lynx   »   [go: up one dir, main page]

alloc/
string.rs

1//! A UTF-8–encoded, growable string.
2//!
3//! This module contains the [`String`] type, the [`ToString`] trait for
4//! converting to strings, and several error types that may result from
5//! working with [`String`]s.
6//!
7//! # Examples
8//!
9//! There are multiple ways to create a new [`String`] from a string literal:
10//!
11//! ```
12//! let s = "Hello".to_string();
13//!
14//! let s = String::from("world");
15//! let s: String = "also this".into();
16//! ```
17//!
18//! You can create a new [`String`] from an existing one by concatenating with
19//! `+`:
20//!
21//! ```
22//! let s = "Hello".to_string();
23//!
24//! let message = s + " world!";
25//! ```
26//!
27//! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
28//! it. You can do the reverse too.
29//!
30//! ```
31//! let sparkle_heart = vec![240, 159, 146, 150];
32//!
33//! // We know these bytes are valid, so we'll use `unwrap()`.
34//! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
35//!
36//! assert_eq!("💖", sparkle_heart);
37//!
38//! let bytes = sparkle_heart.into_bytes();
39//!
40//! assert_eq!(bytes, [240, 159, 146, 150]);
41//! ```
42
43#![stable(feature = "rust1", since = "1.0.0")]
44
45use core::error::Error;
46use core::iter::FusedIterator;
47#[cfg(not(no_global_oom_handling))]
48use core::iter::from_fn;
49#[cfg(not(no_global_oom_handling))]
50use core::ops::Add;
51#[cfg(not(no_global_oom_handling))]
52use core::ops::AddAssign;
53#[cfg(not(no_global_oom_handling))]
54use core::ops::Bound::{Excluded, Included, Unbounded};
55use core::ops::{self, Range, RangeBounds};
56use core::str::pattern::{Pattern, Utf8Pattern};
57use core::{fmt, hash, ptr, slice};
58
59#[cfg(not(no_global_oom_handling))]
60use crate::alloc::Allocator;
61#[cfg(not(no_global_oom_handling))]
62use crate::borrow::{Cow, ToOwned};
63use crate::boxed::Box;
64use crate::collections::TryReserveError;
65use crate::str::{self, CharIndices, Chars, Utf8Error, from_utf8_unchecked_mut};
66#[cfg(not(no_global_oom_handling))]
67use crate::str::{FromStr, from_boxed_utf8_unchecked};
68use crate::vec::{self, Vec};
69
70/// A UTF-8–encoded, growable string.
71///
72/// `String` is the most common string type. It has ownership over the contents
73/// of the string, stored in a heap-allocated buffer (see [Representation](#representation)).
74/// It is closely related to its borrowed counterpart, the primitive [`str`].
75///
76/// # Examples
77///
78/// You can create a `String` from [a literal string][`&str`] with [`String::from`]:
79///
80/// [`String::from`]: From::from
81///
82/// ```
83/// let hello = String::from("Hello, world!");
84/// ```
85///
86/// You can append a [`char`] to a `String` with the [`push`] method, and
87/// append a [`&str`] with the [`push_str`] method:
88///
89/// ```
90/// let mut hello = String::from("Hello, ");
91///
92/// hello.push('w');
93/// hello.push_str("orld!");
94/// ```
95///
96/// [`push`]: String::push
97/// [`push_str`]: String::push_str
98///
99/// If you have a vector of UTF-8 bytes, you can create a `String` from it with
100/// the [`from_utf8`] method:
101///
102/// ```
103/// // some bytes, in a vector
104/// let sparkle_heart = vec![240, 159, 146, 150];
105///
106/// // We know these bytes are valid, so we'll use `unwrap()`.
107/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
108///
109/// assert_eq!("💖", sparkle_heart);
110/// ```
111///
112/// [`from_utf8`]: String::from_utf8
113///
114/// # UTF-8
115///
116/// `String`s are always valid UTF-8. If you need a non-UTF-8 string, consider
117/// [`OsString`]. It is similar, but without the UTF-8 constraint. Because UTF-8
118/// is a variable width encoding, `String`s are typically smaller than an array of
119/// the same `char`s:
120///
121/// ```
122/// // `s` is ASCII which represents each `char` as one byte
123/// let s = "hello";
124/// assert_eq!(s.len(), 5);
125///
126/// // A `char` array with the same contents would be longer because
127/// // every `char` is four bytes
128/// let s = ['h', 'e', 'l', 'l', 'o'];
129/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
130/// assert_eq!(size, 20);
131///
132/// // However, for non-ASCII strings, the difference will be smaller
133/// // and sometimes they are the same
134/// let s = "💖💖💖💖💖";
135/// assert_eq!(s.len(), 20);
136///
137/// let s = ['💖', '💖', '💖', '💖', '💖'];
138/// let size: usize = s.into_iter().map(|c| size_of_val(&c)).sum();
139/// assert_eq!(size, 20);
140/// ```
141///
142/// This raises interesting questions as to how `s[i]` should work.
143/// What should `i` be here? Several options include byte indices and
144/// `char` indices but, because of UTF-8 encoding, only byte indices
145/// would provide constant time indexing. Getting the `i`th `char`, for
146/// example, is available using [`chars`]:
147///
148/// ```
149/// let s = "hello";
150/// let third_character = s.chars().nth(2);
151/// assert_eq!(third_character, Some('l'));
152///
153/// let s = "💖💖💖💖💖";
154/// let third_character = s.chars().nth(2);
155/// assert_eq!(third_character, Some('💖'));
156/// ```
157///
158/// Next, what should `s[i]` return? Because indexing returns a reference
159/// to underlying data it could be `&u8`, `&[u8]`, or something else similar.
160/// Since we're only providing one index, `&u8` makes the most sense but that
161/// might not be what the user expects and can be explicitly achieved with
162/// [`as_bytes()`]:
163///
164/// ```
165/// // The first byte is 104 - the byte value of `'h'`
166/// let s = "hello";
167/// assert_eq!(s.as_bytes()[0], 104);
168/// // or
169/// assert_eq!(s.as_bytes()[0], b'h');
170///
171/// // The first byte is 240 which isn't obviously useful
172/// let s = "💖💖💖💖💖";
173/// assert_eq!(s.as_bytes()[0], 240);
174/// ```
175///
176/// Due to these ambiguities/restrictions, indexing with a `usize` is simply
177/// forbidden:
178///
179/// ```compile_fail,E0277
180/// let s = "hello";
181///
182/// // The following will not compile!
183/// println!("The first letter of s is {}", s[0]);
184/// ```
185///
186/// It is more clear, however, how `&s[i..j]` should work (that is,
187/// indexing with a range). It should accept byte indices (to be constant-time)
188/// and return a `&str` which is UTF-8 encoded. This is also called "string slicing".
189/// Note this will panic if the byte indices provided are not character
190/// boundaries - see [`is_char_boundary`] for more details. See the implementations
191/// for [`SliceIndex<str>`] for more details on string slicing. For a non-panicking
192/// version of string slicing, see [`get`].
193///
194/// [`OsString`]: ../../std/ffi/struct.OsString.html "ffi::OsString"
195/// [`SliceIndex<str>`]: core::slice::SliceIndex
196/// [`as_bytes()`]: str::as_bytes
197/// [`get`]: str::get
198/// [`is_char_boundary`]: str::is_char_boundary
199///
200/// The [`bytes`] and [`chars`] methods return iterators over the bytes and
201/// codepoints of the string, respectively. To iterate over codepoints along
202/// with byte indices, use [`char_indices`].
203///
204/// [`bytes`]: str::bytes
205/// [`chars`]: str::chars
206/// [`char_indices`]: str::char_indices
207///
208/// # Deref
209///
210/// `String` implements <code>[Deref]<Target = [str]></code>, and so inherits all of [`str`]'s
211/// methods. In addition, this means that you can pass a `String` to a
212/// function which takes a [`&str`] by using an ampersand (`&`):
213///
214/// ```
215/// fn takes_str(s: &str) { }
216///
217/// let s = String::from("Hello");
218///
219/// takes_str(&s);
220/// ```
221///
222/// This will create a [`&str`] from the `String` and pass it in. This
223/// conversion is very inexpensive, and so generally, functions will accept
224/// [`&str`]s as arguments unless they need a `String` for some specific
225/// reason.
226///
227/// In certain cases Rust doesn't have enough information to make this
228/// conversion, known as [`Deref`] coercion. In the following example a string
229/// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
230/// `example_func` takes anything that implements the trait. In this case Rust
231/// would need to make two implicit conversions, which Rust doesn't have the
232/// means to do. For that reason, the following example will not compile.
233///
234/// ```compile_fail,E0277
235/// trait TraitExample {}
236///
237/// impl<'a> TraitExample for &'a str {}
238///
239/// fn example_func<A: TraitExample>(example_arg: A) {}
240///
241/// let example_string = String::from("example_string");
242/// example_func(&example_string);
243/// ```
244///
245/// There are two options that would work instead. The first would be to
246/// change the line `example_func(&example_string);` to
247/// `example_func(example_string.as_str());`, using the method [`as_str()`]
248/// to explicitly extract the string slice containing the string. The second
249/// way changes `example_func(&example_string);` to
250/// `example_func(&*example_string);`. In this case we are dereferencing a
251/// `String` to a [`str`], then referencing the [`str`] back to
252/// [`&str`]. The second way is more idiomatic, however both work to do the
253/// conversion explicitly rather than relying on the implicit conversion.
254///
255/// # Representation
256///
257/// A `String` is made up of three components: a pointer to some bytes, a
258/// length, and a capacity. The pointer points to the internal buffer which `String`
259/// uses to store its data. The length is the number of bytes currently stored
260/// in the buffer, and the capacity is the size of the buffer in bytes. As such,
261/// the length will always be less than or equal to the capacity.
262///
263/// This buffer is always stored on the heap.
264///
265/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
266/// methods:
267///
268/// ```
269/// use std::mem;
270///
271/// let story = String::from("Once upon a time...");
272///
273// FIXME Update this when vec_into_raw_parts is stabilized
274/// // Prevent automatically dropping the String's data
275/// let mut story = mem::ManuallyDrop::new(story);
276///
277/// let ptr = story.as_mut_ptr();
278/// let len = story.len();
279/// let capacity = story.capacity();
280///
281/// // story has nineteen bytes
282/// assert_eq!(19, len);
283///
284/// // We can re-build a String out of ptr, len, and capacity. This is all
285/// // unsafe because we are responsible for making sure the components are
286/// // valid:
287/// let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
288///
289/// assert_eq!(String::from("Once upon a time..."), s);
290/// ```
291///
292/// [`as_ptr`]: str::as_ptr
293/// [`len`]: String::len
294/// [`capacity`]: String::capacity
295///
296/// If a `String` has enough capacity, adding elements to it will not
297/// re-allocate. For example, consider this program:
298///
299/// ```
300/// let mut s = String::new();
301///
302/// println!("{}", s.capacity());
303///
304/// for _ in 0..5 {
305///     s.push_str("hello");
306///     println!("{}", s.capacity());
307/// }
308/// ```
309///
310/// This will output the following:
311///
312/// ```text
313/// 0
314/// 8
315/// 16
316/// 16
317/// 32
318/// 32
319/// ```
320///
321/// At first, we have no memory allocated at all, but as we append to the
322/// string, it increases its capacity appropriately. If we instead use the
323/// [`with_capacity`] method to allocate the correct capacity initially:
324///
325/// ```
326/// let mut s = String::with_capacity(25);
327///
328/// println!("{}", s.capacity());
329///
330/// for _ in 0..5 {
331///     s.push_str("hello");
332///     println!("{}", s.capacity());
333/// }
334/// ```
335///
336/// [`with_capacity`]: String::with_capacity
337///
338/// We end up with a different output:
339///
340/// ```text
341/// 25
342/// 25
343/// 25
344/// 25
345/// 25
346/// 25
347/// ```
348///
349/// Here, there's no need to allocate more memory inside the loop.
350///
351/// [str]: prim@str "str"
352/// [`str`]: prim@str "str"
353/// [`&str`]: prim@str "&str"
354/// [Deref]: core::ops::Deref "ops::Deref"
355/// [`Deref`]: core::ops::Deref "ops::Deref"
356/// [`as_str()`]: String::as_str
357#[derive(PartialEq, PartialOrd, Eq, Ord)]
358#[stable(feature = "rust1", since = "1.0.0")]
359#[lang = "String"]
360pub struct String {
361    vec: Vec<u8>,
362}
363
364/// A possible error value when converting a `String` from a UTF-8 byte vector.
365///
366/// This type is the error type for the [`from_utf8`] method on [`String`]. It
367/// is designed in such a way to carefully avoid reallocations: the
368/// [`into_bytes`] method will give back the byte vector that was used in the
369/// conversion attempt.
370///
371/// [`from_utf8`]: String::from_utf8
372/// [`into_bytes`]: FromUtf8Error::into_bytes
373///
374/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
375/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
376/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
377/// through the [`utf8_error`] method.
378///
379/// [`Utf8Error`]: str::Utf8Error "std::str::Utf8Error"
380/// [`std::str`]: core::str "std::str"
381/// [`&str`]: prim@str "&str"
382/// [`utf8_error`]: FromUtf8Error::utf8_error
383///
384/// # Examples
385///
386/// ```
387/// // some invalid bytes, in a vector
388/// let bytes = vec![0, 159];
389///
390/// let value = String::from_utf8(bytes);
391///
392/// assert!(value.is_err());
393/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
394/// ```
395#[stable(feature = "rust1", since = "1.0.0")]
396#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
397#[derive(Debug, PartialEq, Eq)]
398pub struct FromUtf8Error {
399    bytes: Vec<u8>,
400    error: Utf8Error,
401}
402
403/// A possible error value when converting a `String` from a UTF-16 byte slice.
404///
405/// This type is the error type for the [`from_utf16`] method on [`String`].
406///
407/// [`from_utf16`]: String::from_utf16
408///
409/// # Examples
410///
411/// ```
412/// // 𝄞mu<invalid>ic
413/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
414///           0xD800, 0x0069, 0x0063];
415///
416/// assert!(String::from_utf16(v).is_err());
417/// ```
418#[stable(feature = "rust1", since = "1.0.0")]
419#[derive(Debug)]
420pub struct FromUtf16Error(());
421
422impl String {
423    /// Creates a new empty `String`.
424    ///
425    /// Given that the `String` is empty, this will not allocate any initial
426    /// buffer. While that means that this initial operation is very
427    /// inexpensive, it may cause excessive allocation later when you add
428    /// data. If you have an idea of how much data the `String` will hold,
429    /// consider the [`with_capacity`] method to prevent excessive
430    /// re-allocation.
431    ///
432    /// [`with_capacity`]: String::with_capacity
433    ///
434    /// # Examples
435    ///
436    /// ```
437    /// let s = String::new();
438    /// ```
439    #[inline]
440    #[rustc_const_stable(feature = "const_string_new", since = "1.39.0")]
441    #[rustc_diagnostic_item = "string_new"]
442    #[stable(feature = "rust1", since = "1.0.0")]
443    #[must_use]
444    pub const fn new() -> String {
445        String { vec: Vec::new() }
446    }
447
448    /// Creates a new empty `String` with at least the specified capacity.
449    ///
450    /// `String`s have an internal buffer to hold their data. The capacity is
451    /// the length of that buffer, and can be queried with the [`capacity`]
452    /// method. This method creates an empty `String`, but one with an initial
453    /// buffer that can hold at least `capacity` bytes. This is useful when you
454    /// may be appending a bunch of data to the `String`, reducing the number of
455    /// reallocations it needs to do.
456    ///
457    /// [`capacity`]: String::capacity
458    ///
459    /// If the given capacity is `0`, no allocation will occur, and this method
460    /// is identical to the [`new`] method.
461    ///
462    /// [`new`]: String::new
463    ///
464    /// # Examples
465    ///
466    /// ```
467    /// let mut s = String::with_capacity(10);
468    ///
469    /// // The String contains no chars, even though it has capacity for more
470    /// assert_eq!(s.len(), 0);
471    ///
472    /// // These are all done without reallocating...
473    /// let cap = s.capacity();
474    /// for _ in 0..10 {
475    ///     s.push('a');
476    /// }
477    ///
478    /// assert_eq!(s.capacity(), cap);
479    ///
480    /// // ...but this may make the string reallocate
481    /// s.push('a');
482    /// ```
483    #[cfg(not(no_global_oom_handling))]
484    #[inline]
485    #[stable(feature = "rust1", since = "1.0.0")]
486    #[must_use]
487    pub fn with_capacity(capacity: usize) -> String {
488        String { vec: Vec::with_capacity(capacity) }
489    }
490
491    /// Creates a new empty `String` with at least the specified capacity.
492    ///
493    /// # Errors
494    ///
495    /// Returns [`Err`] if the capacity exceeds `isize::MAX` bytes,
496    /// or if the memory allocator reports failure.
497    ///
498    #[inline]
499    #[unstable(feature = "try_with_capacity", issue = "91913")]
500    pub fn try_with_capacity(capacity: usize) -> Result<String, TryReserveError> {
501        Ok(String { vec: Vec::try_with_capacity(capacity)? })
502    }
503
504    /// Converts a vector of bytes to a `String`.
505    ///
506    /// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
507    /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
508    /// two. Not all byte slices are valid `String`s, however: `String`
509    /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
510    /// the bytes are valid UTF-8, and then does the conversion.
511    ///
512    /// If you are sure that the byte slice is valid UTF-8, and you don't want
513    /// to incur the overhead of the validity check, there is an unsafe version
514    /// of this function, [`from_utf8_unchecked`], which has the same behavior
515    /// but skips the check.
516    ///
517    /// This method will take care to not copy the vector, for efficiency's
518    /// sake.
519    ///
520    /// If you need a [`&str`] instead of a `String`, consider
521    /// [`str::from_utf8`].
522    ///
523    /// The inverse of this method is [`into_bytes`].
524    ///
525    /// # Errors
526    ///
527    /// Returns [`Err`] if the slice is not UTF-8 with a description as to why the
528    /// provided bytes are not UTF-8. The vector you moved in is also included.
529    ///
530    /// # Examples
531    ///
532    /// Basic usage:
533    ///
534    /// ```
535    /// // some bytes, in a vector
536    /// let sparkle_heart = vec![240, 159, 146, 150];
537    ///
538    /// // We know these bytes are valid, so we'll use `unwrap()`.
539    /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
540    ///
541    /// assert_eq!("💖", sparkle_heart);
542    /// ```
543    ///
544    /// Incorrect bytes:
545    ///
546    /// ```
547    /// // some invalid bytes, in a vector
548    /// let sparkle_heart = vec![0, 159, 146, 150];
549    ///
550    /// assert!(String::from_utf8(sparkle_heart).is_err());
551    /// ```
552    ///
553    /// See the docs for [`FromUtf8Error`] for more details on what you can do
554    /// with this error.
555    ///
556    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
557    /// [`Vec<u8>`]: crate::vec::Vec "Vec"
558    /// [`&str`]: prim@str "&str"
559    /// [`into_bytes`]: String::into_bytes
560    #[inline]
561    #[stable(feature = "rust1", since = "1.0.0")]
562    #[rustc_diagnostic_item = "string_from_utf8"]
563    pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
564        match str::from_utf8(&vec) {
565            Ok(..) => Ok(String { vec }),
566            Err(e) => Err(FromUtf8Error { bytes: vec, error: e }),
567        }
568    }
569
570    /// Converts a slice of bytes to a string, including invalid characters.
571    ///
572    /// Strings are made of bytes ([`u8`]), and a slice of bytes
573    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
574    /// between the two. Not all byte slices are valid strings, however: strings
575    /// are required to be valid UTF-8. During this conversion,
576    /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
577    /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD], which looks like this: �
578    ///
579    /// [byteslice]: prim@slice
580    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
581    ///
582    /// If you are sure that the byte slice is valid UTF-8, and you don't want
583    /// to incur the overhead of the conversion, there is an unsafe version
584    /// of this function, [`from_utf8_unchecked`], which has the same behavior
585    /// but skips the checks.
586    ///
587    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
588    ///
589    /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
590    /// UTF-8, then we need to insert the replacement characters, which will
591    /// change the size of the string, and hence, require a `String`. But if
592    /// it's already valid UTF-8, we don't need a new allocation. This return
593    /// type allows us to handle both cases.
594    ///
595    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
596    ///
597    /// # Examples
598    ///
599    /// Basic usage:
600    ///
601    /// ```
602    /// // some bytes, in a vector
603    /// let sparkle_heart = vec![240, 159, 146, 150];
604    ///
605    /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
606    ///
607    /// assert_eq!("💖", sparkle_heart);
608    /// ```
609    ///
610    /// Incorrect bytes:
611    ///
612    /// ```
613    /// // some invalid bytes
614    /// let input = b"Hello \xF0\x90\x80World";
615    /// let output = String::from_utf8_lossy(input);
616    ///
617    /// assert_eq!("Hello �World", output);
618    /// ```
619    #[must_use]
620    #[cfg(not(no_global_oom_handling))]
621    #[stable(feature = "rust1", since = "1.0.0")]
622    pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str> {
623        let mut iter = v.utf8_chunks();
624
625        let first_valid = if let Some(chunk) = iter.next() {
626            let valid = chunk.valid();
627            if chunk.invalid().is_empty() {
628                debug_assert_eq!(valid.len(), v.len());
629                return Cow::Borrowed(valid);
630            }
631            valid
632        } else {
633            return Cow::Borrowed("");
634        };
635
636        const REPLACEMENT: &str = "\u{FFFD}";
637
638        let mut res = String::with_capacity(v.len());
639        res.push_str(first_valid);
640        res.push_str(REPLACEMENT);
641
642        for chunk in iter {
643            res.push_str(chunk.valid());
644            if !chunk.invalid().is_empty() {
645                res.push_str(REPLACEMENT);
646            }
647        }
648
649        Cow::Owned(res)
650    }
651
652    /// Converts a [`Vec<u8>`] to a `String`, substituting invalid UTF-8
653    /// sequences with replacement characters.
654    ///
655    /// See [`from_utf8_lossy`] for more details.
656    ///
657    /// [`from_utf8_lossy`]: String::from_utf8_lossy
658    ///
659    /// Note that this function does not guarantee reuse of the original `Vec`
660    /// allocation.
661    ///
662    /// # Examples
663    ///
664    /// Basic usage:
665    ///
666    /// ```
667    /// #![feature(string_from_utf8_lossy_owned)]
668    /// // some bytes, in a vector
669    /// let sparkle_heart = vec![240, 159, 146, 150];
670    ///
671    /// let sparkle_heart = String::from_utf8_lossy_owned(sparkle_heart);
672    ///
673    /// assert_eq!(String::from("💖"), sparkle_heart);
674    /// ```
675    ///
676    /// Incorrect bytes:
677    ///
678    /// ```
679    /// #![feature(string_from_utf8_lossy_owned)]
680    /// // some invalid bytes
681    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
682    /// let output = String::from_utf8_lossy_owned(input);
683    ///
684    /// assert_eq!(String::from("Hello �World"), output);
685    /// ```
686    #[must_use]
687    #[cfg(not(no_global_oom_handling))]
688    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
689    pub fn from_utf8_lossy_owned(v: Vec<u8>) -> String {
690        if let Cow::Owned(string) = String::from_utf8_lossy(&v) {
691            string
692        } else {
693            // SAFETY: `String::from_utf8_lossy`'s contract ensures that if
694            // it returns a `Cow::Borrowed`, it is a valid UTF-8 string.
695            // Otherwise, it returns a new allocation of an owned `String`, with
696            // replacement characters for invalid sequences, which is returned
697            // above.
698            unsafe { String::from_utf8_unchecked(v) }
699        }
700    }
701
702    /// Decode a native endian UTF-16–encoded vector `v` into a `String`,
703    /// returning [`Err`] if `v` contains any invalid data.
704    ///
705    /// # Examples
706    ///
707    /// ```
708    /// // 𝄞music
709    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
710    ///           0x0073, 0x0069, 0x0063];
711    /// assert_eq!(String::from("𝄞music"),
712    ///            String::from_utf16(v).unwrap());
713    ///
714    /// // 𝄞mu<invalid>ic
715    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
716    ///           0xD800, 0x0069, 0x0063];
717    /// assert!(String::from_utf16(v).is_err());
718    /// ```
719    #[cfg(not(no_global_oom_handling))]
720    #[stable(feature = "rust1", since = "1.0.0")]
721    pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
722        // This isn't done via collect::<Result<_, _>>() for performance reasons.
723        // FIXME: the function can be simplified again when #48994 is closed.
724        let mut ret = String::with_capacity(v.len());
725        for c in char::decode_utf16(v.iter().cloned()) {
726            if let Ok(c) = c {
727                ret.push(c);
728            } else {
729                return Err(FromUtf16Error(()));
730            }
731        }
732        Ok(ret)
733    }
734
735    /// Decode a native endian UTF-16–encoded slice `v` into a `String`,
736    /// replacing invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
737    ///
738    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
739    /// `from_utf16_lossy` returns a `String` since the UTF-16 to UTF-8
740    /// conversion requires a memory allocation.
741    ///
742    /// [`from_utf8_lossy`]: String::from_utf8_lossy
743    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
744    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
745    ///
746    /// # Examples
747    ///
748    /// ```
749    /// // 𝄞mus<invalid>ic<invalid>
750    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
751    ///           0x0073, 0xDD1E, 0x0069, 0x0063,
752    ///           0xD834];
753    ///
754    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
755    ///            String::from_utf16_lossy(v));
756    /// ```
757    #[cfg(not(no_global_oom_handling))]
758    #[must_use]
759    #[inline]
760    #[stable(feature = "rust1", since = "1.0.0")]
761    pub fn from_utf16_lossy(v: &[u16]) -> String {
762        char::decode_utf16(v.iter().cloned())
763            .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
764            .collect()
765    }
766
767    /// Decode a UTF-16LE–encoded vector `v` into a `String`,
768    /// returning [`Err`] if `v` contains any invalid data.
769    ///
770    /// # Examples
771    ///
772    /// Basic usage:
773    ///
774    /// ```
775    /// #![feature(str_from_utf16_endian)]
776    /// // 𝄞music
777    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
778    ///           0x73, 0x00, 0x69, 0x00, 0x63, 0x00];
779    /// assert_eq!(String::from("𝄞music"),
780    ///            String::from_utf16le(v).unwrap());
781    ///
782    /// // 𝄞mu<invalid>ic
783    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
784    ///           0x00, 0xD8, 0x69, 0x00, 0x63, 0x00];
785    /// assert!(String::from_utf16le(v).is_err());
786    /// ```
787    #[cfg(not(no_global_oom_handling))]
788    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
789    pub fn from_utf16le(v: &[u8]) -> Result<String, FromUtf16Error> {
790        if v.len() % 2 != 0 {
791            return Err(FromUtf16Error(()));
792        }
793        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
794            (true, ([], v, [])) => Self::from_utf16(v),
795            _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_le_bytes))
796                .collect::<Result<_, _>>()
797                .map_err(|_| FromUtf16Error(())),
798        }
799    }
800
801    /// Decode a UTF-16LE–encoded slice `v` into a `String`, replacing
802    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
803    ///
804    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
805    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
806    /// conversion requires a memory allocation.
807    ///
808    /// [`from_utf8_lossy`]: String::from_utf8_lossy
809    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
810    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
811    ///
812    /// # Examples
813    ///
814    /// Basic usage:
815    ///
816    /// ```
817    /// #![feature(str_from_utf16_endian)]
818    /// // 𝄞mus<invalid>ic<invalid>
819    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
820    ///           0x73, 0x00, 0x1E, 0xDD, 0x69, 0x00, 0x63, 0x00,
821    ///           0x34, 0xD8];
822    ///
823    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
824    ///            String::from_utf16le_lossy(v));
825    /// ```
826    #[cfg(not(no_global_oom_handling))]
827    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
828    pub fn from_utf16le_lossy(v: &[u8]) -> String {
829        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
830            (true, ([], v, [])) => Self::from_utf16_lossy(v),
831            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
832            _ => {
833                let mut iter = v.array_chunks::<2>();
834                let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_le_bytes))
835                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
836                    .collect();
837                if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
838            }
839        }
840    }
841
842    /// Decode a UTF-16BE–encoded vector `v` into a `String`,
843    /// returning [`Err`] if `v` contains any invalid data.
844    ///
845    /// # Examples
846    ///
847    /// Basic usage:
848    ///
849    /// ```
850    /// #![feature(str_from_utf16_endian)]
851    /// // 𝄞music
852    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
853    ///           0x00, 0x73, 0x00, 0x69, 0x00, 0x63];
854    /// assert_eq!(String::from("𝄞music"),
855    ///            String::from_utf16be(v).unwrap());
856    ///
857    /// // 𝄞mu<invalid>ic
858    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
859    ///           0xD8, 0x00, 0x00, 0x69, 0x00, 0x63];
860    /// assert!(String::from_utf16be(v).is_err());
861    /// ```
862    #[cfg(not(no_global_oom_handling))]
863    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
864    pub fn from_utf16be(v: &[u8]) -> Result<String, FromUtf16Error> {
865        if v.len() % 2 != 0 {
866            return Err(FromUtf16Error(()));
867        }
868        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
869            (true, ([], v, [])) => Self::from_utf16(v),
870            _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_be_bytes))
871                .collect::<Result<_, _>>()
872                .map_err(|_| FromUtf16Error(())),
873        }
874    }
875
876    /// Decode a UTF-16BE–encoded slice `v` into a `String`, replacing
877    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
878    ///
879    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
880    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
881    /// conversion requires a memory allocation.
882    ///
883    /// [`from_utf8_lossy`]: String::from_utf8_lossy
884    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
885    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
886    ///
887    /// # Examples
888    ///
889    /// Basic usage:
890    ///
891    /// ```
892    /// #![feature(str_from_utf16_endian)]
893    /// // 𝄞mus<invalid>ic<invalid>
894    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
895    ///           0x00, 0x73, 0xDD, 0x1E, 0x00, 0x69, 0x00, 0x63,
896    ///           0xD8, 0x34];
897    ///
898    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
899    ///            String::from_utf16be_lossy(v));
900    /// ```
901    #[cfg(not(no_global_oom_handling))]
902    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
903    pub fn from_utf16be_lossy(v: &[u8]) -> String {
904        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
905            (true, ([], v, [])) => Self::from_utf16_lossy(v),
906            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
907            _ => {
908                let mut iter = v.array_chunks::<2>();
909                let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_be_bytes))
910                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
911                    .collect();
912                if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
913            }
914        }
915    }
916
917    /// Decomposes a `String` into its raw components: `(pointer, length, capacity)`.
918    ///
919    /// Returns the raw pointer to the underlying data, the length of
920    /// the string (in bytes), and the allocated capacity of the data
921    /// (in bytes). These are the same arguments in the same order as
922    /// the arguments to [`from_raw_parts`].
923    ///
924    /// After calling this function, the caller is responsible for the
925    /// memory previously managed by the `String`. The only way to do
926    /// this is to convert the raw pointer, length, and capacity back
927    /// into a `String` with the [`from_raw_parts`] function, allowing
928    /// the destructor to perform the cleanup.
929    ///
930    /// [`from_raw_parts`]: String::from_raw_parts
931    ///
932    /// # Examples
933    ///
934    /// ```
935    /// #![feature(vec_into_raw_parts)]
936    /// let s = String::from("hello");
937    ///
938    /// let (ptr, len, cap) = s.into_raw_parts();
939    ///
940    /// let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
941    /// assert_eq!(rebuilt, "hello");
942    /// ```
943    #[must_use = "losing the pointer will leak memory"]
944    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
945    pub fn into_raw_parts(self) -> (*mut u8, usize, usize) {
946        self.vec.into_raw_parts()
947    }
948
949    /// Creates a new `String` from a pointer, a length and a capacity.
950    ///
951    /// # Safety
952    ///
953    /// This is highly unsafe, due to the number of invariants that aren't
954    /// checked:
955    ///
956    /// * all safety requirements for [`Vec::<u8>::from_raw_parts`].
957    /// * all safety requirements for [`String::from_utf8_unchecked`].
958    ///
959    /// Violating these may cause problems like corrupting the allocator's
960    /// internal data structures. For example, it is normally **not** safe to
961    /// build a `String` from a pointer to a C `char` array containing UTF-8
962    /// _unless_ you are certain that array was originally allocated by the
963    /// Rust standard library's allocator.
964    ///
965    /// The ownership of `buf` is effectively transferred to the
966    /// `String` which may then deallocate, reallocate or change the
967    /// contents of memory pointed to by the pointer at will. Ensure
968    /// that nothing else uses the pointer after calling this
969    /// function.
970    ///
971    /// # Examples
972    ///
973    /// ```
974    /// use std::mem;
975    ///
976    /// unsafe {
977    ///     let s = String::from("hello");
978    ///
979    // FIXME Update this when vec_into_raw_parts is stabilized
980    ///     // Prevent automatically dropping the String's data
981    ///     let mut s = mem::ManuallyDrop::new(s);
982    ///
983    ///     let ptr = s.as_mut_ptr();
984    ///     let len = s.len();
985    ///     let capacity = s.capacity();
986    ///
987    ///     let s = String::from_raw_parts(ptr, len, capacity);
988    ///
989    ///     assert_eq!(String::from("hello"), s);
990    /// }
991    /// ```
992    #[inline]
993    #[stable(feature = "rust1", since = "1.0.0")]
994    pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
995        unsafe { String { vec: Vec::from_raw_parts(buf, length, capacity) } }
996    }
997
998    /// Converts a vector of bytes to a `String` without checking that the
999    /// string contains valid UTF-8.
1000    ///
1001    /// See the safe version, [`from_utf8`], for more details.
1002    ///
1003    /// [`from_utf8`]: String::from_utf8
1004    ///
1005    /// # Safety
1006    ///
1007    /// This function is unsafe because it does not check that the bytes passed
1008    /// to it are valid UTF-8. If this constraint is violated, it may cause
1009    /// memory unsafety issues with future users of the `String`, as the rest of
1010    /// the standard library assumes that `String`s are valid UTF-8.
1011    ///
1012    /// # Examples
1013    ///
1014    /// ```
1015    /// // some bytes, in a vector
1016    /// let sparkle_heart = vec![240, 159, 146, 150];
1017    ///
1018    /// let sparkle_heart = unsafe {
1019    ///     String::from_utf8_unchecked(sparkle_heart)
1020    /// };
1021    ///
1022    /// assert_eq!("💖", sparkle_heart);
1023    /// ```
1024    #[inline]
1025    #[must_use]
1026    #[stable(feature = "rust1", since = "1.0.0")]
1027    pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
1028        String { vec: bytes }
1029    }
1030
1031    /// Converts a `String` into a byte vector.
1032    ///
1033    /// This consumes the `String`, so we do not need to copy its contents.
1034    ///
1035    /// # Examples
1036    ///
1037    /// ```
1038    /// let s = String::from("hello");
1039    /// let bytes = s.into_bytes();
1040    ///
1041    /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
1042    /// ```
1043    #[inline]
1044    #[must_use = "`self` will be dropped if the result is not used"]
1045    #[stable(feature = "rust1", since = "1.0.0")]
1046    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1047    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1048    pub const fn into_bytes(self) -> Vec<u8> {
1049        self.vec
1050    }
1051
1052    /// Extracts a string slice containing the entire `String`.
1053    ///
1054    /// # Examples
1055    ///
1056    /// ```
1057    /// let s = String::from("foo");
1058    ///
1059    /// assert_eq!("foo", s.as_str());
1060    /// ```
1061    #[inline]
1062    #[must_use]
1063    #[stable(feature = "string_as_str", since = "1.7.0")]
1064    #[rustc_diagnostic_item = "string_as_str"]
1065    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1066    pub const fn as_str(&self) -> &str {
1067        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1068        // at construction.
1069        unsafe { str::from_utf8_unchecked(self.vec.as_slice()) }
1070    }
1071
1072    /// Converts a `String` into a mutable string slice.
1073    ///
1074    /// # Examples
1075    ///
1076    /// ```
1077    /// let mut s = String::from("foobar");
1078    /// let s_mut_str = s.as_mut_str();
1079    ///
1080    /// s_mut_str.make_ascii_uppercase();
1081    ///
1082    /// assert_eq!("FOOBAR", s_mut_str);
1083    /// ```
1084    #[inline]
1085    #[must_use]
1086    #[stable(feature = "string_as_str", since = "1.7.0")]
1087    #[rustc_diagnostic_item = "string_as_mut_str"]
1088    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1089    pub const fn as_mut_str(&mut self) -> &mut str {
1090        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1091        // at construction.
1092        unsafe { str::from_utf8_unchecked_mut(self.vec.as_mut_slice()) }
1093    }
1094
1095    /// Appends a given string slice onto the end of this `String`.
1096    ///
1097    /// # Examples
1098    ///
1099    /// ```
1100    /// let mut s = String::from("foo");
1101    ///
1102    /// s.push_str("bar");
1103    ///
1104    /// assert_eq!("foobar", s);
1105    /// ```
1106    #[cfg(not(no_global_oom_handling))]
1107    #[inline]
1108    #[stable(feature = "rust1", since = "1.0.0")]
1109    #[rustc_confusables("append", "push")]
1110    #[rustc_diagnostic_item = "string_push_str"]
1111    pub fn push_str(&mut self, string: &str) {
1112        self.vec.extend_from_slice(string.as_bytes())
1113    }
1114
1115    /// Copies elements from `src` range to the end of the string.
1116    ///
1117    /// # Panics
1118    ///
1119    /// Panics if the starting point or end point do not lie on a [`char`]
1120    /// boundary, or if they're out of bounds.
1121    ///
1122    /// # Examples
1123    ///
1124    /// ```
1125    /// let mut string = String::from("abcde");
1126    ///
1127    /// string.extend_from_within(2..);
1128    /// assert_eq!(string, "abcdecde");
1129    ///
1130    /// string.extend_from_within(..2);
1131    /// assert_eq!(string, "abcdecdeab");
1132    ///
1133    /// string.extend_from_within(4..8);
1134    /// assert_eq!(string, "abcdecdeabecde");
1135    /// ```
1136    #[cfg(not(no_global_oom_handling))]
1137    #[stable(feature = "string_extend_from_within", since = "1.87.0")]
1138    pub fn extend_from_within<R>(&mut self, src: R)
1139    where
1140        R: RangeBounds<usize>,
1141    {
1142        let src @ Range { start, end } = slice::range(src, ..self.len());
1143
1144        assert!(self.is_char_boundary(start));
1145        assert!(self.is_char_boundary(end));
1146
1147        self.vec.extend_from_within(src);
1148    }
1149
1150    /// Returns this `String`'s capacity, in bytes.
1151    ///
1152    /// # Examples
1153    ///
1154    /// ```
1155    /// let s = String::with_capacity(10);
1156    ///
1157    /// assert!(s.capacity() >= 10);
1158    /// ```
1159    #[inline]
1160    #[must_use]
1161    #[stable(feature = "rust1", since = "1.0.0")]
1162    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1163    pub const fn capacity(&self) -> usize {
1164        self.vec.capacity()
1165    }
1166
1167    /// Reserves capacity for at least `additional` bytes more than the
1168    /// current length. The allocator may reserve more space to speculatively
1169    /// avoid frequent allocations. After calling `reserve`,
1170    /// capacity will be greater than or equal to `self.len() + additional`.
1171    /// Does nothing if capacity is already sufficient.
1172    ///
1173    /// # Panics
1174    ///
1175    /// Panics if the new capacity overflows [`usize`].
1176    ///
1177    /// # Examples
1178    ///
1179    /// Basic usage:
1180    ///
1181    /// ```
1182    /// let mut s = String::new();
1183    ///
1184    /// s.reserve(10);
1185    ///
1186    /// assert!(s.capacity() >= 10);
1187    /// ```
1188    ///
1189    /// This might not actually increase the capacity:
1190    ///
1191    /// ```
1192    /// let mut s = String::with_capacity(10);
1193    /// s.push('a');
1194    /// s.push('b');
1195    ///
1196    /// // s now has a length of 2 and a capacity of at least 10
1197    /// let capacity = s.capacity();
1198    /// assert_eq!(2, s.len());
1199    /// assert!(capacity >= 10);
1200    ///
1201    /// // Since we already have at least an extra 8 capacity, calling this...
1202    /// s.reserve(8);
1203    ///
1204    /// // ... doesn't actually increase.
1205    /// assert_eq!(capacity, s.capacity());
1206    /// ```
1207    #[cfg(not(no_global_oom_handling))]
1208    #[inline]
1209    #[stable(feature = "rust1", since = "1.0.0")]
1210    pub fn reserve(&mut self, additional: usize) {
1211        self.vec.reserve(additional)
1212    }
1213
1214    /// Reserves the minimum capacity for at least `additional` bytes more than
1215    /// the current length. Unlike [`reserve`], this will not
1216    /// deliberately over-allocate to speculatively avoid frequent allocations.
1217    /// After calling `reserve_exact`, capacity will be greater than or equal to
1218    /// `self.len() + additional`. Does nothing if the capacity is already
1219    /// sufficient.
1220    ///
1221    /// [`reserve`]: String::reserve
1222    ///
1223    /// # Panics
1224    ///
1225    /// Panics if the new capacity overflows [`usize`].
1226    ///
1227    /// # Examples
1228    ///
1229    /// Basic usage:
1230    ///
1231    /// ```
1232    /// let mut s = String::new();
1233    ///
1234    /// s.reserve_exact(10);
1235    ///
1236    /// assert!(s.capacity() >= 10);
1237    /// ```
1238    ///
1239    /// This might not actually increase the capacity:
1240    ///
1241    /// ```
1242    /// let mut s = String::with_capacity(10);
1243    /// s.push('a');
1244    /// s.push('b');
1245    ///
1246    /// // s now has a length of 2 and a capacity of at least 10
1247    /// let capacity = s.capacity();
1248    /// assert_eq!(2, s.len());
1249    /// assert!(capacity >= 10);
1250    ///
1251    /// // Since we already have at least an extra 8 capacity, calling this...
1252    /// s.reserve_exact(8);
1253    ///
1254    /// // ... doesn't actually increase.
1255    /// assert_eq!(capacity, s.capacity());
1256    /// ```
1257    #[cfg(not(no_global_oom_handling))]
1258    #[inline]
1259    #[stable(feature = "rust1", since = "1.0.0")]
1260    pub fn reserve_exact(&mut self, additional: usize) {
1261        self.vec.reserve_exact(additional)
1262    }
1263
1264    /// Tries to reserve capacity for at least `additional` bytes more than the
1265    /// current length. The allocator may reserve more space to speculatively
1266    /// avoid frequent allocations. After calling `try_reserve`, capacity will be
1267    /// greater than or equal to `self.len() + additional` if it returns
1268    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1269    /// preserves the contents even if an error occurs.
1270    ///
1271    /// # Errors
1272    ///
1273    /// If the capacity overflows, or the allocator reports a failure, then an error
1274    /// is returned.
1275    ///
1276    /// # Examples
1277    ///
1278    /// ```
1279    /// use std::collections::TryReserveError;
1280    ///
1281    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1282    ///     let mut output = String::new();
1283    ///
1284    ///     // Pre-reserve the memory, exiting if we can't
1285    ///     output.try_reserve(data.len())?;
1286    ///
1287    ///     // Now we know this can't OOM in the middle of our complex work
1288    ///     output.push_str(data);
1289    ///
1290    ///     Ok(output)
1291    /// }
1292    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1293    /// ```
1294    #[stable(feature = "try_reserve", since = "1.57.0")]
1295    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1296        self.vec.try_reserve(additional)
1297    }
1298
1299    /// Tries to reserve the minimum capacity for at least `additional` bytes
1300    /// more than the current length. Unlike [`try_reserve`], this will not
1301    /// deliberately over-allocate to speculatively avoid frequent allocations.
1302    /// After calling `try_reserve_exact`, capacity will be greater than or
1303    /// equal to `self.len() + additional` if it returns `Ok(())`.
1304    /// Does nothing if the capacity is already sufficient.
1305    ///
1306    /// Note that the allocator may give the collection more space than it
1307    /// requests. Therefore, capacity can not be relied upon to be precisely
1308    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1309    ///
1310    /// [`try_reserve`]: String::try_reserve
1311    ///
1312    /// # Errors
1313    ///
1314    /// If the capacity overflows, or the allocator reports a failure, then an error
1315    /// is returned.
1316    ///
1317    /// # Examples
1318    ///
1319    /// ```
1320    /// use std::collections::TryReserveError;
1321    ///
1322    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1323    ///     let mut output = String::new();
1324    ///
1325    ///     // Pre-reserve the memory, exiting if we can't
1326    ///     output.try_reserve_exact(data.len())?;
1327    ///
1328    ///     // Now we know this can't OOM in the middle of our complex work
1329    ///     output.push_str(data);
1330    ///
1331    ///     Ok(output)
1332    /// }
1333    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1334    /// ```
1335    #[stable(feature = "try_reserve", since = "1.57.0")]
1336    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1337        self.vec.try_reserve_exact(additional)
1338    }
1339
1340    /// Shrinks the capacity of this `String` to match its length.
1341    ///
1342    /// # Examples
1343    ///
1344    /// ```
1345    /// let mut s = String::from("foo");
1346    ///
1347    /// s.reserve(100);
1348    /// assert!(s.capacity() >= 100);
1349    ///
1350    /// s.shrink_to_fit();
1351    /// assert_eq!(3, s.capacity());
1352    /// ```
1353    #[cfg(not(no_global_oom_handling))]
1354    #[inline]
1355    #[stable(feature = "rust1", since = "1.0.0")]
1356    pub fn shrink_to_fit(&mut self) {
1357        self.vec.shrink_to_fit()
1358    }
1359
1360    /// Shrinks the capacity of this `String` with a lower bound.
1361    ///
1362    /// The capacity will remain at least as large as both the length
1363    /// and the supplied value.
1364    ///
1365    /// If the current capacity is less than the lower limit, this is a no-op.
1366    ///
1367    /// # Examples
1368    ///
1369    /// ```
1370    /// let mut s = String::from("foo");
1371    ///
1372    /// s.reserve(100);
1373    /// assert!(s.capacity() >= 100);
1374    ///
1375    /// s.shrink_to(10);
1376    /// assert!(s.capacity() >= 10);
1377    /// s.shrink_to(0);
1378    /// assert!(s.capacity() >= 3);
1379    /// ```
1380    #[cfg(not(no_global_oom_handling))]
1381    #[inline]
1382    #[stable(feature = "shrink_to", since = "1.56.0")]
1383    pub fn shrink_to(&mut self, min_capacity: usize) {
1384        self.vec.shrink_to(min_capacity)
1385    }
1386
1387    /// Appends the given [`char`] to the end of this `String`.
1388    ///
1389    /// # Examples
1390    ///
1391    /// ```
1392    /// let mut s = String::from("abc");
1393    ///
1394    /// s.push('1');
1395    /// s.push('2');
1396    /// s.push('3');
1397    ///
1398    /// assert_eq!("abc123", s);
1399    /// ```
1400    #[cfg(not(no_global_oom_handling))]
1401    #[inline]
1402    #[stable(feature = "rust1", since = "1.0.0")]
1403    pub fn push(&mut self, ch: char) {
1404        let len = self.len();
1405        let ch_len = ch.len_utf8();
1406        self.reserve(ch_len);
1407
1408        // SAFETY: Just reserved capacity for at least the length needed to encode `ch`.
1409        unsafe {
1410            core::char::encode_utf8_raw_unchecked(ch as u32, self.vec.as_mut_ptr().add(self.len()));
1411            self.vec.set_len(len + ch_len);
1412        }
1413    }
1414
1415    /// Returns a byte slice of this `String`'s contents.
1416    ///
1417    /// The inverse of this method is [`from_utf8`].
1418    ///
1419    /// [`from_utf8`]: String::from_utf8
1420    ///
1421    /// # Examples
1422    ///
1423    /// ```
1424    /// let s = String::from("hello");
1425    ///
1426    /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
1427    /// ```
1428    #[inline]
1429    #[must_use]
1430    #[stable(feature = "rust1", since = "1.0.0")]
1431    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1432    pub const fn as_bytes(&self) -> &[u8] {
1433        self.vec.as_slice()
1434    }
1435
1436    /// Shortens this `String` to the specified length.
1437    ///
1438    /// If `new_len` is greater than or equal to the string's current length, this has no
1439    /// effect.
1440    ///
1441    /// Note that this method has no effect on the allocated capacity
1442    /// of the string
1443    ///
1444    /// # Panics
1445    ///
1446    /// Panics if `new_len` does not lie on a [`char`] boundary.
1447    ///
1448    /// # Examples
1449    ///
1450    /// ```
1451    /// let mut s = String::from("hello");
1452    ///
1453    /// s.truncate(2);
1454    ///
1455    /// assert_eq!("he", s);
1456    /// ```
1457    #[inline]
1458    #[stable(feature = "rust1", since = "1.0.0")]
1459    pub fn truncate(&mut self, new_len: usize) {
1460        if new_len <= self.len() {
1461            assert!(self.is_char_boundary(new_len));
1462            self.vec.truncate(new_len)
1463        }
1464    }
1465
1466    /// Removes the last character from the string buffer and returns it.
1467    ///
1468    /// Returns [`None`] if this `String` is empty.
1469    ///
1470    /// # Examples
1471    ///
1472    /// ```
1473    /// let mut s = String::from("abč");
1474    ///
1475    /// assert_eq!(s.pop(), Some('č'));
1476    /// assert_eq!(s.pop(), Some('b'));
1477    /// assert_eq!(s.pop(), Some('a'));
1478    ///
1479    /// assert_eq!(s.pop(), None);
1480    /// ```
1481    #[inline]
1482    #[stable(feature = "rust1", since = "1.0.0")]
1483    pub fn pop(&mut self) -> Option<char> {
1484        let ch = self.chars().rev().next()?;
1485        let newlen = self.len() - ch.len_utf8();
1486        unsafe {
1487            self.vec.set_len(newlen);
1488        }
1489        Some(ch)
1490    }
1491
1492    /// Removes a [`char`] from this `String` at a byte position and returns it.
1493    ///
1494    /// This is an *O*(*n*) operation, as it requires copying every element in the
1495    /// buffer.
1496    ///
1497    /// # Panics
1498    ///
1499    /// Panics if `idx` is larger than or equal to the `String`'s length,
1500    /// or if it does not lie on a [`char`] boundary.
1501    ///
1502    /// # Examples
1503    ///
1504    /// ```
1505    /// let mut s = String::from("abç");
1506    ///
1507    /// assert_eq!(s.remove(0), 'a');
1508    /// assert_eq!(s.remove(1), 'ç');
1509    /// assert_eq!(s.remove(0), 'b');
1510    /// ```
1511    #[inline]
1512    #[stable(feature = "rust1", since = "1.0.0")]
1513    #[rustc_confusables("delete", "take")]
1514    pub fn remove(&mut self, idx: usize) -> char {
1515        let ch = match self[idx..].chars().next() {
1516            Some(ch) => ch,
1517            None => panic!("cannot remove a char from the end of a string"),
1518        };
1519
1520        let next = idx + ch.len_utf8();
1521        let len = self.len();
1522        unsafe {
1523            ptr::copy(self.vec.as_ptr().add(next), self.vec.as_mut_ptr().add(idx), len - next);
1524            self.vec.set_len(len - (next - idx));
1525        }
1526        ch
1527    }
1528
1529    /// Remove all matches of pattern `pat` in the `String`.
1530    ///
1531    /// # Examples
1532    ///
1533    /// ```
1534    /// #![feature(string_remove_matches)]
1535    /// let mut s = String::from("Trees are not green, the sky is not blue.");
1536    /// s.remove_matches("not ");
1537    /// assert_eq!("Trees are green, the sky is blue.", s);
1538    /// ```
1539    ///
1540    /// Matches will be detected and removed iteratively, so in cases where
1541    /// patterns overlap, only the first pattern will be removed:
1542    ///
1543    /// ```
1544    /// #![feature(string_remove_matches)]
1545    /// let mut s = String::from("banana");
1546    /// s.remove_matches("ana");
1547    /// assert_eq!("bna", s);
1548    /// ```
1549    #[cfg(not(no_global_oom_handling))]
1550    #[unstable(feature = "string_remove_matches", reason = "new API", issue = "72826")]
1551    pub fn remove_matches<P: Pattern>(&mut self, pat: P) {
1552        use core::str::pattern::Searcher;
1553
1554        let rejections = {
1555            let mut searcher = pat.into_searcher(self);
1556            // Per Searcher::next:
1557            //
1558            // A Match result needs to contain the whole matched pattern,
1559            // however Reject results may be split up into arbitrary many
1560            // adjacent fragments. Both ranges may have zero length.
1561            //
1562            // In practice the implementation of Searcher::next_match tends to
1563            // be more efficient, so we use it here and do some work to invert
1564            // matches into rejections since that's what we want to copy below.
1565            let mut front = 0;
1566            let rejections: Vec<_> = from_fn(|| {
1567                let (start, end) = searcher.next_match()?;
1568                let prev_front = front;
1569                front = end;
1570                Some((prev_front, start))
1571            })
1572            .collect();
1573            rejections.into_iter().chain(core::iter::once((front, self.len())))
1574        };
1575
1576        let mut len = 0;
1577        let ptr = self.vec.as_mut_ptr();
1578
1579        for (start, end) in rejections {
1580            let count = end - start;
1581            if start != len {
1582                // SAFETY: per Searcher::next:
1583                //
1584                // The stream of Match and Reject values up to a Done will
1585                // contain index ranges that are adjacent, non-overlapping,
1586                // covering the whole haystack, and laying on utf8
1587                // boundaries.
1588                unsafe {
1589                    ptr::copy(ptr.add(start), ptr.add(len), count);
1590                }
1591            }
1592            len += count;
1593        }
1594
1595        unsafe {
1596            self.vec.set_len(len);
1597        }
1598    }
1599
1600    /// Retains only the characters specified by the predicate.
1601    ///
1602    /// In other words, remove all characters `c` such that `f(c)` returns `false`.
1603    /// This method operates in place, visiting each character exactly once in the
1604    /// original order, and preserves the order of the retained characters.
1605    ///
1606    /// # Examples
1607    ///
1608    /// ```
1609    /// let mut s = String::from("f_o_ob_ar");
1610    ///
1611    /// s.retain(|c| c != '_');
1612    ///
1613    /// assert_eq!(s, "foobar");
1614    /// ```
1615    ///
1616    /// Because the elements are visited exactly once in the original order,
1617    /// external state may be used to decide which elements to keep.
1618    ///
1619    /// ```
1620    /// let mut s = String::from("abcde");
1621    /// let keep = [false, true, true, false, true];
1622    /// let mut iter = keep.iter();
1623    /// s.retain(|_| *iter.next().unwrap());
1624    /// assert_eq!(s, "bce");
1625    /// ```
1626    #[inline]
1627    #[stable(feature = "string_retain", since = "1.26.0")]
1628    pub fn retain<F>(&mut self, mut f: F)
1629    where
1630        F: FnMut(char) -> bool,
1631    {
1632        struct SetLenOnDrop<'a> {
1633            s: &'a mut String,
1634            idx: usize,
1635            del_bytes: usize,
1636        }
1637
1638        impl<'a> Drop for SetLenOnDrop<'a> {
1639            fn drop(&mut self) {
1640                let new_len = self.idx - self.del_bytes;
1641                debug_assert!(new_len <= self.s.len());
1642                unsafe { self.s.vec.set_len(new_len) };
1643            }
1644        }
1645
1646        let len = self.len();
1647        let mut guard = SetLenOnDrop { s: self, idx: 0, del_bytes: 0 };
1648
1649        while guard.idx < len {
1650            let ch =
1651                // SAFETY: `guard.idx` is positive-or-zero and less that len so the `get_unchecked`
1652                // is in bound. `self` is valid UTF-8 like string and the returned slice starts at
1653                // a unicode code point so the `Chars` always return one character.
1654                unsafe { guard.s.get_unchecked(guard.idx..len).chars().next().unwrap_unchecked() };
1655            let ch_len = ch.len_utf8();
1656
1657            if !f(ch) {
1658                guard.del_bytes += ch_len;
1659            } else if guard.del_bytes > 0 {
1660                // SAFETY: `guard.idx` is in bound and `guard.del_bytes` represent the number of
1661                // bytes that are erased from the string so the resulting `guard.idx -
1662                // guard.del_bytes` always represent a valid unicode code point.
1663                //
1664                // `guard.del_bytes` >= `ch.len_utf8()`, so taking a slice with `ch.len_utf8()` len
1665                // is safe.
1666                ch.encode_utf8(unsafe {
1667                    crate::slice::from_raw_parts_mut(
1668                        guard.s.as_mut_ptr().add(guard.idx - guard.del_bytes),
1669                        ch.len_utf8(),
1670                    )
1671                });
1672            }
1673
1674            // Point idx to the next char
1675            guard.idx += ch_len;
1676        }
1677
1678        drop(guard);
1679    }
1680
1681    /// Inserts a character into this `String` at a byte position.
1682    ///
1683    /// This is an *O*(*n*) operation as it requires copying every element in the
1684    /// buffer.
1685    ///
1686    /// # Panics
1687    ///
1688    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1689    /// lie on a [`char`] boundary.
1690    ///
1691    /// # Examples
1692    ///
1693    /// ```
1694    /// let mut s = String::with_capacity(3);
1695    ///
1696    /// s.insert(0, 'f');
1697    /// s.insert(1, 'o');
1698    /// s.insert(2, 'o');
1699    ///
1700    /// assert_eq!("foo", s);
1701    /// ```
1702    #[cfg(not(no_global_oom_handling))]
1703    #[inline]
1704    #[stable(feature = "rust1", since = "1.0.0")]
1705    #[rustc_confusables("set")]
1706    pub fn insert(&mut self, idx: usize, ch: char) {
1707        assert!(self.is_char_boundary(idx));
1708
1709        let len = self.len();
1710        let ch_len = ch.len_utf8();
1711        self.reserve(ch_len);
1712
1713        // SAFETY: Move the bytes starting from `idx` to their new location `ch_len`
1714        // bytes ahead. This is safe because sufficient capacity was reserved, and `idx`
1715        // is a char boundary.
1716        unsafe {
1717            ptr::copy(
1718                self.vec.as_ptr().add(idx),
1719                self.vec.as_mut_ptr().add(idx + ch_len),
1720                len - idx,
1721            );
1722        }
1723
1724        // SAFETY: Encode the character into the vacated region if `idx != len`,
1725        // or into the uninitialized spare capacity otherwise.
1726        unsafe {
1727            core::char::encode_utf8_raw_unchecked(ch as u32, self.vec.as_mut_ptr().add(idx));
1728        }
1729
1730        // SAFETY: Update the length to include the newly added bytes.
1731        unsafe {
1732            self.vec.set_len(len + ch_len);
1733        }
1734    }
1735
1736    /// Inserts a string slice into this `String` at a byte position.
1737    ///
1738    /// This is an *O*(*n*) operation as it requires copying every element in the
1739    /// buffer.
1740    ///
1741    /// # Panics
1742    ///
1743    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1744    /// lie on a [`char`] boundary.
1745    ///
1746    /// # Examples
1747    ///
1748    /// ```
1749    /// let mut s = String::from("bar");
1750    ///
1751    /// s.insert_str(0, "foo");
1752    ///
1753    /// assert_eq!("foobar", s);
1754    /// ```
1755    #[cfg(not(no_global_oom_handling))]
1756    #[inline]
1757    #[stable(feature = "insert_str", since = "1.16.0")]
1758    #[rustc_diagnostic_item = "string_insert_str"]
1759    pub fn insert_str(&mut self, idx: usize, string: &str) {
1760        assert!(self.is_char_boundary(idx));
1761
1762        let len = self.len();
1763        let amt = string.len();
1764        self.reserve(amt);
1765
1766        // SAFETY: Move the bytes starting from `idx` to their new location `amt` bytes
1767        // ahead. This is safe because sufficient capacity was just reserved, and `idx`
1768        // is a char boundary.
1769        unsafe {
1770            ptr::copy(self.vec.as_ptr().add(idx), self.vec.as_mut_ptr().add(idx + amt), len - idx);
1771        }
1772
1773        // SAFETY: Copy the new string slice into the vacated region if `idx != len`,
1774        // or into the uninitialized spare capacity otherwise. The borrow checker
1775        // ensures that the source and destination do not overlap.
1776        unsafe {
1777            ptr::copy_nonoverlapping(string.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
1778        }
1779
1780        // SAFETY: Update the length to include the newly added bytes.
1781        unsafe {
1782            self.vec.set_len(len + amt);
1783        }
1784    }
1785
1786    /// Returns a mutable reference to the contents of this `String`.
1787    ///
1788    /// # Safety
1789    ///
1790    /// This function is unsafe because the returned `&mut Vec` allows writing
1791    /// bytes which are not valid UTF-8. If this constraint is violated, using
1792    /// the original `String` after dropping the `&mut Vec` may violate memory
1793    /// safety, as the rest of the standard library assumes that `String`s are
1794    /// valid UTF-8.
1795    ///
1796    /// # Examples
1797    ///
1798    /// ```
1799    /// let mut s = String::from("hello");
1800    ///
1801    /// unsafe {
1802    ///     let vec = s.as_mut_vec();
1803    ///     assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
1804    ///
1805    ///     vec.reverse();
1806    /// }
1807    /// assert_eq!(s, "olleh");
1808    /// ```
1809    #[inline]
1810    #[stable(feature = "rust1", since = "1.0.0")]
1811    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1812    pub const unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
1813        &mut self.vec
1814    }
1815
1816    /// Returns the length of this `String`, in bytes, not [`char`]s or
1817    /// graphemes. In other words, it might not be what a human considers the
1818    /// length of the string.
1819    ///
1820    /// # Examples
1821    ///
1822    /// ```
1823    /// let a = String::from("foo");
1824    /// assert_eq!(a.len(), 3);
1825    ///
1826    /// let fancy_f = String::from("ƒoo");
1827    /// assert_eq!(fancy_f.len(), 4);
1828    /// assert_eq!(fancy_f.chars().count(), 3);
1829    /// ```
1830    #[inline]
1831    #[must_use]
1832    #[stable(feature = "rust1", since = "1.0.0")]
1833    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1834    #[rustc_confusables("length", "size")]
1835    pub const fn len(&self) -> usize {
1836        self.vec.len()
1837    }
1838
1839    /// Returns `true` if this `String` has a length of zero, and `false` otherwise.
1840    ///
1841    /// # Examples
1842    ///
1843    /// ```
1844    /// let mut v = String::new();
1845    /// assert!(v.is_empty());
1846    ///
1847    /// v.push('a');
1848    /// assert!(!v.is_empty());
1849    /// ```
1850    #[inline]
1851    #[must_use]
1852    #[stable(feature = "rust1", since = "1.0.0")]
1853    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1854    pub const fn is_empty(&self) -> bool {
1855        self.len() == 0
1856    }
1857
1858    /// Splits the string into two at the given byte index.
1859    ///
1860    /// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
1861    /// the returned `String` contains bytes `[at, len)`. `at` must be on the
1862    /// boundary of a UTF-8 code point.
1863    ///
1864    /// Note that the capacity of `self` does not change.
1865    ///
1866    /// # Panics
1867    ///
1868    /// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
1869    /// code point of the string.
1870    ///
1871    /// # Examples
1872    ///
1873    /// ```
1874    /// # fn main() {
1875    /// let mut hello = String::from("Hello, World!");
1876    /// let world = hello.split_off(7);
1877    /// assert_eq!(hello, "Hello, ");
1878    /// assert_eq!(world, "World!");
1879    /// # }
1880    /// ```
1881    #[cfg(not(no_global_oom_handling))]
1882    #[inline]
1883    #[stable(feature = "string_split_off", since = "1.16.0")]
1884    #[must_use = "use `.truncate()` if you don't need the other half"]
1885    pub fn split_off(&mut self, at: usize) -> String {
1886        assert!(self.is_char_boundary(at));
1887        let other = self.vec.split_off(at);
1888        unsafe { String::from_utf8_unchecked(other) }
1889    }
1890
1891    /// Truncates this `String`, removing all contents.
1892    ///
1893    /// While this means the `String` will have a length of zero, it does not
1894    /// touch its capacity.
1895    ///
1896    /// # Examples
1897    ///
1898    /// ```
1899    /// let mut s = String::from("foo");
1900    ///
1901    /// s.clear();
1902    ///
1903    /// assert!(s.is_empty());
1904    /// assert_eq!(0, s.len());
1905    /// assert_eq!(3, s.capacity());
1906    /// ```
1907    #[inline]
1908    #[stable(feature = "rust1", since = "1.0.0")]
1909    pub fn clear(&mut self) {
1910        self.vec.clear()
1911    }
1912
1913    /// Removes the specified range from the string in bulk, returning all
1914    /// removed characters as an iterator.
1915    ///
1916    /// The returned iterator keeps a mutable borrow on the string to optimize
1917    /// its implementation.
1918    ///
1919    /// # Panics
1920    ///
1921    /// Panics if the starting point or end point do not lie on a [`char`]
1922    /// boundary, or if they're out of bounds.
1923    ///
1924    /// # Leaking
1925    ///
1926    /// If the returned iterator goes out of scope without being dropped (due to
1927    /// [`core::mem::forget`], for example), the string may still contain a copy
1928    /// of any drained characters, or may have lost characters arbitrarily,
1929    /// including characters outside the range.
1930    ///
1931    /// # Examples
1932    ///
1933    /// ```
1934    /// let mut s = String::from("α is alpha, β is beta");
1935    /// let beta_offset = s.find('β').unwrap_or(s.len());
1936    ///
1937    /// // Remove the range up until the β from the string
1938    /// let t: String = s.drain(..beta_offset).collect();
1939    /// assert_eq!(t, "α is alpha, ");
1940    /// assert_eq!(s, "β is beta");
1941    ///
1942    /// // A full range clears the string, like `clear()` does
1943    /// s.drain(..);
1944    /// assert_eq!(s, "");
1945    /// ```
1946    #[stable(feature = "drain", since = "1.6.0")]
1947    pub fn drain<R>(&mut self, range: R) -> Drain<'_>
1948    where
1949        R: RangeBounds<usize>,
1950    {
1951        // Memory safety
1952        //
1953        // The String version of Drain does not have the memory safety issues
1954        // of the vector version. The data is just plain bytes.
1955        // Because the range removal happens in Drop, if the Drain iterator is leaked,
1956        // the removal will not happen.
1957        let Range { start, end } = slice::range(range, ..self.len());
1958        assert!(self.is_char_boundary(start));
1959        assert!(self.is_char_boundary(end));
1960
1961        // Take out two simultaneous borrows. The &mut String won't be accessed
1962        // until iteration is over, in Drop.
1963        let self_ptr = self as *mut _;
1964        // SAFETY: `slice::range` and `is_char_boundary` do the appropriate bounds checks.
1965        let chars_iter = unsafe { self.get_unchecked(start..end) }.chars();
1966
1967        Drain { start, end, iter: chars_iter, string: self_ptr }
1968    }
1969
1970    /// Converts a `String` into an iterator over the [`char`]s of the string.
1971    ///
1972    /// As a string consists of valid UTF-8, we can iterate through a string
1973    /// by [`char`]. This method returns such an iterator.
1974    ///
1975    /// It's important to remember that [`char`] represents a Unicode Scalar
1976    /// Value, and might not match your idea of what a 'character' is. Iteration
1977    /// over grapheme clusters may be what you actually want. That functionality
1978    /// is not provided by Rust's standard library, check crates.io instead.
1979    ///
1980    /// # Examples
1981    ///
1982    /// Basic usage:
1983    ///
1984    /// ```
1985    /// #![feature(string_into_chars)]
1986    ///
1987    /// let word = String::from("goodbye");
1988    ///
1989    /// let mut chars = word.into_chars();
1990    ///
1991    /// assert_eq!(Some('g'), chars.next());
1992    /// assert_eq!(Some('o'), chars.next());
1993    /// assert_eq!(Some('o'), chars.next());
1994    /// assert_eq!(Some('d'), chars.next());
1995    /// assert_eq!(Some('b'), chars.next());
1996    /// assert_eq!(Some('y'), chars.next());
1997    /// assert_eq!(Some('e'), chars.next());
1998    ///
1999    /// assert_eq!(None, chars.next());
2000    /// ```
2001    ///
2002    /// Remember, [`char`]s might not match your intuition about characters:
2003    ///
2004    /// ```
2005    /// #![feature(string_into_chars)]
2006    ///
2007    /// let y = String::from("y̆");
2008    ///
2009    /// let mut chars = y.into_chars();
2010    ///
2011    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
2012    /// assert_eq!(Some('\u{0306}'), chars.next());
2013    ///
2014    /// assert_eq!(None, chars.next());
2015    /// ```
2016    ///
2017    /// [`char`]: prim@char
2018    #[inline]
2019    #[must_use = "`self` will be dropped if the result is not used"]
2020    #[unstable(feature = "string_into_chars", issue = "133125")]
2021    pub fn into_chars(self) -> IntoChars {
2022        IntoChars { bytes: self.into_bytes().into_iter() }
2023    }
2024
2025    /// Removes the specified range in the string,
2026    /// and replaces it with the given string.
2027    /// The given string doesn't need to be the same length as the range.
2028    ///
2029    /// # Panics
2030    ///
2031    /// Panics if the starting point or end point do not lie on a [`char`]
2032    /// boundary, or if they're out of bounds.
2033    ///
2034    /// # Examples
2035    ///
2036    /// ```
2037    /// let mut s = String::from("α is alpha, β is beta");
2038    /// let beta_offset = s.find('β').unwrap_or(s.len());
2039    ///
2040    /// // Replace the range up until the β from the string
2041    /// s.replace_range(..beta_offset, "Α is capital alpha; ");
2042    /// assert_eq!(s, "Α is capital alpha; β is beta");
2043    /// ```
2044    #[cfg(not(no_global_oom_handling))]
2045    #[stable(feature = "splice", since = "1.27.0")]
2046    pub fn replace_range<R>(&mut self, range: R, replace_with: &str)
2047    where
2048        R: RangeBounds<usize>,
2049    {
2050        // Memory safety
2051        //
2052        // Replace_range does not have the memory safety issues of a vector Splice.
2053        // of the vector version. The data is just plain bytes.
2054
2055        // WARNING: Inlining this variable would be unsound (#81138)
2056        let start = range.start_bound();
2057        match start {
2058            Included(&n) => assert!(self.is_char_boundary(n)),
2059            Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
2060            Unbounded => {}
2061        };
2062        // WARNING: Inlining this variable would be unsound (#81138)
2063        let end = range.end_bound();
2064        match end {
2065            Included(&n) => assert!(self.is_char_boundary(n + 1)),
2066            Excluded(&n) => assert!(self.is_char_boundary(n)),
2067            Unbounded => {}
2068        };
2069
2070        // Using `range` again would be unsound (#81138)
2071        // We assume the bounds reported by `range` remain the same, but
2072        // an adversarial implementation could change between calls
2073        unsafe { self.as_mut_vec() }.splice((start, end), replace_with.bytes());
2074    }
2075
2076    /// Converts this `String` into a <code>[Box]<[str]></code>.
2077    ///
2078    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
2079    /// Note that this call may reallocate and copy the bytes of the string.
2080    ///
2081    /// [`shrink_to_fit`]: String::shrink_to_fit
2082    /// [str]: prim@str "str"
2083    ///
2084    /// # Examples
2085    ///
2086    /// ```
2087    /// let s = String::from("hello");
2088    ///
2089    /// let b = s.into_boxed_str();
2090    /// ```
2091    #[cfg(not(no_global_oom_handling))]
2092    #[stable(feature = "box_str", since = "1.4.0")]
2093    #[must_use = "`self` will be dropped if the result is not used"]
2094    #[inline]
2095    pub fn into_boxed_str(self) -> Box<str> {
2096        let slice = self.vec.into_boxed_slice();
2097        unsafe { from_boxed_utf8_unchecked(slice) }
2098    }
2099
2100    /// Consumes and leaks the `String`, returning a mutable reference to the contents,
2101    /// `&'a mut str`.
2102    ///
2103    /// The caller has free choice over the returned lifetime, including `'static`. Indeed,
2104    /// this function is ideally used for data that lives for the remainder of the program's life,
2105    /// as dropping the returned reference will cause a memory leak.
2106    ///
2107    /// It does not reallocate or shrink the `String`, so the leaked allocation may include unused
2108    /// capacity that is not part of the returned slice. If you want to discard excess capacity,
2109    /// call [`into_boxed_str`], and then [`Box::leak`] instead. However, keep in mind that
2110    /// trimming the capacity may result in a reallocation and copy.
2111    ///
2112    /// [`into_boxed_str`]: Self::into_boxed_str
2113    ///
2114    /// # Examples
2115    ///
2116    /// ```
2117    /// let x = String::from("bucket");
2118    /// let static_ref: &'static mut str = x.leak();
2119    /// assert_eq!(static_ref, "bucket");
2120    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
2121    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2122    /// # drop(unsafe { Box::from_raw(static_ref) });
2123    /// ```
2124    #[stable(feature = "string_leak", since = "1.72.0")]
2125    #[inline]
2126    pub fn leak<'a>(self) -> &'a mut str {
2127        let slice = self.vec.leak();
2128        unsafe { from_utf8_unchecked_mut(slice) }
2129    }
2130}
2131
2132impl FromUtf8Error {
2133    /// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
2134    ///
2135    /// # Examples
2136    ///
2137    /// ```
2138    /// // some invalid bytes, in a vector
2139    /// let bytes = vec![0, 159];
2140    ///
2141    /// let value = String::from_utf8(bytes);
2142    ///
2143    /// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
2144    /// ```
2145    #[must_use]
2146    #[stable(feature = "from_utf8_error_as_bytes", since = "1.26.0")]
2147    pub fn as_bytes(&self) -> &[u8] {
2148        &self.bytes[..]
2149    }
2150
2151    /// Converts the bytes into a `String` lossily, substituting invalid UTF-8
2152    /// sequences with replacement characters.
2153    ///
2154    /// See [`String::from_utf8_lossy`] for more details on replacement of
2155    /// invalid sequences, and [`String::from_utf8_lossy_owned`] for the
2156    /// `String` function which corresponds to this function.
2157    ///
2158    /// # Examples
2159    ///
2160    /// ```
2161    /// #![feature(string_from_utf8_lossy_owned)]
2162    /// // some invalid bytes
2163    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
2164    /// let output = String::from_utf8(input).unwrap_or_else(|e| e.into_utf8_lossy());
2165    ///
2166    /// assert_eq!(String::from("Hello �World"), output);
2167    /// ```
2168    #[must_use]
2169    #[cfg(not(no_global_oom_handling))]
2170    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
2171    pub fn into_utf8_lossy(self) -> String {
2172        const REPLACEMENT: &str = "\u{FFFD}";
2173
2174        let mut res = {
2175            let mut v = Vec::with_capacity(self.bytes.len());
2176
2177            // `Utf8Error::valid_up_to` returns the maximum index of validated
2178            // UTF-8 bytes. Copy the valid bytes into the output buffer.
2179            v.extend_from_slice(&self.bytes[..self.error.valid_up_to()]);
2180
2181            // SAFETY: This is safe because the only bytes present in the buffer
2182            // were validated as UTF-8 by the call to `String::from_utf8` which
2183            // produced this `FromUtf8Error`.
2184            unsafe { String::from_utf8_unchecked(v) }
2185        };
2186
2187        let iter = self.bytes[self.error.valid_up_to()..].utf8_chunks();
2188
2189        for chunk in iter {
2190            res.push_str(chunk.valid());
2191            if !chunk.invalid().is_empty() {
2192                res.push_str(REPLACEMENT);
2193            }
2194        }
2195
2196        res
2197    }
2198
2199    /// Returns the bytes that were attempted to convert to a `String`.
2200    ///
2201    /// This method is carefully constructed to avoid allocation. It will
2202    /// consume the error, moving out the bytes, so that a copy of the bytes
2203    /// does not need to be made.
2204    ///
2205    /// # Examples
2206    ///
2207    /// ```
2208    /// // some invalid bytes, in a vector
2209    /// let bytes = vec![0, 159];
2210    ///
2211    /// let value = String::from_utf8(bytes);
2212    ///
2213    /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
2214    /// ```
2215    #[must_use = "`self` will be dropped if the result is not used"]
2216    #[stable(feature = "rust1", since = "1.0.0")]
2217    pub fn into_bytes(self) -> Vec<u8> {
2218        self.bytes
2219    }
2220
2221    /// Fetch a `Utf8Error` to get more details about the conversion failure.
2222    ///
2223    /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
2224    /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
2225    /// an analogue to `FromUtf8Error`. See its documentation for more details
2226    /// on using it.
2227    ///
2228    /// [`std::str`]: core::str "std::str"
2229    /// [`&str`]: prim@str "&str"
2230    ///
2231    /// # Examples
2232    ///
2233    /// ```
2234    /// // some invalid bytes, in a vector
2235    /// let bytes = vec![0, 159];
2236    ///
2237    /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
2238    ///
2239    /// // the first byte is invalid here
2240    /// assert_eq!(1, error.valid_up_to());
2241    /// ```
2242    #[must_use]
2243    #[stable(feature = "rust1", since = "1.0.0")]
2244    pub fn utf8_error(&self) -> Utf8Error {
2245        self.error
2246    }
2247}
2248
2249#[stable(feature = "rust1", since = "1.0.0")]
2250impl fmt::Display for FromUtf8Error {
2251    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2252        fmt::Display::fmt(&self.error, f)
2253    }
2254}
2255
2256#[stable(feature = "rust1", since = "1.0.0")]
2257impl fmt::Display for FromUtf16Error {
2258    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2259        fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
2260    }
2261}
2262
2263#[stable(feature = "rust1", since = "1.0.0")]
2264impl Error for FromUtf8Error {
2265    #[allow(deprecated)]
2266    fn description(&self) -> &str {
2267        "invalid utf-8"
2268    }
2269}
2270
2271#[stable(feature = "rust1", since = "1.0.0")]
2272impl Error for FromUtf16Error {
2273    #[allow(deprecated)]
2274    fn description(&self) -> &str {
2275        "invalid utf-16"
2276    }
2277}
2278
2279#[cfg(not(no_global_oom_handling))]
2280#[stable(feature = "rust1", since = "1.0.0")]
2281impl Clone for String {
2282    fn clone(&self) -> Self {
2283        String { vec: self.vec.clone() }
2284    }
2285
2286    /// Clones the contents of `source` into `self`.
2287    ///
2288    /// This method is preferred over simply assigning `source.clone()` to `self`,
2289    /// as it avoids reallocation if possible.
2290    fn clone_from(&mut self, source: &Self) {
2291        self.vec.clone_from(&source.vec);
2292    }
2293}
2294
2295#[cfg(not(no_global_oom_handling))]
2296#[stable(feature = "rust1", since = "1.0.0")]
2297impl FromIterator<char> for String {
2298    fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
2299        let mut buf = String::new();
2300        buf.extend(iter);
2301        buf
2302    }
2303}
2304
2305#[cfg(not(no_global_oom_handling))]
2306#[stable(feature = "string_from_iter_by_ref", since = "1.17.0")]
2307impl<'a> FromIterator<&'a char> for String {
2308    fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String {
2309        let mut buf = String::new();
2310        buf.extend(iter);
2311        buf
2312    }
2313}
2314
2315#[cfg(not(no_global_oom_handling))]
2316#[stable(feature = "rust1", since = "1.0.0")]
2317impl<'a> FromIterator<&'a str> for String {
2318    fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
2319        let mut buf = String::new();
2320        buf.extend(iter);
2321        buf
2322    }
2323}
2324
2325#[cfg(not(no_global_oom_handling))]
2326#[stable(feature = "extend_string", since = "1.4.0")]
2327impl FromIterator<String> for String {
2328    fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
2329        let mut iterator = iter.into_iter();
2330
2331        // Because we're iterating over `String`s, we can avoid at least
2332        // one allocation by getting the first string from the iterator
2333        // and appending to it all the subsequent strings.
2334        match iterator.next() {
2335            None => String::new(),
2336            Some(mut buf) => {
2337                buf.extend(iterator);
2338                buf
2339            }
2340        }
2341    }
2342}
2343
2344#[cfg(not(no_global_oom_handling))]
2345#[stable(feature = "box_str2", since = "1.45.0")]
2346impl<A: Allocator> FromIterator<Box<str, A>> for String {
2347    fn from_iter<I: IntoIterator<Item = Box<str, A>>>(iter: I) -> String {
2348        let mut buf = String::new();
2349        buf.extend(iter);
2350        buf
2351    }
2352}
2353
2354#[cfg(not(no_global_oom_handling))]
2355#[stable(feature = "herd_cows", since = "1.19.0")]
2356impl<'a> FromIterator<Cow<'a, str>> for String {
2357    fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String {
2358        let mut iterator = iter.into_iter();
2359
2360        // Because we're iterating over CoWs, we can (potentially) avoid at least
2361        // one allocation by getting the first item and appending to it all the
2362        // subsequent items.
2363        match iterator.next() {
2364            None => String::new(),
2365            Some(cow) => {
2366                let mut buf = cow.into_owned();
2367                buf.extend(iterator);
2368                buf
2369            }
2370        }
2371    }
2372}
2373
2374#[cfg(not(no_global_oom_handling))]
2375#[stable(feature = "rust1", since = "1.0.0")]
2376impl Extend<char> for String {
2377    fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
2378        let iterator = iter.into_iter();
2379        let (lower_bound, _) = iterator.size_hint();
2380        self.reserve(lower_bound);
2381        iterator.for_each(move |c| self.push(c));
2382    }
2383
2384    #[inline]
2385    fn extend_one(&mut self, c: char) {
2386        self.push(c);
2387    }
2388
2389    #[inline]
2390    fn extend_reserve(&mut self, additional: usize) {
2391        self.reserve(additional);
2392    }
2393}
2394
2395#[cfg(not(no_global_oom_handling))]
2396#[stable(feature = "extend_ref", since = "1.2.0")]
2397impl<'a> Extend<&'a char> for String {
2398    fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
2399        self.extend(iter.into_iter().cloned());
2400    }
2401
2402    #[inline]
2403    fn extend_one(&mut self, &c: &'a char) {
2404        self.push(c);
2405    }
2406
2407    #[inline]
2408    fn extend_reserve(&mut self, additional: usize) {
2409        self.reserve(additional);
2410    }
2411}
2412
2413#[cfg(not(no_global_oom_handling))]
2414#[stable(feature = "rust1", since = "1.0.0")]
2415impl<'a> Extend<&'a str> for String {
2416    fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
2417        iter.into_iter().for_each(move |s| self.push_str(s));
2418    }
2419
2420    #[inline]
2421    fn extend_one(&mut self, s: &'a str) {
2422        self.push_str(s);
2423    }
2424}
2425
2426#[cfg(not(no_global_oom_handling))]
2427#[stable(feature = "box_str2", since = "1.45.0")]
2428impl<A: Allocator> Extend<Box<str, A>> for String {
2429    fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
2430        iter.into_iter().for_each(move |s| self.push_str(&s));
2431    }
2432}
2433
2434#[cfg(not(no_global_oom_handling))]
2435#[stable(feature = "extend_string", since = "1.4.0")]
2436impl Extend<String> for String {
2437    fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
2438        iter.into_iter().for_each(move |s| self.push_str(&s));
2439    }
2440
2441    #[inline]
2442    fn extend_one(&mut self, s: String) {
2443        self.push_str(&s);
2444    }
2445}
2446
2447#[cfg(not(no_global_oom_handling))]
2448#[stable(feature = "herd_cows", since = "1.19.0")]
2449impl<'a> Extend<Cow<'a, str>> for String {
2450    fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) {
2451        iter.into_iter().for_each(move |s| self.push_str(&s));
2452    }
2453
2454    #[inline]
2455    fn extend_one(&mut self, s: Cow<'a, str>) {
2456        self.push_str(&s);
2457    }
2458}
2459
2460#[cfg(not(no_global_oom_handling))]
2461#[unstable(feature = "ascii_char", issue = "110998")]
2462impl Extend<core::ascii::Char> for String {
2463    fn extend<I: IntoIterator<Item = core::ascii::Char>>(&mut self, iter: I) {
2464        self.vec.extend(iter.into_iter().map(|c| c.to_u8()));
2465    }
2466
2467    #[inline]
2468    fn extend_one(&mut self, c: core::ascii::Char) {
2469        self.vec.push(c.to_u8());
2470    }
2471}
2472
2473#[cfg(not(no_global_oom_handling))]
2474#[unstable(feature = "ascii_char", issue = "110998")]
2475impl<'a> Extend<&'a core::ascii::Char> for String {
2476    fn extend<I: IntoIterator<Item = &'a core::ascii::Char>>(&mut self, iter: I) {
2477        self.extend(iter.into_iter().cloned());
2478    }
2479
2480    #[inline]
2481    fn extend_one(&mut self, c: &'a core::ascii::Char) {
2482        self.vec.push(c.to_u8());
2483    }
2484}
2485
2486/// A convenience impl that delegates to the impl for `&str`.
2487///
2488/// # Examples
2489///
2490/// ```
2491/// assert_eq!(String::from("Hello world").find("world"), Some(6));
2492/// ```
2493#[unstable(
2494    feature = "pattern",
2495    reason = "API not fully fleshed out and ready to be stabilized",
2496    issue = "27721"
2497)]
2498impl<'b> Pattern for &'b String {
2499    type Searcher<'a> = <&'b str as Pattern>::Searcher<'a>;
2500
2501    fn into_searcher(self, haystack: &str) -> <&'b str as Pattern>::Searcher<'_> {
2502        self[..].into_searcher(haystack)
2503    }
2504
2505    #[inline]
2506    fn is_contained_in(self, haystack: &str) -> bool {
2507        self[..].is_contained_in(haystack)
2508    }
2509
2510    #[inline]
2511    fn is_prefix_of(self, haystack: &str) -> bool {
2512        self[..].is_prefix_of(haystack)
2513    }
2514
2515    #[inline]
2516    fn strip_prefix_of(self, haystack: &str) -> Option<&str> {
2517        self[..].strip_prefix_of(haystack)
2518    }
2519
2520    #[inline]
2521    fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
2522    where
2523        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2524    {
2525        self[..].is_suffix_of(haystack)
2526    }
2527
2528    #[inline]
2529    fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
2530    where
2531        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2532    {
2533        self[..].strip_suffix_of(haystack)
2534    }
2535
2536    #[inline]
2537    fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> {
2538        Some(Utf8Pattern::StringPattern(self.as_bytes()))
2539    }
2540}
2541
2542macro_rules! impl_eq {
2543    ($lhs:ty, $rhs: ty) => {
2544        #[stable(feature = "rust1", since = "1.0.0")]
2545        #[allow(unused_lifetimes)]
2546        impl<'a, 'b> PartialEq<$rhs> for $lhs {
2547            #[inline]
2548            fn eq(&self, other: &$rhs) -> bool {
2549                PartialEq::eq(&self[..], &other[..])
2550            }
2551            #[inline]
2552            fn ne(&self, other: &$rhs) -> bool {
2553                PartialEq::ne(&self[..], &other[..])
2554            }
2555        }
2556
2557        #[stable(feature = "rust1", since = "1.0.0")]
2558        #[allow(unused_lifetimes)]
2559        impl<'a, 'b> PartialEq<$lhs> for $rhs {
2560            #[inline]
2561            fn eq(&self, other: &$lhs) -> bool {
2562                PartialEq::eq(&self[..], &other[..])
2563            }
2564            #[inline]
2565            fn ne(&self, other: &$lhs) -> bool {
2566                PartialEq::ne(&self[..], &other[..])
2567            }
2568        }
2569    };
2570}
2571
2572impl_eq! { String, str }
2573impl_eq! { String, &'a str }
2574#[cfg(not(no_global_oom_handling))]
2575impl_eq! { Cow<'a, str>, str }
2576#[cfg(not(no_global_oom_handling))]
2577impl_eq! { Cow<'a, str>, &'b str }
2578#[cfg(not(no_global_oom_handling))]
2579impl_eq! { Cow<'a, str>, String }
2580
2581#[stable(feature = "rust1", since = "1.0.0")]
2582impl Default for String {
2583    /// Creates an empty `String`.
2584    #[inline]
2585    fn default() -> String {
2586        String::new()
2587    }
2588}
2589
2590#[stable(feature = "rust1", since = "1.0.0")]
2591impl fmt::Display for String {
2592    #[inline]
2593    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2594        fmt::Display::fmt(&**self, f)
2595    }
2596}
2597
2598#[stable(feature = "rust1", since = "1.0.0")]
2599impl fmt::Debug for String {
2600    #[inline]
2601    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2602        fmt::Debug::fmt(&**self, f)
2603    }
2604}
2605
2606#[stable(feature = "rust1", since = "1.0.0")]
2607impl hash::Hash for String {
2608    #[inline]
2609    fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
2610        (**self).hash(hasher)
2611    }
2612}
2613
2614/// Implements the `+` operator for concatenating two strings.
2615///
2616/// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if
2617/// necessary). This is done to avoid allocating a new `String` and copying the entire contents on
2618/// every operation, which would lead to *O*(*n*^2) running time when building an *n*-byte string by
2619/// repeated concatenation.
2620///
2621/// The string on the right-hand side is only borrowed; its contents are copied into the returned
2622/// `String`.
2623///
2624/// # Examples
2625///
2626/// Concatenating two `String`s takes the first by value and borrows the second:
2627///
2628/// ```
2629/// let a = String::from("hello");
2630/// let b = String::from(" world");
2631/// let c = a + &b;
2632/// // `a` is moved and can no longer be used here.
2633/// ```
2634///
2635/// If you want to keep using the first `String`, you can clone it and append to the clone instead:
2636///
2637/// ```
2638/// let a = String::from("hello");
2639/// let b = String::from(" world");
2640/// let c = a.clone() + &b;
2641/// // `a` is still valid here.
2642/// ```
2643///
2644/// Concatenating `&str` slices can be done by converting the first to a `String`:
2645///
2646/// ```
2647/// let a = "hello";
2648/// let b = " world";
2649/// let c = a.to_string() + b;
2650/// ```
2651#[cfg(not(no_global_oom_handling))]
2652#[stable(feature = "rust1", since = "1.0.0")]
2653impl Add<&str> for String {
2654    type Output = String;
2655
2656    #[inline]
2657    fn add(mut self, other: &str) -> String {
2658        self.push_str(other);
2659        self
2660    }
2661}
2662
2663/// Implements the `+=` operator for appending to a `String`.
2664///
2665/// This has the same behavior as the [`push_str`][String::push_str] method.
2666#[cfg(not(no_global_oom_handling))]
2667#[stable(feature = "stringaddassign", since = "1.12.0")]
2668impl AddAssign<&str> for String {
2669    #[inline]
2670    fn add_assign(&mut self, other: &str) {
2671        self.push_str(other);
2672    }
2673}
2674
2675#[stable(feature = "rust1", since = "1.0.0")]
2676impl<I> ops::Index<I> for String
2677where
2678    I: slice::SliceIndex<str>,
2679{
2680    type Output = I::Output;
2681
2682    #[inline]
2683    fn index(&self, index: I) -> &I::Output {
2684        index.index(self.as_str())
2685    }
2686}
2687
2688#[stable(feature = "rust1", since = "1.0.0")]
2689impl<I> ops::IndexMut<I> for String
2690where
2691    I: slice::SliceIndex<str>,
2692{
2693    #[inline]
2694    fn index_mut(&mut self, index: I) -> &mut I::Output {
2695        index.index_mut(self.as_mut_str())
2696    }
2697}
2698
2699#[stable(feature = "rust1", since = "1.0.0")]
2700impl ops::Deref for String {
2701    type Target = str;
2702
2703    #[inline]
2704    fn deref(&self) -> &str {
2705        self.as_str()
2706    }
2707}
2708
2709#[unstable(feature = "deref_pure_trait", issue = "87121")]
2710unsafe impl ops::DerefPure for String {}
2711
2712#[stable(feature = "derefmut_for_string", since = "1.3.0")]
2713impl ops::DerefMut for String {
2714    #[inline]
2715    fn deref_mut(&mut self) -> &mut str {
2716        self.as_mut_str()
2717    }
2718}
2719
2720/// A type alias for [`Infallible`].
2721///
2722/// This alias exists for backwards compatibility, and may be eventually deprecated.
2723///
2724/// [`Infallible`]: core::convert::Infallible "convert::Infallible"
2725#[stable(feature = "str_parse_error", since = "1.5.0")]
2726pub type ParseError = core::convert::Infallible;
2727
2728#[cfg(not(no_global_oom_handling))]
2729#[stable(feature = "rust1", since = "1.0.0")]
2730impl FromStr for String {
2731    type Err = core::convert::Infallible;
2732    #[inline]
2733    fn from_str(s: &str) -> Result<String, Self::Err> {
2734        Ok(String::from(s))
2735    }
2736}
2737
2738/// A trait for converting a value to a `String`.
2739///
2740/// This trait is automatically implemented for any type which implements the
2741/// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
2742/// [`Display`] should be implemented instead, and you get the `ToString`
2743/// implementation for free.
2744///
2745/// [`Display`]: fmt::Display
2746#[rustc_diagnostic_item = "ToString"]
2747#[stable(feature = "rust1", since = "1.0.0")]
2748pub trait ToString {
2749    /// Converts the given value to a `String`.
2750    ///
2751    /// # Examples
2752    ///
2753    /// ```
2754    /// let i = 5;
2755    /// let five = String::from("5");
2756    ///
2757    /// assert_eq!(five, i.to_string());
2758    /// ```
2759    #[rustc_conversion_suggestion]
2760    #[stable(feature = "rust1", since = "1.0.0")]
2761    #[rustc_diagnostic_item = "to_string_method"]
2762    fn to_string(&self) -> String;
2763}
2764
2765/// # Panics
2766///
2767/// In this implementation, the `to_string` method panics
2768/// if the `Display` implementation returns an error.
2769/// This indicates an incorrect `Display` implementation
2770/// since `fmt::Write for String` never returns an error itself.
2771#[cfg(not(no_global_oom_handling))]
2772#[stable(feature = "rust1", since = "1.0.0")]
2773impl<T: fmt::Display + ?Sized> ToString for T {
2774    #[inline]
2775    fn to_string(&self) -> String {
2776        <Self as SpecToString>::spec_to_string(self)
2777    }
2778}
2779
2780#[cfg(not(no_global_oom_handling))]
2781trait SpecToString {
2782    fn spec_to_string(&self) -> String;
2783}
2784
2785#[cfg(not(no_global_oom_handling))]
2786impl<T: fmt::Display + ?Sized> SpecToString for T {
2787    // A common guideline is to not inline generic functions. However,
2788    // removing `#[inline]` from this method causes non-negligible regressions.
2789    // See <https://github.com/rust-lang/rust/pull/74852>, the last attempt
2790    // to try to remove it.
2791    #[inline]
2792    default fn spec_to_string(&self) -> String {
2793        let mut buf = String::new();
2794        let mut formatter =
2795            core::fmt::Formatter::new(&mut buf, core::fmt::FormattingOptions::new());
2796        // Bypass format_args!() to avoid write_str with zero-length strs
2797        fmt::Display::fmt(self, &mut formatter)
2798            .expect("a Display implementation returned an error unexpectedly");
2799        buf
2800    }
2801}
2802
2803#[cfg(not(no_global_oom_handling))]
2804impl SpecToString for core::ascii::Char {
2805    #[inline]
2806    fn spec_to_string(&self) -> String {
2807        self.as_str().to_owned()
2808    }
2809}
2810
2811#[cfg(not(no_global_oom_handling))]
2812impl SpecToString for char {
2813    #[inline]
2814    fn spec_to_string(&self) -> String {
2815        String::from(self.encode_utf8(&mut [0; char::MAX_LEN_UTF8]))
2816    }
2817}
2818
2819#[cfg(not(no_global_oom_handling))]
2820impl SpecToString for bool {
2821    #[inline]
2822    fn spec_to_string(&self) -> String {
2823        String::from(if *self { "true" } else { "false" })
2824    }
2825}
2826
2827#[cfg(not(no_global_oom_handling))]
2828impl SpecToString for u8 {
2829    #[inline]
2830    fn spec_to_string(&self) -> String {
2831        let mut buf = String::with_capacity(3);
2832        let mut n = *self;
2833        if n >= 10 {
2834            if n >= 100 {
2835                buf.push((b'0' + n / 100) as char);
2836                n %= 100;
2837            }
2838            buf.push((b'0' + n / 10) as char);
2839            n %= 10;
2840        }
2841        buf.push((b'0' + n) as char);
2842        buf
2843    }
2844}
2845
2846#[cfg(not(no_global_oom_handling))]
2847impl SpecToString for i8 {
2848    #[inline]
2849    fn spec_to_string(&self) -> String {
2850        let mut buf = String::with_capacity(4);
2851        if self.is_negative() {
2852            buf.push('-');
2853        }
2854        let mut n = self.unsigned_abs();
2855        if n >= 10 {
2856            if n >= 100 {
2857                buf.push('1');
2858                n -= 100;
2859            }
2860            buf.push((b'0' + n / 10) as char);
2861            n %= 10;
2862        }
2863        buf.push((b'0' + n) as char);
2864        buf
2865    }
2866}
2867
2868// Generic/generated code can sometimes have multiple, nested references
2869// for strings, including `&&&str`s that would never be written
2870// by hand. This macro generates twelve layers of nested `&`-impl
2871// for primitive strings.
2872#[cfg(not(no_global_oom_handling))]
2873macro_rules! to_string_str_wrap_in_ref {
2874    {x $($x:ident)*} => {
2875        &to_string_str_wrap_in_ref! { $($x)* }
2876    };
2877    {} => { str };
2878}
2879#[cfg(not(no_global_oom_handling))]
2880macro_rules! to_string_expr_wrap_in_deref {
2881    {$self:expr ; x $($x:ident)*} => {
2882        *(to_string_expr_wrap_in_deref! { $self ; $($x)* })
2883    };
2884    {$self:expr ;} => { $self };
2885}
2886#[cfg(not(no_global_oom_handling))]
2887macro_rules! to_string_str {
2888    {$($($x:ident)*),+} => {
2889        $(
2890            impl SpecToString for to_string_str_wrap_in_ref!($($x)*) {
2891                #[inline]
2892                fn spec_to_string(&self) -> String {
2893                    String::from(to_string_expr_wrap_in_deref!(self ; $($x)*))
2894                }
2895            }
2896        )+
2897    };
2898}
2899
2900#[cfg(not(no_global_oom_handling))]
2901to_string_str! {
2902    x x x x x x x x x x x x,
2903    x x x x x x x x x x x,
2904    x x x x x x x x x x,
2905    x x x x x x x x x,
2906    x x x x x x x x,
2907    x x x x x x x,
2908    x x x x x x,
2909    x x x x x,
2910    x x x x,
2911    x x x,
2912    x x,
2913    x,
2914}
2915
2916#[cfg(not(no_global_oom_handling))]
2917impl SpecToString for Cow<'_, str> {
2918    #[inline]
2919    fn spec_to_string(&self) -> String {
2920        self[..].to_owned()
2921    }
2922}
2923
2924#[cfg(not(no_global_oom_handling))]
2925impl SpecToString for String {
2926    #[inline]
2927    fn spec_to_string(&self) -> String {
2928        self.to_owned()
2929    }
2930}
2931
2932#[cfg(not(no_global_oom_handling))]
2933impl SpecToString for fmt::Arguments<'_> {
2934    #[inline]
2935    fn spec_to_string(&self) -> String {
2936        crate::fmt::format(*self)
2937    }
2938}
2939
2940#[stable(feature = "rust1", since = "1.0.0")]
2941impl AsRef<str> for String {
2942    #[inline]
2943    fn as_ref(&self) -> &str {
2944        self
2945    }
2946}
2947
2948#[stable(feature = "string_as_mut", since = "1.43.0")]
2949impl AsMut<str> for String {
2950    #[inline]
2951    fn as_mut(&mut self) -> &mut str {
2952        self
2953    }
2954}
2955
2956#[stable(feature = "rust1", since = "1.0.0")]
2957impl AsRef<[u8]> for String {
2958    #[inline]
2959    fn as_ref(&self) -> &[u8] {
2960        self.as_bytes()
2961    }
2962}
2963
2964#[cfg(not(no_global_oom_handling))]
2965#[stable(feature = "rust1", since = "1.0.0")]
2966impl From<&str> for String {
2967    /// Converts a `&str` into a [`String`].
2968    ///
2969    /// The result is allocated on the heap.
2970    #[inline]
2971    fn from(s: &str) -> String {
2972        s.to_owned()
2973    }
2974}
2975
2976#[cfg(not(no_global_oom_handling))]
2977#[stable(feature = "from_mut_str_for_string", since = "1.44.0")]
2978impl From<&mut str> for String {
2979    /// Converts a `&mut str` into a [`String`].
2980    ///
2981    /// The result is allocated on the heap.
2982    #[inline]
2983    fn from(s: &mut str) -> String {
2984        s.to_owned()
2985    }
2986}
2987
2988#[cfg(not(no_global_oom_handling))]
2989#[stable(feature = "from_ref_string", since = "1.35.0")]
2990impl From<&String> for String {
2991    /// Converts a `&String` into a [`String`].
2992    ///
2993    /// This clones `s` and returns the clone.
2994    #[inline]
2995    fn from(s: &String) -> String {
2996        s.clone()
2997    }
2998}
2999
3000// note: test pulls in std, which causes errors here
3001#[stable(feature = "string_from_box", since = "1.18.0")]
3002impl From<Box<str>> for String {
3003    /// Converts the given boxed `str` slice to a [`String`].
3004    /// It is notable that the `str` slice is owned.
3005    ///
3006    /// # Examples
3007    ///
3008    /// ```
3009    /// let s1: String = String::from("hello world");
3010    /// let s2: Box<str> = s1.into_boxed_str();
3011    /// let s3: String = String::from(s2);
3012    ///
3013    /// assert_eq!("hello world", s3)
3014    /// ```
3015    fn from(s: Box<str>) -> String {
3016        s.into_string()
3017    }
3018}
3019
3020#[cfg(not(no_global_oom_handling))]
3021#[stable(feature = "box_from_str", since = "1.20.0")]
3022impl From<String> for Box<str> {
3023    /// Converts the given [`String`] to a boxed `str` slice that is owned.
3024    ///
3025    /// # Examples
3026    ///
3027    /// ```
3028    /// let s1: String = String::from("hello world");
3029    /// let s2: Box<str> = Box::from(s1);
3030    /// let s3: String = String::from(s2);
3031    ///
3032    /// assert_eq!("hello world", s3)
3033    /// ```
3034    fn from(s: String) -> Box<str> {
3035        s.into_boxed_str()
3036    }
3037}
3038
3039#[cfg(not(no_global_oom_handling))]
3040#[stable(feature = "string_from_cow_str", since = "1.14.0")]
3041impl<'a> From<Cow<'a, str>> for String {
3042    /// Converts a clone-on-write string to an owned
3043    /// instance of [`String`].
3044    ///
3045    /// This extracts the owned string,
3046    /// clones the string if it is not already owned.
3047    ///
3048    /// # Example
3049    ///
3050    /// ```
3051    /// # use std::borrow::Cow;
3052    /// // If the string is not owned...
3053    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3054    /// // It will allocate on the heap and copy the string.
3055    /// let owned: String = String::from(cow);
3056    /// assert_eq!(&owned[..], "eggplant");
3057    /// ```
3058    fn from(s: Cow<'a, str>) -> String {
3059        s.into_owned()
3060    }
3061}
3062
3063#[cfg(not(no_global_oom_handling))]
3064#[stable(feature = "rust1", since = "1.0.0")]
3065impl<'a> From<&'a str> for Cow<'a, str> {
3066    /// Converts a string slice into a [`Borrowed`] variant.
3067    /// No heap allocation is performed, and the string
3068    /// is not copied.
3069    ///
3070    /// # Example
3071    ///
3072    /// ```
3073    /// # use std::borrow::Cow;
3074    /// assert_eq!(Cow::from("eggplant"), Cow::Borrowed("eggplant"));
3075    /// ```
3076    ///
3077    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3078    #[inline]
3079    fn from(s: &'a str) -> Cow<'a, str> {
3080        Cow::Borrowed(s)
3081    }
3082}
3083
3084#[cfg(not(no_global_oom_handling))]
3085#[stable(feature = "rust1", since = "1.0.0")]
3086impl<'a> From<String> for Cow<'a, str> {
3087    /// Converts a [`String`] into an [`Owned`] variant.
3088    /// No heap allocation is performed, and the string
3089    /// is not copied.
3090    ///
3091    /// # Example
3092    ///
3093    /// ```
3094    /// # use std::borrow::Cow;
3095    /// let s = "eggplant".to_string();
3096    /// let s2 = "eggplant".to_string();
3097    /// assert_eq!(Cow::from(s), Cow::<'static, str>::Owned(s2));
3098    /// ```
3099    ///
3100    /// [`Owned`]: crate::borrow::Cow::Owned "borrow::Cow::Owned"
3101    #[inline]
3102    fn from(s: String) -> Cow<'a, str> {
3103        Cow::Owned(s)
3104    }
3105}
3106
3107#[cfg(not(no_global_oom_handling))]
3108#[stable(feature = "cow_from_string_ref", since = "1.28.0")]
3109impl<'a> From<&'a String> for Cow<'a, str> {
3110    /// Converts a [`String`] reference into a [`Borrowed`] variant.
3111    /// No heap allocation is performed, and the string
3112    /// is not copied.
3113    ///
3114    /// # Example
3115    ///
3116    /// ```
3117    /// # use std::borrow::Cow;
3118    /// let s = "eggplant".to_string();
3119    /// assert_eq!(Cow::from(&s), Cow::Borrowed("eggplant"));
3120    /// ```
3121    ///
3122    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3123    #[inline]
3124    fn from(s: &'a String) -> Cow<'a, str> {
3125        Cow::Borrowed(s.as_str())
3126    }
3127}
3128
3129#[cfg(not(no_global_oom_handling))]
3130#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3131impl<'a> FromIterator<char> for Cow<'a, str> {
3132    fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> {
3133        Cow::Owned(FromIterator::from_iter(it))
3134    }
3135}
3136
3137#[cfg(not(no_global_oom_handling))]
3138#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3139impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> {
3140    fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> {
3141        Cow::Owned(FromIterator::from_iter(it))
3142    }
3143}
3144
3145#[cfg(not(no_global_oom_handling))]
3146#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3147impl<'a> FromIterator<String> for Cow<'a, str> {
3148    fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> {
3149        Cow::Owned(FromIterator::from_iter(it))
3150    }
3151}
3152
3153#[stable(feature = "from_string_for_vec_u8", since = "1.14.0")]
3154impl From<String> for Vec<u8> {
3155    /// Converts the given [`String`] to a vector [`Vec`] that holds values of type [`u8`].
3156    ///
3157    /// # Examples
3158    ///
3159    /// ```
3160    /// let s1 = String::from("hello world");
3161    /// let v1 = Vec::from(s1);
3162    ///
3163    /// for b in v1 {
3164    ///     println!("{b}");
3165    /// }
3166    /// ```
3167    fn from(string: String) -> Vec<u8> {
3168        string.into_bytes()
3169    }
3170}
3171
3172#[stable(feature = "try_from_vec_u8_for_string", since = "1.87.0")]
3173impl TryFrom<Vec<u8>> for String {
3174    type Error = FromUtf8Error;
3175    /// Converts the given [`Vec<u8>`] into a  [`String`] if it contains valid UTF-8 data.
3176    ///
3177    /// # Examples
3178    ///
3179    /// ```
3180    /// let s1 = b"hello world".to_vec();
3181    /// let v1 = String::try_from(s1).unwrap();
3182    /// assert_eq!(v1, "hello world");
3183    ///
3184    /// ```
3185    fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
3186        Self::from_utf8(bytes)
3187    }
3188}
3189
3190#[cfg(not(no_global_oom_handling))]
3191#[stable(feature = "rust1", since = "1.0.0")]
3192impl fmt::Write for String {
3193    #[inline]
3194    fn write_str(&mut self, s: &str) -> fmt::Result {
3195        self.push_str(s);
3196        Ok(())
3197    }
3198
3199    #[inline]
3200    fn write_char(&mut self, c: char) -> fmt::Result {
3201        self.push(c);
3202        Ok(())
3203    }
3204}
3205
3206/// An iterator over the [`char`]s of a string.
3207///
3208/// This struct is created by the [`into_chars`] method on [`String`].
3209/// See its documentation for more.
3210///
3211/// [`char`]: prim@char
3212/// [`into_chars`]: String::into_chars
3213#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
3214#[must_use = "iterators are lazy and do nothing unless consumed"]
3215#[unstable(feature = "string_into_chars", issue = "133125")]
3216pub struct IntoChars {
3217    bytes: vec::IntoIter<u8>,
3218}
3219
3220#[unstable(feature = "string_into_chars", issue = "133125")]
3221impl fmt::Debug for IntoChars {
3222    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3223        f.debug_tuple("IntoChars").field(&self.as_str()).finish()
3224    }
3225}
3226
3227impl IntoChars {
3228    /// Views the underlying data as a subslice of the original data.
3229    ///
3230    /// # Examples
3231    ///
3232    /// ```
3233    /// #![feature(string_into_chars)]
3234    ///
3235    /// let mut chars = String::from("abc").into_chars();
3236    ///
3237    /// assert_eq!(chars.as_str(), "abc");
3238    /// chars.next();
3239    /// assert_eq!(chars.as_str(), "bc");
3240    /// chars.next();
3241    /// chars.next();
3242    /// assert_eq!(chars.as_str(), "");
3243    /// ```
3244    #[unstable(feature = "string_into_chars", issue = "133125")]
3245    #[must_use]
3246    #[inline]
3247    pub fn as_str(&self) -> &str {
3248        // SAFETY: `bytes` is a valid UTF-8 string.
3249        unsafe { str::from_utf8_unchecked(self.bytes.as_slice()) }
3250    }
3251
3252    /// Consumes the `IntoChars`, returning the remaining string.
3253    ///
3254    /// # Examples
3255    ///
3256    /// ```
3257    /// #![feature(string_into_chars)]
3258    ///
3259    /// let chars = String::from("abc").into_chars();
3260    /// assert_eq!(chars.into_string(), "abc");
3261    ///
3262    /// let mut chars = String::from("def").into_chars();
3263    /// chars.next();
3264    /// assert_eq!(chars.into_string(), "ef");
3265    /// ```
3266    #[cfg(not(no_global_oom_handling))]
3267    #[unstable(feature = "string_into_chars", issue = "133125")]
3268    #[inline]
3269    pub fn into_string(self) -> String {
3270        // Safety: `bytes` are kept in UTF-8 form, only removing whole `char`s at a time.
3271        unsafe { String::from_utf8_unchecked(self.bytes.collect()) }
3272    }
3273
3274    #[inline]
3275    fn iter(&self) -> CharIndices<'_> {
3276        self.as_str().char_indices()
3277    }
3278}
3279
3280#[unstable(feature = "string_into_chars", issue = "133125")]
3281impl Iterator for IntoChars {
3282    type Item = char;
3283
3284    #[inline]
3285    fn next(&mut self) -> Option<char> {
3286        let mut iter = self.iter();
3287        match iter.next() {
3288            None => None,
3289            Some((_, ch)) => {
3290                let offset = iter.offset();
3291                // `offset` is a valid index.
3292                let _ = self.bytes.advance_by(offset);
3293                Some(ch)
3294            }
3295        }
3296    }
3297
3298    #[inline]
3299    fn count(self) -> usize {
3300        self.iter().count()
3301    }
3302
3303    #[inline]
3304    fn size_hint(&self) -> (usize, Option<usize>) {
3305        self.iter().size_hint()
3306    }
3307
3308    #[inline]
3309    fn last(mut self) -> Option<char> {
3310        self.next_back()
3311    }
3312}
3313
3314#[unstable(feature = "string_into_chars", issue = "133125")]
3315impl DoubleEndedIterator for IntoChars {
3316    #[inline]
3317    fn next_back(&mut self) -> Option<char> {
3318        let len = self.as_str().len();
3319        let mut iter = self.iter();
3320        match iter.next_back() {
3321            None => None,
3322            Some((idx, ch)) => {
3323                // `idx` is a valid index.
3324                let _ = self.bytes.advance_back_by(len - idx);
3325                Some(ch)
3326            }
3327        }
3328    }
3329}
3330
3331#[unstable(feature = "string_into_chars", issue = "133125")]
3332impl FusedIterator for IntoChars {}
3333
3334/// A draining iterator for `String`.
3335///
3336/// This struct is created by the [`drain`] method on [`String`]. See its
3337/// documentation for more.
3338///
3339/// [`drain`]: String::drain
3340#[stable(feature = "drain", since = "1.6.0")]
3341pub struct Drain<'a> {
3342    /// Will be used as &'a mut String in the destructor
3343    string: *mut String,
3344    /// Start of part to remove
3345    start: usize,
3346    /// End of part to remove
3347    end: usize,
3348    /// Current remaining range to remove
3349    iter: Chars<'a>,
3350}
3351
3352#[stable(feature = "collection_debug", since = "1.17.0")]
3353impl fmt::Debug for Drain<'_> {
3354    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3355        f.debug_tuple("Drain").field(&self.as_str()).finish()
3356    }
3357}
3358
3359#[stable(feature = "drain", since = "1.6.0")]
3360unsafe impl Sync for Drain<'_> {}
3361#[stable(feature = "drain", since = "1.6.0")]
3362unsafe impl Send for Drain<'_> {}
3363
3364#[stable(feature = "drain", since = "1.6.0")]
3365impl Drop for Drain<'_> {
3366    fn drop(&mut self) {
3367        unsafe {
3368            // Use Vec::drain. "Reaffirm" the bounds checks to avoid
3369            // panic code being inserted again.
3370            let self_vec = (*self.string).as_mut_vec();
3371            if self.start <= self.end && self.end <= self_vec.len() {
3372                self_vec.drain(self.start..self.end);
3373            }
3374        }
3375    }
3376}
3377
3378impl<'a> Drain<'a> {
3379    /// Returns the remaining (sub)string of this iterator as a slice.
3380    ///
3381    /// # Examples
3382    ///
3383    /// ```
3384    /// let mut s = String::from("abc");
3385    /// let mut drain = s.drain(..);
3386    /// assert_eq!(drain.as_str(), "abc");
3387    /// let _ = drain.next().unwrap();
3388    /// assert_eq!(drain.as_str(), "bc");
3389    /// ```
3390    #[must_use]
3391    #[stable(feature = "string_drain_as_str", since = "1.55.0")]
3392    pub fn as_str(&self) -> &str {
3393        self.iter.as_str()
3394    }
3395}
3396
3397#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3398impl<'a> AsRef<str> for Drain<'a> {
3399    fn as_ref(&self) -> &str {
3400        self.as_str()
3401    }
3402}
3403
3404#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3405impl<'a> AsRef<[u8]> for Drain<'a> {
3406    fn as_ref(&self) -> &[u8] {
3407        self.as_str().as_bytes()
3408    }
3409}
3410
3411#[stable(feature = "drain", since = "1.6.0")]
3412impl Iterator for Drain<'_> {
3413    type Item = char;
3414
3415    #[inline]
3416    fn next(&mut self) -> Option<char> {
3417        self.iter.next()
3418    }
3419
3420    fn size_hint(&self) -> (usize, Option<usize>) {
3421        self.iter.size_hint()
3422    }
3423
3424    #[inline]
3425    fn last(mut self) -> Option<char> {
3426        self.next_back()
3427    }
3428}
3429
3430#[stable(feature = "drain", since = "1.6.0")]
3431impl DoubleEndedIterator for Drain<'_> {
3432    #[inline]
3433    fn next_back(&mut self) -> Option<char> {
3434        self.iter.next_back()
3435    }
3436}
3437
3438#[stable(feature = "fused", since = "1.26.0")]
3439impl FusedIterator for Drain<'_> {}
3440
3441#[cfg(not(no_global_oom_handling))]
3442#[stable(feature = "from_char_for_string", since = "1.46.0")]
3443impl From<char> for String {
3444    /// Allocates an owned [`String`] from a single character.
3445    ///
3446    /// # Example
3447    /// ```rust
3448    /// let c: char = 'a';
3449    /// let s: String = String::from(c);
3450    /// assert_eq!("a", &s[..]);
3451    /// ```
3452    #[inline]
3453    fn from(c: char) -> Self {
3454        c.to_string()
3455    }
3456}
Лучший частный хостинг