///
3552    /// ```
3553    /// use std::sync::Arc;
3554    ///
3555    /// let x: Arc<i32> = Default::default();
3556    /// assert_eq!(*x, 0);
3557    /// ```
3558    fn default() -> Arc<T> {
3559        unsafe {
3560            Self::from_inner(
3561                Box::leak(Box::write(
3562                    Box::new_uninit(),
3563                    ArcInner {
3564                        strong: atomic::AtomicUsize::new(1),
3565                        weak: atomic::AtomicUsize::new(1),
3566                        data: T::default(),
3567                    },
3568                ))
3569                .into(),
3570            )
3571        }
3572    }
3573}
3574
3575/// Struct to hold the static `ArcInner` used for empty `Arc<str/CStr/[T]>` as
3576/// returned by `Default::default`.
3577///
3578/// Layout notes:
3579/// * `repr(align(16))` so we can use it for `[T]` with `align_of::<T>() <= 16`.
3580/// * `repr(C)` so `inner` is at offset 0 (and thus guaranteed to actually be aligned to 16).
3581/// * `[u8; 1]` (to be initialized with 0) so it can be used for `Arc<CStr>`.
3582#[repr(C, align(16))]
3583struct SliceArcInnerForStatic {
3584    inner: ArcInner<[u8; 1]>,
3585}
3586#[cfg(not(no_global_oom_handling))]
3587const MAX_STATIC_INNER_SLICE_ALIGNMENT: usize = 16;
3588
3589static STATIC_INNER_SLICE: SliceArcInnerForStatic = SliceArcInnerForStatic {
3590    inner: ArcInner {
3591        strong: atomic::AtomicUsize::new(1),
3592        weak: atomic::AtomicUsize::new(1),
3593        data: [0],
3594    },
3595};
3596
3597#[cfg(not(no_global_oom_handling))]
3598#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3599impl Default for Arc<str> {
3600    /// Creates an empty str inside an Arc
3601    ///
3602    /// This may or may not share an allocation with other Arcs.
3603    #[inline]
3604    fn default() -> Self {
3605        let arc: Arc<[u8]> = Default::default();
3606        debug_assert!(core::str::from_utf8(&*arc).is_ok());
3607        let (ptr, alloc) = Arc::into_inner_with_allocator(arc);
3608        unsafe { Arc::from_ptr_in(ptr.as_ptr() as *mut ArcInner<str>, alloc) }
3609    }
3610}
3611
3612#[cfg(not(no_global_oom_handling))]
3613#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3614impl Default for Arc<core::ffi::CStr> {
3615    /// Creates an empty CStr inside an Arc
3616    ///
3617    /// This may or may not share an allocation with other Arcs.
3618    #[inline]
3619    fn default() -> Self {
3620        use core::ffi::CStr;
3621        let inner: NonNull<ArcInner<[u8]>> = NonNull::from(&STATIC_INNER_SLICE.inner);
3622        let inner: NonNull<ArcInner<CStr>> =
3623            NonNull::new(inner.as_ptr() as *mut ArcInner<CStr>).unwrap();
3624        // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3625        let this: mem::ManuallyDrop<Arc<CStr>> =
3626            unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3627        (*this).clone()
3628    }
3629}
3630
3631#[cfg(not(no_global_oom_handling))]
3632#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3633impl<T> Default for Arc<[T]> {
3634    /// Creates an empty `[T]` inside an Arc
3635    ///
3636    /// This may or may not share an allocation with other Arcs.
3637    #[inline]
3638    fn default() -> Self {
3639        if align_of::<T>() <= MAX_STATIC_INNER_SLICE_ALIGNMENT {
3640            // We take a reference to the whole struct instead of the ArcInner<[u8; 1]> inside it so
3641            // we don't shrink the range of bytes the ptr is allowed to access under Stacked Borrows.
3642            // (Miri complains on 32-bit targets with Arc<[Align16]> otherwise.)
3643            // (Note that NonNull::from(&STATIC_INNER_SLICE.inner) is fine under Tree Borrows.)
3644            let inner: NonNull<SliceArcInnerForStatic> = NonNull::from(&STATIC_INNER_SLICE);
3645            let inner: NonNull<ArcInner<[T; 0]>> = inner.cast();
3646            // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3647            let this: mem::ManuallyDrop<Arc<[T; 0]>> =
3648                unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3649            return (*this).clone();
3650        }
3651
3652        // If T's alignment is too large for the static, make a new unique allocation.
3653        let arr: [T; 0] = [];
3654        Arc::from(arr)
3655    }
3656}
3657
3658#[stable(feature = "rust1", since = "1.0.0")]
3659impl<T: ?Sized + Hash, A: Allocator> Hash for Arc<T, A> {
3660    fn hash<H: Hasher>(&self, state: &mut H) {
3661        (**self).hash(state)
3662    }
3663}
3664
3665#[cfg(not(no_global_oom_handling))]
3666#[stable(feature = "from_for_ptrs", since = "1.6.0")]
3667impl<T> From<T> for Arc<T> {
3668    /// Converts a `T` into an `Arc<T>`
3669    ///
3670    /// The conversion moves the value into a
3671    /// newly allocated `Arc`. It is equivalent to
3672    /// calling `Arc::new(t)`.
3673    ///
3674    /// # Example
3675    /// ```rust
3676    /// # use std::sync::Arc;
3677    /// let x = 5;
3678    /// let arc = Arc::new(5);
3679    ///
3680    /// assert_eq!(Arc::from(x), arc);
3681    /// ```
3682    fn from(t: T) -> Self {
3683        Arc::new(t)
3684    }
3685}
3686
3687#[cfg(not(no_global_oom_handling))]
3688#[stable(feature = "shared_from_array", since = "1.74.0")]
3689impl<T, const N: usize> From<[T; N]> for Arc<[T]> {
3690    /// Converts a [`[T; N]`](prim@array) into an `Arc<[T]>`.
3691    ///
3692    /// The conversion moves the array into a newly allocated `Arc`.
3693    ///
3694    /// # Example
3695    ///
3696    /// ```
3697    /// # use std::sync::Arc;
3698    /// let original: [i32; 3] = [1, 2, 3];
3699    /// let shared: Arc<[i32]> = Arc::from(original);
3700    /// assert_eq!(&[1, 2, 3], &shared[..]);
3701    /// ```
3702    #[inline]
3703    fn from(v: [T; N]) -> Arc<[T]> {
3704        Arc::<[T; N]>::from(v)
3705    }
3706}
3707
3708#[cfg(not(no_global_oom_handling))]
3709#[stable(feature = "shared_from_slice", since = "1.21.0")]
3710impl<T: Clone> From<&[T]> for Arc<[T]> {
3711    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3712    ///
3713    /// # Example
3714    ///
3715    /// ```
3716    /// # use std::sync::Arc;
3717    /// let original: &[i32] = &[1, 2, 3];
3718    /// let shared: Arc<[i32]> = Arc::from(original);
3719    /// assert_eq!(&[1, 2, 3], &shared[..]);
3720    /// ```
3721    #[inline]
3722    fn from(v: &[T]) -> Arc<[T]> {
3723        <Self as ArcFromSlice<T>>::from_slice(v)
3724    }
3725}
3726
3727#[cfg(not(no_global_oom_handling))]
3728#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3729impl<T: Clone> From<&mut [T]> for Arc<[T]> {
3730    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3731    ///
3732    /// # Example
3733    ///
3734    /// ```
3735    /// # use std::sync::Arc;
3736    /// let mut original = [1, 2, 3];
3737    /// let original: &mut [i32] = &mut original;
3738    /// let shared: Arc<[i32]> = Arc::from(original);
3739    /// assert_eq!(&[1, 2, 3], &shared[..]);
3740    /// ```
3741    #[inline]
3742    fn from(v: &mut [T]) -> Arc<[T]> {
3743        Arc::from(&*v)
3744    }
3745}
3746
3747#[cfg(not(no_global_oom_handling))]
3748#[stable(feature = "shared_from_slice", since = "1.21.0")]
3749impl From<&str> for Arc<str> {
3750    /// Allocates a reference-counted `str` and copies `v` into it.
3751    ///
3752    /// # Example
3753    ///
3754    /// ```
3755    /// # use std::sync::Arc;
3756    /// let shared: Arc<str> = Arc::from("eggplant");
3757    /// assert_eq!("eggplant", &shared[..]);
3758    /// ```
3759    #[inline]
3760    fn from(v: &str) -> Arc<str> {
3761        let arc = Arc::<[u8]>::from(v.as_bytes());
3762        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
3763    }
3764}
3765
3766#[cfg(not(no_global_oom_handling))]
3767#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3768impl From<&mut str> for Arc<str> {
3769    /// Allocates a reference-counted `str` and copies `v` into it.
3770    ///
3771    /// # Example
3772    ///
3773    /// ```
3774    /// # use std::sync::Arc;
3775    /// let mut original = String::from("eggplant");
3776    /// let original: &mut str = &mut original;
3777    /// let shared: Arc<str> = Arc::from(original);
3778    /// assert_eq!("eggplant", &shared[..]);
3779    /// ```
3780    #[inline]
3781    fn from(v: &mut str) -> Arc<str> {
3782        Arc::from(&*v)
3783    }
3784}
3785
3786#[cfg(not(no_global_oom_handling))]
3787#[stable(feature = "shared_from_slice", since = "1.21.0")]
3788impl From<String> for Arc<str> {
3789    /// Allocates a reference-counted `str` and copies `v` into it.
3790    ///
3791    /// # Example
3792    ///
3793    /// ```
3794    /// # use std::sync::Arc;
3795    /// let unique: String = "eggplant".to_owned();
3796    /// let shared: Arc<str> = Arc::from(unique);
3797    /// assert_eq!("eggplant", &shared[..]);
3798    /// ```
3799    #[inline]
3800    fn from(v: String) -> Arc<str> {
3801        Arc::from(&v[..])
3802    }
3803}
3804
3805#[cfg(not(no_global_oom_handling))]
3806#[stable(feature = "shared_from_slice", since = "1.21.0")]
3807impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Arc<T, A> {
3808    /// Move a boxed object to a new, reference-counted allocation.
3809    ///
3810    /// # Example
3811    ///
3812    /// ```
3813    /// # use std::sync::Arc;
3814    /// let unique: Box<str> = Box::from("eggplant");
3815    /// let shared: Arc<str> = Arc::from(unique);
3816    /// assert_eq!("eggplant", &shared[..]);
3817    /// ```
3818    #[inline]
3819    fn from(v: Box<T, A>) -> Arc<T, A> {
3820        Arc::from_box_in(v)
3821    }
3822}
3823
3824#[cfg(not(no_global_oom_handling))]
3825#[stable(feature = "shared_from_slice", since = "1.21.0")]
3826impl<T, A: Allocator + Clone> From<Vec<T, A>> for Arc<[T], A> {
3827    /// Allocates a reference-counted slice and moves `v`'s items into it.
3828    ///
3829    /// # Example
3830    ///
3831    /// ```
3832    /// # use std::sync::Arc;
3833    /// let unique: Vec<i32> = vec![1, 2, 3];
3834    /// let shared: Arc<[i32]> = Arc::from(unique);
3835    /// assert_eq!(&[1, 2, 3], &shared[..]);
3836    /// ```
3837    #[inline]
3838    fn from(v: Vec<T, A>) -> Arc<[T], A> {
3839        unsafe {
3840            let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
3841
3842            let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
3843            ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).data) as *mut T, len);
3844
3845            // Create a `Vec<T, &A>` with length 0, to deallocate the buffer
3846            // without dropping its contents or the allocator
3847            let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);
3848
3849            Self::from_ptr_in(rc_ptr, alloc)
3850        }
3851    }
3852}
3853
3854#[stable(feature = "shared_from_cow", since = "1.45.0")]
3855impl<'a, B> From<Cow<'a, B>> for Arc<B>
3856where
3857    B: ToOwned + ?Sized,
3858    Arc<B>: From<&'a B> + From<B::Owned>,
3859{
3860    /// Creates an atomically reference-counted pointer from a clone-on-write
3861    /// pointer by copying its content.
3862    ///
3863    /// # Example
3864    ///
3865    /// ```rust
3866    /// # use std::sync::Arc;
3867    /// # use std::borrow::Cow;
3868    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3869    /// let shared: Arc<str> = Arc::from(cow);
3870    /// assert_eq!("eggplant", &shared[..]);
3871    /// ```
3872    #[inline]
3873    fn from(cow: Cow<'a, B>) -> Arc<B> {
3874        match cow {
3875            Cow::Borrowed(s) => Arc::from(s),
3876            Cow::Owned(s) => Arc::from(s),
3877        }
3878    }
3879}
3880
3881#[stable(feature = "shared_from_str", since = "1.62.0")]
3882impl From<Arc<str>> for Arc<[u8]> {
3883    /// Converts an atomically reference-counted string slice into a byte slice.
3884    ///
3885    /// # Example
3886    ///
3887    /// ```
3888    /// # use std::sync::Arc;
3889    /// let string: Arc<str> = Arc::from("eggplant");
3890    /// let bytes: Arc<[u8]> = Arc::from(string);
3891    /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
3892    /// ```
3893    #[inline]
3894    fn from(rc: Arc<str>) -> Self {
3895        // SAFETY: `str` has the same layout as `[u8]`.
3896        unsafe { Arc::from_raw(Arc::into_raw(rc) as *const [u8]) }
3897    }
3898}
3899
3900#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
3901impl<T, A: Allocator, const N: usize> TryFrom<Arc<[T], A>> for Arc<[T; N], A> {
3902    type Error = Arc<[T], A>;
3903
3904    fn try_from(boxed_slice: Arc<[T], A>) -> Result<Self, Self::Error> {
3905        if boxed_slice.len() == N {
3906            let (ptr, alloc) = Arc::into_inner_with_allocator(boxed_slice);
3907            Ok(unsafe { Arc::from_inner_in(ptr.cast(), alloc) })
3908        } else {
3909            Err(boxed_slice)
3910        }
3911    }
3912}
3913
3914#[cfg(not(no_global_oom_handling))]
3915#[stable(feature = "shared_from_iter", since = "1.37.0")]
3916impl<T> FromIterator<T> for Arc<[T]> {
3917    /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
3918    ///
3919    /// # Performance characteristics
3920    ///
3921    /// ## The general case
3922    ///
3923    /// In the general case, collecting into `Arc<[T]>` is done by first
3924    /// collecting into a `Vec<T>`. That is, when writing the following:
3925    ///
3926    /// ```rust
3927    /// # use std::sync::Arc;
3928    /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
3929    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
3930    /// ```
3931    ///
3932    /// this behaves as if we wrote:
3933    ///
3934    /// ```rust
3935    /// # use std::sync::Arc;
3936    /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
3937    ///     .collect::<Vec<_>>() // The first set of allocations happens here.
3938    ///     .into(); // A second allocation for `Arc<[T]>` happens here.
3939    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
3940    /// ```
3941    ///
3942    /// This will allocate as many times as needed for constructing the `Vec<T>`
3943    /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
3944    ///
3945    /// ## Iterators of known length
3946    ///
3947    /// When your `Iterator` implements `TrustedLen` and is of an exact size,
3948    /// a single allocation will be made for the `Arc<[T]>`. For example:
3949    ///
3950    /// ```rust
3951    /// # use std::sync::Arc;
3952    /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
3953    /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
3954    /// ```
3955    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
3956        ToArcSlice::to_arc_slice(iter.into_iter())
3957    }
3958}
3959
3960#[cfg(not(no_global_oom_handling))]
3961/// Specialization trait used for collecting into `Arc<[T]>`.
3962trait ToArcSlice<T>: Iterator<Item = T> + Sized {
3963    fn to_arc_slice(self) -> Arc<[T]>;
3964}
3965
3966#[cfg(not(no_global_oom_handling))]
3967impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I {
3968    default fn to_arc_slice(self) -> Arc<[T]> {
3969        self.collect::<Vec<T>>().into()
3970    }
3971}
3972
3973#[cfg(not(no_global_oom_handling))]
3974impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I {
3975    fn to_arc_slice(self) -> Arc<[T]> {
3976        // This is the case for a `TrustedLen` iterator.
3977        let (low, high) = self.size_hint();
3978        if let Some(high) = high {
3979            debug_assert_eq!(
3980                low,
3981                high,
3982                "TrustedLen iterator's size hint is not exact: {:?}",
3983                (low, high)
3984            );
3985
3986            unsafe {
3987                // SAFETY: We need to ensure that the iterator has an exact length and we have.
3988                Arc::from_iter_exact(self, low)
3989            }
3990        } else {
3991            // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
3992            // length exceeding `usize::MAX`.
3993            // The default implementation would collect into a vec which would panic.
3994            // Thus we panic here immediately without invoking `Vec` code.
3995            panic!("capacity overflow");
3996        }
3997    }
3998}
3999
4000#[stable(feature = "rust1", since = "1.0.0")]
4001impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Arc<T, A> {
4002    fn borrow(&self) -> &T {
4003        &**self
4004    }
4005}
4006
4007#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
4008impl<T: ?Sized, A: Allocator> AsRef<T> for Arc<T, A> {
4009    fn as_ref(&self) -> &T {
4010        &**self
4011    }
4012}
4013
4014#[stable(feature = "pin", since = "1.33.0")]
4015impl<T: ?Sized, A: Allocator> Unpin for Arc<T, A> {}
4016
4017/// Gets the offset within an `ArcInner` for the payload behind a pointer.
4018///
4019/// # Safety
4020///
4021/// The pointer must point to (and have valid metadata for) a previously
4022/// valid instance of T, but the T is allowed to be dropped.
4023unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
4024    // Align the unsized value to the end of the ArcInner.
4025    // Because RcInner is repr(C), it will always be the last field in memory.
4026    // SAFETY: since the only unsized types possible are slices, trait objects,
4027    // and extern types, the input safety requirement is currently enough to
4028    // satisfy the requirements of align_of_val_raw; this is an implementation
4029    // detail of the language that must not be relied upon outside of std.
4030    unsafe { data_offset_align(align_of_val_raw(ptr)) }
4031}
4032
4033#[inline]
4034fn data_offset_align(align: usize) -> usize {
4035    let layout = Layout::new::<ArcInner<()>>();
4036    layout.size() + layout.padding_needed_for(align)
4037}
4038
4039/// A unique owning pointer to an [`ArcInner`] **that does not imply the contents are initialized,**
4040/// but will deallocate it (without dropping the value) when dropped.
4041///
4042/// This is a helper for [`Arc::make_mut()`] to ensure correct cleanup on panic.
4043#[cfg(not(no_global_oom_handling))]
4044struct UniqueArcUninit<T: ?Sized, A: Allocator> {
4045    ptr: NonNull<ArcInner<T>>,
4046    layout_for_value: Layout,
4047    alloc: Option<A>,
4048}
4049
4050#[cfg(not(no_global_oom_handling))]
4051impl<T: ?Sized, A: Allocator> UniqueArcUninit<T, A> {
4052    /// Allocates an ArcInner with layout suitable to contain `for_value` or a clone of it.
4053    fn new(for_value: &T, alloc: A) -> UniqueArcUninit<T, A> {
4054        let layout = Layout::for_value(for_value);
4055        let ptr = unsafe {
4056            Arc::allocate_for_layout(
4057                layout,
4058                |layout_for_arcinner| alloc.allocate(layout_for_arcinner),
4059                |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const ArcInner<T>),
4060            )
4061        };
4062        Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
4063    }
4064
4065    /// Returns the pointer to be written into to initialize the [`Arc`].
4066    fn data_ptr(&mut self) -> *mut T {
4067        let offset = data_offset_align(self.layout_for_value.align());
4068        unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
4069    }
4070
4071    /// Upgrade this into a normal [`Arc`].
4072    ///
4073    /// # Safety
4074    ///
4075    /// The data must have been initialized (by writing to [`Self::data_ptr()`]).
4076    unsafe fn into_arc(self) -> Arc<T, A> {
4077        let mut this = ManuallyDrop::new(self);
4078        let ptr = this.ptr.as_ptr();
4079        let alloc = this.alloc.take().unwrap();
4080
4081        // SAFETY: The pointer is valid as per `UniqueArcUninit::new`, and the caller is responsible
4082        // for having initialized the data.
4083        unsafe { Arc::from_ptr_in(ptr, alloc) }
4084    }
4085}
4086
4087#[cfg(not(no_global_oom_handling))]
4088impl<T: ?Sized, A: Allocator> Drop for UniqueArcUninit<T, A> {
4089    fn drop(&mut self) {
4090        // SAFETY:
4091        // * new() produced a pointer safe to deallocate.
4092        // * We own the pointer unless into_arc() was called, which forgets us.
4093        unsafe {
4094            self.alloc.take().unwrap().deallocate(
4095                self.ptr.cast(),
4096                arcinner_layout_for_value_layout(self.layout_for_value),
4097            );
4098        }
4099    }
4100}
4101
4102#[stable(feature = "arc_error", since = "1.52.0")]
4103impl<T: core::error::Error + ?Sized> core::error::Error for Arc<T> {
4104    #[allow(deprecated, deprecated_in_future)]
4105    fn description(&self) -> &str {
4106        core::error::Error::description(&**self)
4107    }
4108
4109    #[allow(deprecated)]
4110    fn cause(&self) -> Option<&dyn core::error::Error> {
4111        core::error::Error::cause(&**self)
4112    }
4113
4114    fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
4115        core::error::Error::source(&**self)
4116    }
4117
4118    fn provide<'a>(&'a self, req: &mut core::error::Request<'a>) {
4119        core::error::Error::provide(&**self, req);
4120    }
4121}
4122
4123/// A uniquely owned [`Arc`].
4124///
4125/// This represents an `Arc` that is known to be uniquely owned -- that is, have exactly one strong
4126/// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
4127/// references will fail unless the `UniqueArc` they point to has been converted into a regular `Arc`.
4128///
4129/// Because it is uniquely owned, the contents of a `UniqueArc` can be freely mutated. A common
4130/// use case is to have an object be mutable during its initialization phase but then have it become
4131/// immutable and converted to a normal `Arc`.
4132///
4133/// This can be used as a flexible way to create cyclic data structures, as in the example below.
4134///
4135/// ```
4136/// #![feature(unique_rc_arc)]
4137/// use std::sync::{Arc, Weak, UniqueArc};
4138///
4139/// struct Gadget {
4140///     me: Weak<Gadget>,
4141/// }
4142///
4143/// fn create_gadget() -> Option<Arc<Gadget>> {
4144///     let mut rc = UniqueArc::new(Gadget {
4145///         me: Weak::new(),
4146///     });
4147///     rc.me = UniqueArc::downgrade(&rc);
4148///     Some(UniqueArc::into_arc(rc))
4149/// }
4150///
4151/// create_gadget().unwrap();
4152/// ```
4153///
4154/// An advantage of using `UniqueArc` over [`Arc::new_cyclic`] to build cyclic data structures is that
4155/// [`Arc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
4156/// previous example, `UniqueArc` allows for more flexibility in the construction of cyclic data,
4157/// including fallible or async constructors.
4158#[unstable(feature = "unique_rc_arc", issue = "112566")]
4159pub struct UniqueArc<
4160    T: ?Sized,
4161    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
4162> {
4163    ptr: NonNull<ArcInner<T>>,
4164    // Define the ownership of `ArcInner<T>` for drop-check
4165    _marker: PhantomData<ArcInner<T>>,
4166    // Invariance is necessary for soundness: once other `Weak`
4167    // references exist, we already have a form of shared mutability!
4168    _marker2: PhantomData<*mut T>,
4169    alloc: A,
4170}
4171
4172#[unstable(feature = "unique_rc_arc", issue = "112566")]
4173unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for UniqueArc<T, A> {}
4174
4175#[unstable(feature = "unique_rc_arc", issue = "112566")]
4176unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for UniqueArc<T, A> {}
4177
4178#[unstable(feature = "unique_rc_arc", issue = "112566")]
4179// #[unstable(feature = "coerce_unsized", issue = "18598")]
4180impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueArc<U, A>>
4181    for UniqueArc<T, A>
4182{
4183}
4184
4185//#[unstable(feature = "unique_rc_arc", issue = "112566")]
4186#[unstable(feature = "dispatch_from_dyn", issue = "none")]
4187impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueArc<U>> for UniqueArc<T> {}
4188
4189#[unstable(feature = "unique_rc_arc", issue = "112566")]
4190impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueArc<T, A> {
4191    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4192        fmt::Display::fmt(&**self, f)
4193    }
4194}
4195
4196#[unstable(feature = "unique_rc_arc", issue = "112566")]
4197impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueArc<T, A> {
4198    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4199        fmt::Debug::fmt(&**self, f)
4200    }
4201}
4202
4203#[unstable(feature = "unique_rc_arc", issue = "112566")]
4204impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueArc<T, A> {
4205    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4206        fmt::Pointer::fmt(&(&raw const **self), f)
4207    }
4208}
4209
4210#[unstable(feature = "unique_rc_arc", issue = "112566")]
4211impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueArc<T, A> {
4212    fn borrow(&self) -> &T {
4213        &**self
4214    }
4215}
4216
4217#[unstable(feature = "unique_rc_arc", issue = "112566")]
4218impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueArc<T, A> {
4219    fn borrow_mut(&mut self) -> &mut T {
4220        &mut **self
4221    }
4222}
4223
4224#[unstable(feature = "unique_rc_arc", issue = "112566")]
4225impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueArc<T, A> {
4226    fn as_ref(&self) -> &T {
4227        &**self
4228    }
4229}
4230
4231#[unstable(feature = "unique_rc_arc", issue = "112566")]
4232impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueArc<T, A> {
4233    fn as_mut(&mut self) -> &mut T {
4234        &mut **self
4235    }
4236}
4237
4238#[unstable(feature = "unique_rc_arc", issue = "112566")]
4239impl<T: ?Sized, A: Allocator> Unpin for UniqueArc<T, A> {}
4240
4241#[unstable(feature = "unique_rc_arc", issue = "112566")]
4242impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueArc<T, A> {
4243    /// Equality for two `UniqueArc`s.
4244    ///
4245    /// Two `UniqueArc`s are equal if their inner values are equal.
4246    ///
4247    /// # Examples
4248    ///
4249    /// ```
4250    /// #![feature(unique_rc_arc)]
4251    /// use std::sync::UniqueArc;
4252    ///
4253    /// let five = UniqueArc::new(5);
4254    ///
4255    /// assert!(five == UniqueArc::new(5));
4256    /// ```
4257    #[inline]
4258    fn eq(&self, other: &Self) -> bool {
4259        PartialEq::eq(&**self, &**other)
4260    }
4261}
4262
4263#[unstable(feature = "unique_rc_arc", issue = "112566")]
4264impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueArc<T, A> {
4265    /// Partial comparison for two `UniqueArc`s.
4266    ///
4267    /// The two are compared by calling `partial_cmp()` on their inner values.
4268    ///
4269    /// # Examples
4270    ///
4271    /// ```
4272    /// #![feature(unique_rc_arc)]
4273    /// use std::sync::UniqueArc;
4274    /// use std::cmp::Ordering;
4275    ///
4276    /// let five = UniqueArc::new(5);
4277    ///
4278    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueArc::new(6)));
4279    /// ```
4280    #[inline(always)]
4281    fn partial_cmp(&self, other: &UniqueArc<T, A>) -> Option<Ordering> {
4282        (**self).partial_cmp(&**other)
4283    }
4284
4285    /// Less-than comparison for two `UniqueArc`s.
4286    ///
4287    /// The two are compared by calling `<` on their inner values.
4288    ///
4289    /// # Examples
4290    ///
4291    /// ```
4292    /// #![feature(unique_rc_arc)]
4293    /// use std::sync::UniqueArc;
4294    ///
4295    /// let five = UniqueArc::new(5);
4296    ///
4297    /// assert!(five < UniqueArc::new(6));
4298    /// ```
4299    #[inline(always)]
4300    fn lt(&self, other: &UniqueArc<T, A>) -> bool {
4301        **self < **other
4302    }
4303
4304    /// 'Less than or equal to' comparison for two `UniqueArc`s.
4305    ///
4306    /// The two are compared by calling `<=` on their inner values.
4307    ///
4308    /// # Examples
4309    ///
4310    /// ```
4311    /// #![feature(unique_rc_arc)]
4312    /// use std::sync::UniqueArc;
4313    ///
4314    /// let five = UniqueArc::new(5);
4315    ///
4316    /// assert!(five <= UniqueArc::new(5));
4317    /// ```
4318    #[inline(always)]
4319    fn le(&self, other: &UniqueArc<T, A>) -> bool {
4320        **self <= **other
4321    }
4322
4323    /// Greater-than comparison for two `UniqueArc`s.
4324    ///
4325    /// The two are compared by calling `>` on their inner values.
4326    ///
4327    /// # Examples
4328    ///
4329    /// ```
4330    /// #![feature(unique_rc_arc)]
4331    /// use std::sync::UniqueArc;
4332    ///
4333    /// let five = UniqueArc::new(5);
4334    ///
4335    /// assert!(five > UniqueArc::new(4));
4336    /// ```
4337    #[inline(always)]
4338    fn gt(&self, other: &UniqueArc<T, A>) -> bool {
4339        **self > **other
4340    }
4341
4342    /// 'Greater than or equal to' comparison for two `UniqueArc`s.
4343    ///
4344    /// The two are compared by calling `>=` on their inner values.
4345    ///
4346    /// # Examples
4347    ///
4348    /// ```
4349    /// #![feature(unique_rc_arc)]
4350    /// use std::sync::UniqueArc;
4351    ///
4352    /// let five = UniqueArc::new(5);
4353    ///
4354    /// assert!(five >= UniqueArc::new(5));
4355    /// ```
4356    #[inline(always)]
4357    fn ge(&self, other: &UniqueArc<T, A>) -> bool {
4358        **self >= **other
4359    }
4360}
4361
4362#[unstable(feature = "unique_rc_arc", issue = "112566")]
4363impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueArc<T, A> {
4364    /// Comparison for two `UniqueArc`s.
4365    ///
4366    /// The two are compared by calling `cmp()` on their inner values.
4367    ///
4368    /// # Examples
4369    ///
4370    /// ```
4371    /// #![feature(unique_rc_arc)]
4372    /// use std::sync::UniqueArc;
4373    /// use std::cmp::Ordering;
4374    ///
4375    /// let five = UniqueArc::new(5);
4376    ///
4377    /// assert_eq!(Ordering::Less, five.cmp(&UniqueArc::new(6)));
4378    /// ```
4379    #[inline]
4380    fn cmp(&self, other: &UniqueArc<T, A>) -> Ordering {
4381        (**self).cmp(&**other)
4382    }
4383}
4384
4385#[unstable(feature = "unique_rc_arc", issue = "112566")]
4386impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueArc<T, A> {}
4387
4388#[unstable(feature = "unique_rc_arc", issue = "112566")]
4389impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueArc<T, A> {
4390    fn hash<H: Hasher>(&self, state: &mut H) {
4391        (**self).hash(state);
4392    }
4393}
4394
4395impl<T> UniqueArc<T, Global> {
4396    /// Creates a new `UniqueArc`.
4397    ///
4398    /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4399    /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4400    /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4401    /// point to the new [`Arc`].
4402    #[cfg(not(no_global_oom_handling))]
4403    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4404    #[must_use]
4405    pub fn new(value: T) -> Self {
4406        Self::new_in(value, Global)
4407    }
4408}
4409
4410impl<T, A: Allocator> UniqueArc<T, A> {
4411    /// Creates a new `UniqueArc` in the provided allocator.
4412    ///
4413    /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4414    /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4415    /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4416    /// point to the new [`Arc`].
4417    #[cfg(not(no_global_oom_handling))]
4418    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4419    #[must_use]
4420    // #[unstable(feature = "allocator_api", issue = "32838")]
4421    pub fn new_in(data: T, alloc: A) -> Self {
4422        let (ptr, alloc) = Box::into_unique(Box::new_in(
4423            ArcInner {
4424                strong: atomic::AtomicUsize::new(0),
4425                // keep one weak reference so if all the weak pointers that are created are dropped
4426                // the UniqueArc still stays valid.
4427                weak: atomic::AtomicUsize::new(1),
4428                data,
4429            },
4430            alloc,
4431        ));
4432        Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc }
4433    }
4434}
4435
4436impl<T: ?Sized, A: Allocator> UniqueArc<T, A> {
4437    /// Converts the `UniqueArc` into a regular [`Arc`].
4438    ///
4439    /// This consumes the `UniqueArc` and returns a regular [`Arc`] that contains the `value` that
4440    /// is passed to `into_arc`.
4441    ///
4442    /// Any weak references created before this method is called can now be upgraded to strong
4443    /// references.
4444    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4445    #[must_use]
4446    pub fn into_arc(this: Self) -> Arc<T, A> {
4447        let this = ManuallyDrop::new(this);
4448
4449        // Move the allocator out.
4450        // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in
4451        // a `ManuallyDrop`.
4452        let alloc: A = unsafe { ptr::read(&this.alloc) };
4453
4454        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4455        unsafe {
4456            // Convert our weak reference into a strong reference
4457            (*this.ptr.as_ptr()).strong.store(1, Release);
4458            Arc::from_inner_in(this.ptr, alloc)
4459        }
4460    }
4461}
4462
4463impl<T: ?Sized, A: Allocator + Clone> UniqueArc<T, A> {
4464    /// Creates a new weak reference to the `UniqueArc`.
4465    ///
4466    /// Attempting to upgrade this weak reference will fail before the `UniqueArc` has been converted
4467    /// to a [`Arc`] using [`UniqueArc::into_arc`].
4468    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4469    #[must_use]
4470    pub fn downgrade(this: &Self) -> Weak<T, A> {
4471        // Using a relaxed ordering is alright here, as knowledge of the
4472        // original reference prevents other threads from erroneously deleting
4473        // the object or converting the object to a normal `Arc<T, A>`.
4474        //
4475        // Note that we don't need to test if the weak counter is locked because there
4476        // are no such operations like `Arc::get_mut` or `Arc::make_mut` that will lock
4477        // the weak counter.
4478        //
4479        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4480        let old_size = unsafe { (*this.ptr.as_ptr()).weak.fetch_add(1, Relaxed) };
4481
4482        // See comments in Arc::clone() for why we do this (for mem::forget).
4483        if old_size > MAX_REFCOUNT {
4484            abort();
4485        }
4486
4487        Weak { ptr: this.ptr, alloc: this.alloc.clone() }
4488    }
4489}
4490
4491#[unstable(feature = "unique_rc_arc", issue = "112566")]
4492impl<T: ?Sized, A: Allocator> Deref for UniqueArc<T, A> {
4493    type Target = T;
4494
4495    fn deref(&self) -> &T {
4496        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4497        unsafe { &self.ptr.as_ref().data }
4498    }
4499}
4500
4501// #[unstable(feature = "unique_rc_arc", issue = "112566")]
4502#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
4503unsafe impl<T: ?Sized> PinCoerceUnsized for UniqueArc<T> {}
4504
4505#[unstable(feature = "unique_rc_arc", issue = "112566")]
4506impl<T: ?Sized, A: Allocator> DerefMut for UniqueArc<T, A> {
4507    fn deref_mut(&mut self) -> &mut T {
4508        // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
4509        // have unique ownership and therefore it's safe to make a mutable reference because
4510        // `UniqueArc` owns the only strong reference to itself.
4511        // We also need to be careful to only create a mutable reference to the `data` field,
4512        // as a mutable reference to the entire `ArcInner` would assert uniqueness over the
4513        // ref count fields too, invalidating any attempt by `Weak`s to access the ref count.
4514        unsafe { &mut (*self.ptr.as_ptr()).data }
4515    }
4516}
4517
4518#[unstable(feature = "unique_rc_arc", issue = "112566")]
4519// #[unstable(feature = "deref_pure_trait", issue = "87121")]
4520unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueArc<T, A> {}
4521
4522#[unstable(feature = "unique_rc_arc", issue = "112566")]
4523unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for UniqueArc<T, A> {
4524    fn drop(&mut self) {
4525        // See `Arc::drop_slow` which drops an `Arc` with a strong count of 0.
4526        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4527        let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
4528
4529        unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
4530    }
4531}
Лучший частный хостинг