lynx   »   [go: up one dir, main page]

alloc/
rc.rs

1//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
2//! Counted'.
3//!
4//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
5//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
6//! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
7//! given allocation is destroyed, the value stored in that allocation (often
8//! referred to as "inner value") is also dropped.
9//!
10//! Shared references in Rust disallow mutation by default, and [`Rc`]
11//! is no exception: you cannot generally obtain a mutable reference to
12//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
13//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
14//! inside an `Rc`][mutability].
15//!
16//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
17//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
18//! does not implement [`Send`]. As a result, the Rust compiler
19//! will check *at compile time* that you are not sending [`Rc`]s between
20//! threads. If you need multi-threaded, atomic reference counting, use
21//! [`sync::Arc`][arc].
22//!
23//! The [`downgrade`][downgrade] method can be used to create a non-owning
24//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
25//! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
26//! already been dropped. In other words, `Weak` pointers do not keep the value
27//! inside the allocation alive; however, they *do* keep the allocation
28//! (the backing store for the inner value) alive.
29//!
30//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
31//! [`Weak`] is used to break cycles. For example, a tree could have strong
32//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
33//! children back to their parents.
34//!
35//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
36//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
37//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
38//! functions, called using [fully qualified syntax]:
39//!
40//! ```
41//! use std::rc::Rc;
42//!
43//! let my_rc = Rc::new(());
44//! let my_weak = Rc::downgrade(&my_rc);
45//! ```
46//!
47//! `Rc<T>`'s implementations of traits like `Clone` may also be called using
48//! fully qualified syntax. Some people prefer to use fully qualified syntax,
49//! while others prefer using method-call syntax.
50//!
51//! ```
52//! use std::rc::Rc;
53//!
54//! let rc = Rc::new(());
55//! // Method-call syntax
56//! let rc2 = rc.clone();
57//! // Fully qualified syntax
58//! let rc3 = Rc::clone(&rc);
59//! ```
60//!
61//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
62//! already been dropped.
63//!
64//! # Cloning references
65//!
66//! Creating a new reference to the same allocation as an existing reference counted pointer
67//! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
68//!
69//! ```
70//! use std::rc::Rc;
71//!
72//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
73//! // The two syntaxes below are equivalent.
74//! let a = foo.clone();
75//! let b = Rc::clone(&foo);
76//! // a and b both point to the same memory location as foo.
77//! ```
78//!
79//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
80//! the meaning of the code. In the example above, this syntax makes it easier to see that
81//! this code is creating a new reference rather than copying the whole content of foo.
82//!
83//! # Examples
84//!
85//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
86//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
87//! unique ownership, because more than one gadget may belong to the same
88//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
89//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
90//!
91//! ```
92//! use std::rc::Rc;
93//!
94//! struct Owner {
95//!     name: String,
96//!     // ...other fields
97//! }
98//!
99//! struct Gadget {
100//!     id: i32,
101//!     owner: Rc<Owner>,
102//!     // ...other fields
103//! }
104//!
105//! fn main() {
106//!     // Create a reference-counted `Owner`.
107//!     let gadget_owner: Rc<Owner> = Rc::new(
108//!         Owner {
109//!             name: "Gadget Man".to_string(),
110//!         }
111//!     );
112//!
113//!     // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
114//!     // gives us a new pointer to the same `Owner` allocation, incrementing
115//!     // the reference count in the process.
116//!     let gadget1 = Gadget {
117//!         id: 1,
118//!         owner: Rc::clone(&gadget_owner),
119//!     };
120//!     let gadget2 = Gadget {
121//!         id: 2,
122//!         owner: Rc::clone(&gadget_owner),
123//!     };
124//!
125//!     // Dispose of our local variable `gadget_owner`.
126//!     drop(gadget_owner);
127//!
128//!     // Despite dropping `gadget_owner`, we're still able to print out the name
129//!     // of the `Owner` of the `Gadget`s. This is because we've only dropped a
130//!     // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
131//!     // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
132//!     // live. The field projection `gadget1.owner.name` works because
133//!     // `Rc<Owner>` automatically dereferences to `Owner`.
134//!     println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
135//!     println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
136//!
137//!     // At the end of the function, `gadget1` and `gadget2` are destroyed, and
138//!     // with them the last counted references to our `Owner`. Gadget Man now
139//!     // gets destroyed as well.
140//! }
141//! ```
142//!
143//! If our requirements change, and we also need to be able to traverse from
144//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
145//! to `Gadget` introduces a cycle. This means that their
146//! reference counts can never reach 0, and the allocation will never be destroyed:
147//! a memory leak. In order to get around this, we can use [`Weak`]
148//! pointers.
149//!
150//! Rust actually makes it somewhat difficult to produce this loop in the first
151//! place. In order to end up with two values that point at each other, one of
152//! them needs to be mutable. This is difficult because [`Rc`] enforces
153//! memory safety by only giving out shared references to the value it wraps,
154//! and these don't allow direct mutation. We need to wrap the part of the
155//! value we wish to mutate in a [`RefCell`], which provides *interior
156//! mutability*: a method to achieve mutability through a shared reference.
157//! [`RefCell`] enforces Rust's borrowing rules at runtime.
158//!
159//! ```
160//! use std::rc::Rc;
161//! use std::rc::Weak;
162//! use std::cell::RefCell;
163//!
164//! struct Owner {
165//!     name: String,
166//!     gadgets: RefCell<Vec<Weak<Gadget>>>,
167//!     // ...other fields
168//! }
169//!
170//! struct Gadget {
171//!     id: i32,
172//!     owner: Rc<Owner>,
173//!     // ...other fields
174//! }
175//!
176//! fn main() {
177//!     // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
178//!     // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
179//!     // a shared reference.
180//!     let gadget_owner: Rc<Owner> = Rc::new(
181//!         Owner {
182//!             name: "Gadget Man".to_string(),
183//!             gadgets: RefCell::new(vec![]),
184//!         }
185//!     );
186//!
187//!     // Create `Gadget`s belonging to `gadget_owner`, as before.
188//!     let gadget1 = Rc::new(
189//!         Gadget {
190//!             id: 1,
191//!             owner: Rc::clone(&gadget_owner),
192//!         }
193//!     );
194//!     let gadget2 = Rc::new(
195//!         Gadget {
196//!             id: 2,
197//!             owner: Rc::clone(&gadget_owner),
198//!         }
199//!     );
200//!
201//!     // Add the `Gadget`s to their `Owner`.
202//!     {
203//!         let mut gadgets = gadget_owner.gadgets.borrow_mut();
204//!         gadgets.push(Rc::downgrade(&gadget1));
205//!         gadgets.push(Rc::downgrade(&gadget2));
206//!
207//!         // `RefCell` dynamic borrow ends here.
208//!     }
209//!
210//!     // Iterate over our `Gadget`s, printing their details out.
211//!     for gadget_weak in gadget_owner.gadgets.borrow().iter() {
212//!
213//!         // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
214//!         // guarantee the allocation still exists, we need to call
215//!         // `upgrade`, which returns an `Option<Rc<Gadget>>`.
216//!         //
217//!         // In this case we know the allocation still exists, so we simply
218//!         // `unwrap` the `Option`. In a more complicated program, you might
219//!         // need graceful error handling for a `None` result.
220//!
221//!         let gadget = gadget_weak.upgrade().unwrap();
222//!         println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
223//!     }
224//!
225//!     // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
226//!     // are destroyed. There are now no strong (`Rc`) pointers to the
227//!     // gadgets, so they are destroyed. This zeroes the reference count on
228//!     // Gadget Man, so he gets destroyed as well.
229//! }
230//! ```
231//!
232//! [clone]: Clone::clone
233//! [`Cell`]: core::cell::Cell
234//! [`RefCell`]: core::cell::RefCell
235//! [arc]: crate::sync::Arc
236//! [`Deref`]: core::ops::Deref
237//! [downgrade]: Rc::downgrade
238//! [upgrade]: Weak::upgrade
239//! [mutability]: core::cell#introducing-mutability-inside-of-something-immutable
240//! [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
241
242#![stable(feature = "rust1", since = "1.0.0")]
243
244use core::any::Any;
245use core::cell::Cell;
246#[cfg(not(no_global_oom_handling))]
247use core::clone::CloneToUninit;
248use core::clone::UseCloned;
249use core::cmp::Ordering;
250use core::hash::{Hash, Hasher};
251use core::intrinsics::abort;
252#[cfg(not(no_global_oom_handling))]
253use core::iter;
254use core::marker::{PhantomData, Unsize};
255use core::mem::{self, ManuallyDrop, align_of_val_raw};
256use core::num::NonZeroUsize;
257use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver};
258use core::panic::{RefUnwindSafe, UnwindSafe};
259#[cfg(not(no_global_oom_handling))]
260use core::pin::Pin;
261use core::pin::PinCoerceUnsized;
262use core::ptr::{self, NonNull, drop_in_place};
263#[cfg(not(no_global_oom_handling))]
264use core::slice::from_raw_parts_mut;
265use core::{borrow, fmt, hint};
266
267#[cfg(not(no_global_oom_handling))]
268use crate::alloc::handle_alloc_error;
269use crate::alloc::{AllocError, Allocator, Global, Layout};
270use crate::borrow::{Cow, ToOwned};
271use crate::boxed::Box;
272#[cfg(not(no_global_oom_handling))]
273use crate::string::String;
274#[cfg(not(no_global_oom_handling))]
275use crate::vec::Vec;
276
277// This is repr(C) to future-proof against possible field-reordering, which
278// would interfere with otherwise safe [into|from]_raw() of transmutable
279// inner types.
280#[repr(C)]
281struct RcInner<T: ?Sized> {
282    strong: Cell<usize>,
283    weak: Cell<usize>,
284    value: T,
285}
286
287/// Calculate layout for `RcInner<T>` using the inner value's layout
288fn rc_inner_layout_for_value_layout(layout: Layout) -> Layout {
289    // Calculate layout using the given value layout.
290    // Previously, layout was calculated on the expression
291    // `&*(ptr as *const RcInner<T>)`, but this created a misaligned
292    // reference (see #54908).
293    Layout::new::<RcInner<()>>().extend(layout).unwrap().0.pad_to_align()
294}
295
296/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
297/// Counted'.
298///
299/// See the [module-level documentation](./index.html) for more details.
300///
301/// The inherent methods of `Rc` are all associated functions, which means
302/// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
303/// `value.get_mut()`. This avoids conflicts with methods of the inner type `T`.
304///
305/// [get_mut]: Rc::get_mut
306#[doc(search_unbox)]
307#[rustc_diagnostic_item = "Rc"]
308#[stable(feature = "rust1", since = "1.0.0")]
309#[rustc_insignificant_dtor]
310pub struct Rc<
311    T: ?Sized,
312    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
313> {
314    ptr: NonNull<RcInner<T>>,
315    phantom: PhantomData<RcInner<T>>,
316    alloc: A,
317}
318
319#[stable(feature = "rust1", since = "1.0.0")]
320impl<T: ?Sized, A: Allocator> !Send for Rc<T, A> {}
321
322// Note that this negative impl isn't strictly necessary for correctness,
323// as `Rc` transitively contains a `Cell`, which is itself `!Sync`.
324// However, given how important `Rc`'s `!Sync`-ness is,
325// having an explicit negative impl is nice for documentation purposes
326// and results in nicer error messages.
327#[stable(feature = "rust1", since = "1.0.0")]
328impl<T: ?Sized, A: Allocator> !Sync for Rc<T, A> {}
329
330#[stable(feature = "catch_unwind", since = "1.9.0")]
331impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Rc<T, A> {}
332#[stable(feature = "rc_ref_unwind_safe", since = "1.58.0")]
333impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> RefUnwindSafe for Rc<T, A> {}
334
335#[unstable(feature = "coerce_unsized", issue = "18598")]
336impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Rc<U, A>> for Rc<T, A> {}
337
338#[unstable(feature = "dispatch_from_dyn", issue = "none")]
339impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}
340
341impl<T: ?Sized> Rc<T> {
342    #[inline]
343    unsafe fn from_inner(ptr: NonNull<RcInner<T>>) -> Self {
344        unsafe { Self::from_inner_in(ptr, Global) }
345    }
346
347    #[inline]
348    unsafe fn from_ptr(ptr: *mut RcInner<T>) -> Self {
349        unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
350    }
351}
352
353impl<T: ?Sized, A: Allocator> Rc<T, A> {
354    #[inline(always)]
355    fn inner(&self) -> &RcInner<T> {
356        // This unsafety is ok because while this Rc is alive we're guaranteed
357        // that the inner pointer is valid.
358        unsafe { self.ptr.as_ref() }
359    }
360
361    #[inline]
362    fn into_inner_with_allocator(this: Self) -> (NonNull<RcInner<T>>, A) {
363        let this = mem::ManuallyDrop::new(this);
364        (this.ptr, unsafe { ptr::read(&this.alloc) })
365    }
366
367    #[inline]
368    unsafe fn from_inner_in(ptr: NonNull<RcInner<T>>, alloc: A) -> Self {
369        Self { ptr, phantom: PhantomData, alloc }
370    }
371
372    #[inline]
373    unsafe fn from_ptr_in(ptr: *mut RcInner<T>, alloc: A) -> Self {
374        unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
375    }
376
377    // Non-inlined part of `drop`.
378    #[inline(never)]
379    unsafe fn drop_slow(&mut self) {
380        // Reconstruct the "strong weak" pointer and drop it when this
381        // variable goes out of scope. This ensures that the memory is
382        // deallocated even if the destructor of `T` panics.
383        let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
384
385        // Destroy the contained object.
386        // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
387        unsafe {
388            ptr::drop_in_place(&mut (*self.ptr.as_ptr()).value);
389        }
390    }
391}
392
393impl<T> Rc<T> {
394    /// Constructs a new `Rc<T>`.
395    ///
396    /// # Examples
397    ///
398    /// ```
399    /// use std::rc::Rc;
400    ///
401    /// let five = Rc::new(5);
402    /// ```
403    #[cfg(not(no_global_oom_handling))]
404    #[stable(feature = "rust1", since = "1.0.0")]
405    pub fn new(value: T) -> Rc<T> {
406        // There is an implicit weak pointer owned by all the strong
407        // pointers, which ensures that the weak destructor never frees
408        // the allocation while the strong destructor is running, even
409        // if the weak pointer is stored inside the strong one.
410        unsafe {
411            Self::from_inner(
412                Box::leak(Box::new(RcInner { strong: Cell::new(1), weak: Cell::new(1), value }))
413                    .into(),
414            )
415        }
416    }
417
418    /// Constructs a new `Rc<T>` while giving you a `Weak<T>` to the allocation,
419    /// to allow you to construct a `T` which holds a weak pointer to itself.
420    ///
421    /// Generally, a structure circularly referencing itself, either directly or
422    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
423    /// Using this function, you get access to the weak pointer during the
424    /// initialization of `T`, before the `Rc<T>` is created, such that you can
425    /// clone and store it inside the `T`.
426    ///
427    /// `new_cyclic` first allocates the managed allocation for the `Rc<T>`,
428    /// then calls your closure, giving it a `Weak<T>` to this allocation,
429    /// and only afterwards completes the construction of the `Rc<T>` by placing
430    /// the `T` returned from your closure into the allocation.
431    ///
432    /// Since the new `Rc<T>` is not fully-constructed until `Rc<T>::new_cyclic`
433    /// returns, calling [`upgrade`] on the weak reference inside your closure will
434    /// fail and result in a `None` value.
435    ///
436    /// # Panics
437    ///
438    /// If `data_fn` panics, the panic is propagated to the caller, and the
439    /// temporary [`Weak<T>`] is dropped normally.
440    ///
441    /// # Examples
442    ///
443    /// ```
444    /// # #![allow(dead_code)]
445    /// use std::rc::{Rc, Weak};
446    ///
447    /// struct Gadget {
448    ///     me: Weak<Gadget>,
449    /// }
450    ///
451    /// impl Gadget {
452    ///     /// Constructs a reference counted Gadget.
453    ///     fn new() -> Rc<Self> {
454    ///         // `me` is a `Weak<Gadget>` pointing at the new allocation of the
455    ///         // `Rc` we're constructing.
456    ///         Rc::new_cyclic(|me| {
457    ///             // Create the actual struct here.
458    ///             Gadget { me: me.clone() }
459    ///         })
460    ///     }
461    ///
462    ///     /// Returns a reference counted pointer to Self.
463    ///     fn me(&self) -> Rc<Self> {
464    ///         self.me.upgrade().unwrap()
465    ///     }
466    /// }
467    /// ```
468    /// [`upgrade`]: Weak::upgrade
469    #[cfg(not(no_global_oom_handling))]
470    #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
471    pub fn new_cyclic<F>(data_fn: F) -> Rc<T>
472    where
473        F: FnOnce(&Weak<T>) -> T,
474    {
475        Self::new_cyclic_in(data_fn, Global)
476    }
477
478    /// Constructs a new `Rc` with uninitialized contents.
479    ///
480    /// # Examples
481    ///
482    /// ```
483    /// #![feature(get_mut_unchecked)]
484    ///
485    /// use std::rc::Rc;
486    ///
487    /// let mut five = Rc::<u32>::new_uninit();
488    ///
489    /// // Deferred initialization:
490    /// Rc::get_mut(&mut five).unwrap().write(5);
491    ///
492    /// let five = unsafe { five.assume_init() };
493    ///
494    /// assert_eq!(*five, 5)
495    /// ```
496    #[cfg(not(no_global_oom_handling))]
497    #[stable(feature = "new_uninit", since = "1.82.0")]
498    #[must_use]
499    pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
500        unsafe {
501            Rc::from_ptr(Rc::allocate_for_layout(
502                Layout::new::<T>(),
503                |layout| Global.allocate(layout),
504                <*mut u8>::cast,
505            ))
506        }
507    }
508
509    /// Constructs a new `Rc` with uninitialized contents, with the memory
510    /// being filled with `0` bytes.
511    ///
512    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
513    /// incorrect usage of this method.
514    ///
515    /// # Examples
516    ///
517    /// ```
518    /// #![feature(new_zeroed_alloc)]
519    ///
520    /// use std::rc::Rc;
521    ///
522    /// let zero = Rc::<u32>::new_zeroed();
523    /// let zero = unsafe { zero.assume_init() };
524    ///
525    /// assert_eq!(*zero, 0)
526    /// ```
527    ///
528    /// [zeroed]: mem::MaybeUninit::zeroed
529    #[cfg(not(no_global_oom_handling))]
530    #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
531    #[must_use]
532    pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> {
533        unsafe {
534            Rc::from_ptr(Rc::allocate_for_layout(
535                Layout::new::<T>(),
536                |layout| Global.allocate_zeroed(layout),
537                <*mut u8>::cast,
538            ))
539        }
540    }
541
542    /// Constructs a new `Rc<T>`, returning an error if the allocation fails
543    ///
544    /// # Examples
545    ///
546    /// ```
547    /// #![feature(allocator_api)]
548    /// use std::rc::Rc;
549    ///
550    /// let five = Rc::try_new(5);
551    /// # Ok::<(), std::alloc::AllocError>(())
552    /// ```
553    #[unstable(feature = "allocator_api", issue = "32838")]
554    pub fn try_new(value: T) -> Result<Rc<T>, AllocError> {
555        // There is an implicit weak pointer owned by all the strong
556        // pointers, which ensures that the weak destructor never frees
557        // the allocation while the strong destructor is running, even
558        // if the weak pointer is stored inside the strong one.
559        unsafe {
560            Ok(Self::from_inner(
561                Box::leak(Box::try_new(RcInner {
562                    strong: Cell::new(1),
563                    weak: Cell::new(1),
564                    value,
565                })?)
566                .into(),
567            ))
568        }
569    }
570
571    /// Constructs a new `Rc` with uninitialized contents, returning an error if the allocation fails
572    ///
573    /// # Examples
574    ///
575    /// ```
576    /// #![feature(allocator_api)]
577    /// #![feature(get_mut_unchecked)]
578    ///
579    /// use std::rc::Rc;
580    ///
581    /// let mut five = Rc::<u32>::try_new_uninit()?;
582    ///
583    /// // Deferred initialization:
584    /// Rc::get_mut(&mut five).unwrap().write(5);
585    ///
586    /// let five = unsafe { five.assume_init() };
587    ///
588    /// assert_eq!(*five, 5);
589    /// # Ok::<(), std::alloc::AllocError>(())
590    /// ```
591    #[unstable(feature = "allocator_api", issue = "32838")]
592    // #[unstable(feature = "new_uninit", issue = "63291")]
593    pub fn try_new_uninit() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
594        unsafe {
595            Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
596                Layout::new::<T>(),
597                |layout| Global.allocate(layout),
598                <*mut u8>::cast,
599            )?))
600        }
601    }
602
603    /// Constructs a new `Rc` with uninitialized contents, with the memory
604    /// being filled with `0` bytes, returning an error if the allocation fails
605    ///
606    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
607    /// incorrect usage of this method.
608    ///
609    /// # Examples
610    ///
611    /// ```
612    /// #![feature(allocator_api)]
613    ///
614    /// use std::rc::Rc;
615    ///
616    /// let zero = Rc::<u32>::try_new_zeroed()?;
617    /// let zero = unsafe { zero.assume_init() };
618    ///
619    /// assert_eq!(*zero, 0);
620    /// # Ok::<(), std::alloc::AllocError>(())
621    /// ```
622    ///
623    /// [zeroed]: mem::MaybeUninit::zeroed
624    #[unstable(feature = "allocator_api", issue = "32838")]
625    //#[unstable(feature = "new_uninit", issue = "63291")]
626    pub fn try_new_zeroed() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
627        unsafe {
628            Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
629                Layout::new::<T>(),
630                |layout| Global.allocate_zeroed(layout),
631                <*mut u8>::cast,
632            )?))
633        }
634    }
635    /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
636    /// `value` will be pinned in memory and unable to be moved.
637    #[cfg(not(no_global_oom_handling))]
638    #[stable(feature = "pin", since = "1.33.0")]
639    #[must_use]
640    pub fn pin(value: T) -> Pin<Rc<T>> {
641        unsafe { Pin::new_unchecked(Rc::new(value)) }
642    }
643}
644
645impl<T, A: Allocator> Rc<T, A> {
646    /// Constructs a new `Rc` in the provided allocator.
647    ///
648    /// # Examples
649    ///
650    /// ```
651    /// #![feature(allocator_api)]
652    /// use std::rc::Rc;
653    /// use std::alloc::System;
654    ///
655    /// let five = Rc::new_in(5, System);
656    /// ```
657    #[cfg(not(no_global_oom_handling))]
658    #[unstable(feature = "allocator_api", issue = "32838")]
659    #[inline]
660    pub fn new_in(value: T, alloc: A) -> Rc<T, A> {
661        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
662        // That would make code size bigger.
663        match Self::try_new_in(value, alloc) {
664            Ok(m) => m,
665            Err(_) => handle_alloc_error(Layout::new::<RcInner<T>>()),
666        }
667    }
668
669    /// Constructs a new `Rc` with uninitialized contents in the provided allocator.
670    ///
671    /// # Examples
672    ///
673    /// ```
674    /// #![feature(get_mut_unchecked)]
675    /// #![feature(allocator_api)]
676    ///
677    /// use std::rc::Rc;
678    /// use std::alloc::System;
679    ///
680    /// let mut five = Rc::<u32, _>::new_uninit_in(System);
681    ///
682    /// let five = unsafe {
683    ///     // Deferred initialization:
684    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
685    ///
686    ///     five.assume_init()
687    /// };
688    ///
689    /// assert_eq!(*five, 5)
690    /// ```
691    #[cfg(not(no_global_oom_handling))]
692    #[unstable(feature = "allocator_api", issue = "32838")]
693    // #[unstable(feature = "new_uninit", issue = "63291")]
694    #[inline]
695    pub fn new_uninit_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> {
696        unsafe {
697            Rc::from_ptr_in(
698                Rc::allocate_for_layout(
699                    Layout::new::<T>(),
700                    |layout| alloc.allocate(layout),
701                    <*mut u8>::cast,
702                ),
703                alloc,
704            )
705        }
706    }
707
708    /// Constructs a new `Rc` with uninitialized contents, with the memory
709    /// being filled with `0` bytes, in the provided allocator.
710    ///
711    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
712    /// incorrect usage of this method.
713    ///
714    /// # Examples
715    ///
716    /// ```
717    /// #![feature(allocator_api)]
718    ///
719    /// use std::rc::Rc;
720    /// use std::alloc::System;
721    ///
722    /// let zero = Rc::<u32, _>::new_zeroed_in(System);
723    /// let zero = unsafe { zero.assume_init() };
724    ///
725    /// assert_eq!(*zero, 0)
726    /// ```
727    ///
728    /// [zeroed]: mem::MaybeUninit::zeroed
729    #[cfg(not(no_global_oom_handling))]
730    #[unstable(feature = "allocator_api", issue = "32838")]
731    // #[unstable(feature = "new_uninit", issue = "63291")]
732    #[inline]
733    pub fn new_zeroed_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> {
734        unsafe {
735            Rc::from_ptr_in(
736                Rc::allocate_for_layout(
737                    Layout::new::<T>(),
738                    |layout| alloc.allocate_zeroed(layout),
739                    <*mut u8>::cast,
740                ),
741                alloc,
742            )
743        }
744    }
745
746    /// Constructs a new `Rc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
747    /// to allow you to construct a `T` which holds a weak pointer to itself.
748    ///
749    /// Generally, a structure circularly referencing itself, either directly or
750    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
751    /// Using this function, you get access to the weak pointer during the
752    /// initialization of `T`, before the `Rc<T, A>` is created, such that you can
753    /// clone and store it inside the `T`.
754    ///
755    /// `new_cyclic_in` first allocates the managed allocation for the `Rc<T, A>`,
756    /// then calls your closure, giving it a `Weak<T, A>` to this allocation,
757    /// and only afterwards completes the construction of the `Rc<T, A>` by placing
758    /// the `T` returned from your closure into the allocation.
759    ///
760    /// Since the new `Rc<T, A>` is not fully-constructed until `Rc<T, A>::new_cyclic_in`
761    /// returns, calling [`upgrade`] on the weak reference inside your closure will
762    /// fail and result in a `None` value.
763    ///
764    /// # Panics
765    ///
766    /// If `data_fn` panics, the panic is propagated to the caller, and the
767    /// temporary [`Weak<T, A>`] is dropped normally.
768    ///
769    /// # Examples
770    ///
771    /// See [`new_cyclic`].
772    ///
773    /// [`new_cyclic`]: Rc::new_cyclic
774    /// [`upgrade`]: Weak::upgrade
775    #[cfg(not(no_global_oom_handling))]
776    #[unstable(feature = "allocator_api", issue = "32838")]
777    pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Rc<T, A>
778    where
779        F: FnOnce(&Weak<T, A>) -> T,
780    {
781        // Construct the inner in the "uninitialized" state with a single
782        // weak reference.
783        let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
784            RcInner {
785                strong: Cell::new(0),
786                weak: Cell::new(1),
787                value: mem::MaybeUninit::<T>::uninit(),
788            },
789            alloc,
790        ));
791        let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
792        let init_ptr: NonNull<RcInner<T>> = uninit_ptr.cast();
793
794        let weak = Weak { ptr: init_ptr, alloc };
795
796        // It's important we don't give up ownership of the weak pointer, or
797        // else the memory might be freed by the time `data_fn` returns. If
798        // we really wanted to pass ownership, we could create an additional
799        // weak pointer for ourselves, but this would result in additional
800        // updates to the weak reference count which might not be necessary
801        // otherwise.
802        let data = data_fn(&weak);
803
804        let strong = unsafe {
805            let inner = init_ptr.as_ptr();
806            ptr::write(&raw mut (*inner).value, data);
807
808            let prev_value = (*inner).strong.get();
809            debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
810            (*inner).strong.set(1);
811
812            // Strong references should collectively own a shared weak reference,
813            // so don't run the destructor for our old weak reference.
814            // Calling into_raw_with_allocator has the double effect of giving us back the allocator,
815            // and forgetting the weak reference.
816            let alloc = weak.into_raw_with_allocator().1;
817
818            Rc::from_inner_in(init_ptr, alloc)
819        };
820
821        strong
822    }
823
824    /// Constructs a new `Rc<T>` in the provided allocator, returning an error if the allocation
825    /// fails
826    ///
827    /// # Examples
828    ///
829    /// ```
830    /// #![feature(allocator_api)]
831    /// use std::rc::Rc;
832    /// use std::alloc::System;
833    ///
834    /// let five = Rc::try_new_in(5, System);
835    /// # Ok::<(), std::alloc::AllocError>(())
836    /// ```
837    #[unstable(feature = "allocator_api", issue = "32838")]
838    #[inline]
839    pub fn try_new_in(value: T, alloc: A) -> Result<Self, AllocError> {
840        // There is an implicit weak pointer owned by all the strong
841        // pointers, which ensures that the weak destructor never frees
842        // the allocation while the strong destructor is running, even
843        // if the weak pointer is stored inside the strong one.
844        let (ptr, alloc) = Box::into_unique(Box::try_new_in(
845            RcInner { strong: Cell::new(1), weak: Cell::new(1), value },
846            alloc,
847        )?);
848        Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
849    }
850
851    /// Constructs a new `Rc` with uninitialized contents, in the provided allocator, returning an
852    /// error if the allocation fails
853    ///
854    /// # Examples
855    ///
856    /// ```
857    /// #![feature(allocator_api)]
858    /// #![feature(get_mut_unchecked)]
859    ///
860    /// use std::rc::Rc;
861    /// use std::alloc::System;
862    ///
863    /// let mut five = Rc::<u32, _>::try_new_uninit_in(System)?;
864    ///
865    /// let five = unsafe {
866    ///     // Deferred initialization:
867    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
868    ///
869    ///     five.assume_init()
870    /// };
871    ///
872    /// assert_eq!(*five, 5);
873    /// # Ok::<(), std::alloc::AllocError>(())
874    /// ```
875    #[unstable(feature = "allocator_api", issue = "32838")]
876    // #[unstable(feature = "new_uninit", issue = "63291")]
877    #[inline]
878    pub fn try_new_uninit_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> {
879        unsafe {
880            Ok(Rc::from_ptr_in(
881                Rc::try_allocate_for_layout(
882                    Layout::new::<T>(),
883                    |layout| alloc.allocate(layout),
884                    <*mut u8>::cast,
885                )?,
886                alloc,
887            ))
888        }
889    }
890
891    /// Constructs a new `Rc` with uninitialized contents, with the memory
892    /// being filled with `0` bytes, in the provided allocator, returning an error if the allocation
893    /// fails
894    ///
895    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
896    /// incorrect usage of this method.
897    ///
898    /// # Examples
899    ///
900    /// ```
901    /// #![feature(allocator_api)]
902    ///
903    /// use std::rc::Rc;
904    /// use std::alloc::System;
905    ///
906    /// let zero = Rc::<u32, _>::try_new_zeroed_in(System)?;
907    /// let zero = unsafe { zero.assume_init() };
908    ///
909    /// assert_eq!(*zero, 0);
910    /// # Ok::<(), std::alloc::AllocError>(())
911    /// ```
912    ///
913    /// [zeroed]: mem::MaybeUninit::zeroed
914    #[unstable(feature = "allocator_api", issue = "32838")]
915    //#[unstable(feature = "new_uninit", issue = "63291")]
916    #[inline]
917    pub fn try_new_zeroed_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> {
918        unsafe {
919            Ok(Rc::from_ptr_in(
920                Rc::try_allocate_for_layout(
921                    Layout::new::<T>(),
922                    |layout| alloc.allocate_zeroed(layout),
923                    <*mut u8>::cast,
924                )?,
925                alloc,
926            ))
927        }
928    }
929
930    /// Constructs a new `Pin<Rc<T>>` in the provided allocator. If `T` does not implement `Unpin`, then
931    /// `value` will be pinned in memory and unable to be moved.
932    #[cfg(not(no_global_oom_handling))]
933    #[unstable(feature = "allocator_api", issue = "32838")]
934    #[inline]
935    pub fn pin_in(value: T, alloc: A) -> Pin<Self>
936    where
937        A: 'static,
938    {
939        unsafe { Pin::new_unchecked(Rc::new_in(value, alloc)) }
940    }
941
942    /// Returns the inner value, if the `Rc` has exactly one strong reference.
943    ///
944    /// Otherwise, an [`Err`] is returned with the same `Rc` that was
945    /// passed in.
946    ///
947    /// This will succeed even if there are outstanding weak references.
948    ///
949    /// # Examples
950    ///
951    /// ```
952    /// use std::rc::Rc;
953    ///
954    /// let x = Rc::new(3);
955    /// assert_eq!(Rc::try_unwrap(x), Ok(3));
956    ///
957    /// let x = Rc::new(4);
958    /// let _y = Rc::clone(&x);
959    /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
960    /// ```
961    #[inline]
962    #[stable(feature = "rc_unique", since = "1.4.0")]
963    pub fn try_unwrap(this: Self) -> Result<T, Self> {
964        if Rc::strong_count(&this) == 1 {
965            let this = ManuallyDrop::new(this);
966
967            let val: T = unsafe { ptr::read(&**this) }; // copy the contained object
968            let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator
969
970            // Indicate to Weaks that they can't be promoted by decrementing
971            // the strong count, and then remove the implicit "strong weak"
972            // pointer while also handling drop logic by just crafting a
973            // fake Weak.
974            this.inner().dec_strong();
975            let _weak = Weak { ptr: this.ptr, alloc };
976            Ok(val)
977        } else {
978            Err(this)
979        }
980    }
981
982    /// Returns the inner value, if the `Rc` has exactly one strong reference.
983    ///
984    /// Otherwise, [`None`] is returned and the `Rc` is dropped.
985    ///
986    /// This will succeed even if there are outstanding weak references.
987    ///
988    /// If `Rc::into_inner` is called on every clone of this `Rc`,
989    /// it is guaranteed that exactly one of the calls returns the inner value.
990    /// This means in particular that the inner value is not dropped.
991    ///
992    /// [`Rc::try_unwrap`] is conceptually similar to `Rc::into_inner`.
993    /// And while they are meant for different use-cases, `Rc::into_inner(this)`
994    /// is in fact equivalent to <code>[Rc::try_unwrap]\(this).[ok][Result::ok]()</code>.
995    /// (Note that the same kind of equivalence does **not** hold true for
996    /// [`Arc`](crate::sync::Arc), due to race conditions that do not apply to `Rc`!)
997    ///
998    /// # Examples
999    ///
1000    /// ```
1001    /// use std::rc::Rc;
1002    ///
1003    /// let x = Rc::new(3);
1004    /// assert_eq!(Rc::into_inner(x), Some(3));
1005    ///
1006    /// let x = Rc::new(4);
1007    /// let y = Rc::clone(&x);
1008    ///
1009    /// assert_eq!(Rc::into_inner(y), None);
1010    /// assert_eq!(Rc::into_inner(x), Some(4));
1011    /// ```
1012    #[inline]
1013    #[stable(feature = "rc_into_inner", since = "1.70.0")]
1014    pub fn into_inner(this: Self) -> Option<T> {
1015        Rc::try_unwrap(this).ok()
1016    }
1017}
1018
1019impl<T> Rc<[T]> {
1020    /// Constructs a new reference-counted slice with uninitialized contents.
1021    ///
1022    /// # Examples
1023    ///
1024    /// ```
1025    /// #![feature(get_mut_unchecked)]
1026    ///
1027    /// use std::rc::Rc;
1028    ///
1029    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
1030    ///
1031    /// // Deferred initialization:
1032    /// let data = Rc::get_mut(&mut values).unwrap();
1033    /// data[0].write(1);
1034    /// data[1].write(2);
1035    /// data[2].write(3);
1036    ///
1037    /// let values = unsafe { values.assume_init() };
1038    ///
1039    /// assert_eq!(*values, [1, 2, 3])
1040    /// ```
1041    #[cfg(not(no_global_oom_handling))]
1042    #[stable(feature = "new_uninit", since = "1.82.0")]
1043    #[must_use]
1044    pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
1045        unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) }
1046    }
1047
1048    /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
1049    /// filled with `0` bytes.
1050    ///
1051    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1052    /// incorrect usage of this method.
1053    ///
1054    /// # Examples
1055    ///
1056    /// ```
1057    /// #![feature(new_zeroed_alloc)]
1058    ///
1059    /// use std::rc::Rc;
1060    ///
1061    /// let values = Rc::<[u32]>::new_zeroed_slice(3);
1062    /// let values = unsafe { values.assume_init() };
1063    ///
1064    /// assert_eq!(*values, [0, 0, 0])
1065    /// ```
1066    ///
1067    /// [zeroed]: mem::MaybeUninit::zeroed
1068    #[cfg(not(no_global_oom_handling))]
1069    #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
1070    #[must_use]
1071    pub fn new_zeroed_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
1072        unsafe {
1073            Rc::from_ptr(Rc::allocate_for_layout(
1074                Layout::array::<T>(len).unwrap(),
1075                |layout| Global.allocate_zeroed(layout),
1076                |mem| {
1077                    ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1078                        as *mut RcInner<[mem::MaybeUninit<T>]>
1079                },
1080            ))
1081        }
1082    }
1083
1084    /// Converts the reference-counted slice into a reference-counted array.
1085    ///
1086    /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.
1087    ///
1088    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
1089    #[unstable(feature = "slice_as_array", issue = "133508")]
1090    #[inline]
1091    #[must_use]
1092    pub fn into_array<const N: usize>(self) -> Option<Rc<[T; N]>> {
1093        if self.len() == N {
1094            let ptr = Self::into_raw(self) as *const [T; N];
1095
1096            // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length.
1097            let me = unsafe { Rc::from_raw(ptr) };
1098            Some(me)
1099        } else {
1100            None
1101        }
1102    }
1103}
1104
1105impl<T, A: Allocator> Rc<[T], A> {
1106    /// Constructs a new reference-counted slice with uninitialized contents.
1107    ///
1108    /// # Examples
1109    ///
1110    /// ```
1111    /// #![feature(get_mut_unchecked)]
1112    /// #![feature(allocator_api)]
1113    ///
1114    /// use std::rc::Rc;
1115    /// use std::alloc::System;
1116    ///
1117    /// let mut values = Rc::<[u32], _>::new_uninit_slice_in(3, System);
1118    ///
1119    /// let values = unsafe {
1120    ///     // Deferred initialization:
1121    ///     Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
1122    ///     Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
1123    ///     Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
1124    ///
1125    ///     values.assume_init()
1126    /// };
1127    ///
1128    /// assert_eq!(*values, [1, 2, 3])
1129    /// ```
1130    #[cfg(not(no_global_oom_handling))]
1131    #[unstable(feature = "allocator_api", issue = "32838")]
1132    // #[unstable(feature = "new_uninit", issue = "63291")]
1133    #[inline]
1134    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> {
1135        unsafe { Rc::from_ptr_in(Rc::allocate_for_slice_in(len, &alloc), alloc) }
1136    }
1137
1138    /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
1139    /// filled with `0` bytes.
1140    ///
1141    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1142    /// incorrect usage of this method.
1143    ///
1144    /// # Examples
1145    ///
1146    /// ```
1147    /// #![feature(allocator_api)]
1148    ///
1149    /// use std::rc::Rc;
1150    /// use std::alloc::System;
1151    ///
1152    /// let values = Rc::<[u32], _>::new_zeroed_slice_in(3, System);
1153    /// let values = unsafe { values.assume_init() };
1154    ///
1155    /// assert_eq!(*values, [0, 0, 0])
1156    /// ```
1157    ///
1158    /// [zeroed]: mem::MaybeUninit::zeroed
1159    #[cfg(not(no_global_oom_handling))]
1160    #[unstable(feature = "allocator_api", issue = "32838")]
1161    // #[unstable(feature = "new_uninit", issue = "63291")]
1162    #[inline]
1163    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> {
1164        unsafe {
1165            Rc::from_ptr_in(
1166                Rc::allocate_for_layout(
1167                    Layout::array::<T>(len).unwrap(),
1168                    |layout| alloc.allocate_zeroed(layout),
1169                    |mem| {
1170                        ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1171                            as *mut RcInner<[mem::MaybeUninit<T>]>
1172                    },
1173                ),
1174                alloc,
1175            )
1176        }
1177    }
1178}
1179
1180impl<T, A: Allocator> Rc<mem::MaybeUninit<T>, A> {
1181    /// Converts to `Rc<T>`.
1182    ///
1183    /// # Safety
1184    ///
1185    /// As with [`MaybeUninit::assume_init`],
1186    /// it is up to the caller to guarantee that the inner value
1187    /// really is in an initialized state.
1188    /// Calling this when the content is not yet fully initialized
1189    /// causes immediate undefined behavior.
1190    ///
1191    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1192    ///
1193    /// # Examples
1194    ///
1195    /// ```
1196    /// #![feature(get_mut_unchecked)]
1197    ///
1198    /// use std::rc::Rc;
1199    ///
1200    /// let mut five = Rc::<u32>::new_uninit();
1201    ///
1202    /// // Deferred initialization:
1203    /// Rc::get_mut(&mut five).unwrap().write(5);
1204    ///
1205    /// let five = unsafe { five.assume_init() };
1206    ///
1207    /// assert_eq!(*five, 5)
1208    /// ```
1209    #[stable(feature = "new_uninit", since = "1.82.0")]
1210    #[inline]
1211    pub unsafe fn assume_init(self) -> Rc<T, A> {
1212        let (ptr, alloc) = Rc::into_inner_with_allocator(self);
1213        unsafe { Rc::from_inner_in(ptr.cast(), alloc) }
1214    }
1215}
1216
1217impl<T, A: Allocator> Rc<[mem::MaybeUninit<T>], A> {
1218    /// Converts to `Rc<[T]>`.
1219    ///
1220    /// # Safety
1221    ///
1222    /// As with [`MaybeUninit::assume_init`],
1223    /// it is up to the caller to guarantee that the inner value
1224    /// really is in an initialized state.
1225    /// Calling this when the content is not yet fully initialized
1226    /// causes immediate undefined behavior.
1227    ///
1228    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1229    ///
1230    /// # Examples
1231    ///
1232    /// ```
1233    /// #![feature(get_mut_unchecked)]
1234    ///
1235    /// use std::rc::Rc;
1236    ///
1237    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
1238    ///
1239    /// // Deferred initialization:
1240    /// let data = Rc::get_mut(&mut values).unwrap();
1241    /// data[0].write(1);
1242    /// data[1].write(2);
1243    /// data[2].write(3);
1244    ///
1245    /// let values = unsafe { values.assume_init() };
1246    ///
1247    /// assert_eq!(*values, [1, 2, 3])
1248    /// ```
1249    #[stable(feature = "new_uninit", since = "1.82.0")]
1250    #[inline]
1251    pub unsafe fn assume_init(self) -> Rc<[T], A> {
1252        let (ptr, alloc) = Rc::into_inner_with_allocator(self);
1253        unsafe { Rc::from_ptr_in(ptr.as_ptr() as _, alloc) }
1254    }
1255}
1256
1257impl<T: ?Sized> Rc<T> {
1258    /// Constructs an `Rc<T>` from a raw pointer.
1259    ///
1260    /// The raw pointer must have been previously returned by a call to
1261    /// [`Rc<U>::into_raw`][into_raw] with the following requirements:
1262    ///
1263    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1264    ///   is trivially true if `U` is `T`.
1265    /// * If `U` is unsized, its data pointer must have the same size and
1266    ///   alignment as `T`. This is trivially true if `Rc<U>` was constructed
1267    ///   through `Rc<T>` and then converted to `Rc<U>` through an [unsized
1268    ///   coercion].
1269    ///
1270    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1271    /// and alignment, this is basically like transmuting references of
1272    /// different types. See [`mem::transmute`][transmute] for more information
1273    /// on what restrictions apply in this case.
1274    ///
1275    /// The raw pointer must point to a block of memory allocated by the global allocator
1276    ///
1277    /// The user of `from_raw` has to make sure a specific value of `T` is only
1278    /// dropped once.
1279    ///
1280    /// This function is unsafe because improper use may lead to memory unsafety,
1281    /// even if the returned `Rc<T>` is never accessed.
1282    ///
1283    /// [into_raw]: Rc::into_raw
1284    /// [transmute]: core::mem::transmute
1285    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1286    ///
1287    /// # Examples
1288    ///
1289    /// ```
1290    /// use std::rc::Rc;
1291    ///
1292    /// let x = Rc::new("hello".to_owned());
1293    /// let x_ptr = Rc::into_raw(x);
1294    ///
1295    /// unsafe {
1296    ///     // Convert back to an `Rc` to prevent leak.
1297    ///     let x = Rc::from_raw(x_ptr);
1298    ///     assert_eq!(&*x, "hello");
1299    ///
1300    ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
1301    /// }
1302    ///
1303    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1304    /// ```
1305    ///
1306    /// Convert a slice back into its original array:
1307    ///
1308    /// ```
1309    /// use std::rc::Rc;
1310    ///
1311    /// let x: Rc<[u32]> = Rc::new([1, 2, 3]);
1312    /// let x_ptr: *const [u32] = Rc::into_raw(x);
1313    ///
1314    /// unsafe {
1315    ///     let x: Rc<[u32; 3]> = Rc::from_raw(x_ptr.cast::<[u32; 3]>());
1316    ///     assert_eq!(&*x, &[1, 2, 3]);
1317    /// }
1318    /// ```
1319    #[inline]
1320    #[stable(feature = "rc_raw", since = "1.17.0")]
1321    pub unsafe fn from_raw(ptr: *const T) -> Self {
1322        unsafe { Self::from_raw_in(ptr, Global) }
1323    }
1324
1325    /// Increments the strong reference count on the `Rc<T>` associated with the
1326    /// provided pointer by one.
1327    ///
1328    /// # Safety
1329    ///
1330    /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the
1331    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1332    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1333    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1334    /// allocated by the global allocator.
1335    ///
1336    /// [from_raw_in]: Rc::from_raw_in
1337    ///
1338    /// # Examples
1339    ///
1340    /// ```
1341    /// use std::rc::Rc;
1342    ///
1343    /// let five = Rc::new(5);
1344    ///
1345    /// unsafe {
1346    ///     let ptr = Rc::into_raw(five);
1347    ///     Rc::increment_strong_count(ptr);
1348    ///
1349    ///     let five = Rc::from_raw(ptr);
1350    ///     assert_eq!(2, Rc::strong_count(&five));
1351    /// #   // Prevent leaks for Miri.
1352    /// #   Rc::decrement_strong_count(ptr);
1353    /// }
1354    /// ```
1355    #[inline]
1356    #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
1357    pub unsafe fn increment_strong_count(ptr: *const T) {
1358        unsafe { Self::increment_strong_count_in(ptr, Global) }
1359    }
1360
1361    /// Decrements the strong reference count on the `Rc<T>` associated with the
1362    /// provided pointer by one.
1363    ///
1364    /// # Safety
1365    ///
1366    /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the
1367    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1368    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1369    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1370    /// allocated by the global allocator. This method can be used to release the final `Rc` and
1371    /// backing storage, but **should not** be called after the final `Rc` has been released.
1372    ///
1373    /// [from_raw_in]: Rc::from_raw_in
1374    ///
1375    /// # Examples
1376    ///
1377    /// ```
1378    /// use std::rc::Rc;
1379    ///
1380    /// let five = Rc::new(5);
1381    ///
1382    /// unsafe {
1383    ///     let ptr = Rc::into_raw(five);
1384    ///     Rc::increment_strong_count(ptr);
1385    ///
1386    ///     let five = Rc::from_raw(ptr);
1387    ///     assert_eq!(2, Rc::strong_count(&five));
1388    ///     Rc::decrement_strong_count(ptr);
1389    ///     assert_eq!(1, Rc::strong_count(&five));
1390    /// }
1391    /// ```
1392    #[inline]
1393    #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
1394    pub unsafe fn decrement_strong_count(ptr: *const T) {
1395        unsafe { Self::decrement_strong_count_in(ptr, Global) }
1396    }
1397}
1398
1399impl<T: ?Sized, A: Allocator> Rc<T, A> {
1400    /// Returns a reference to the underlying allocator.
1401    ///
1402    /// Note: this is an associated function, which means that you have
1403    /// to call it as `Rc::allocator(&r)` instead of `r.allocator()`. This
1404    /// is so that there is no conflict with a method on the inner type.
1405    #[inline]
1406    #[unstable(feature = "allocator_api", issue = "32838")]
1407    pub fn allocator(this: &Self) -> &A {
1408        &this.alloc
1409    }
1410
1411    /// Consumes the `Rc`, returning the wrapped pointer.
1412    ///
1413    /// To avoid a memory leak the pointer must be converted back to an `Rc` using
1414    /// [`Rc::from_raw`].
1415    ///
1416    /// # Examples
1417    ///
1418    /// ```
1419    /// use std::rc::Rc;
1420    ///
1421    /// let x = Rc::new("hello".to_owned());
1422    /// let x_ptr = Rc::into_raw(x);
1423    /// assert_eq!(unsafe { &*x_ptr }, "hello");
1424    /// # // Prevent leaks for Miri.
1425    /// # drop(unsafe { Rc::from_raw(x_ptr) });
1426    /// ```
1427    #[must_use = "losing the pointer will leak memory"]
1428    #[stable(feature = "rc_raw", since = "1.17.0")]
1429    #[rustc_never_returns_null_ptr]
1430    pub fn into_raw(this: Self) -> *const T {
1431        let this = ManuallyDrop::new(this);
1432        Self::as_ptr(&*this)
1433    }
1434
1435    /// Consumes the `Rc`, returning the wrapped pointer and allocator.
1436    ///
1437    /// To avoid a memory leak the pointer must be converted back to an `Rc` using
1438    /// [`Rc::from_raw_in`].
1439    ///
1440    /// # Examples
1441    ///
1442    /// ```
1443    /// #![feature(allocator_api)]
1444    /// use std::rc::Rc;
1445    /// use std::alloc::System;
1446    ///
1447    /// let x = Rc::new_in("hello".to_owned(), System);
1448    /// let (ptr, alloc) = Rc::into_raw_with_allocator(x);
1449    /// assert_eq!(unsafe { &*ptr }, "hello");
1450    /// let x = unsafe { Rc::from_raw_in(ptr, alloc) };
1451    /// assert_eq!(&*x, "hello");
1452    /// ```
1453    #[must_use = "losing the pointer will leak memory"]
1454    #[unstable(feature = "allocator_api", issue = "32838")]
1455    pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
1456        let this = mem::ManuallyDrop::new(this);
1457        let ptr = Self::as_ptr(&this);
1458        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
1459        let alloc = unsafe { ptr::read(&this.alloc) };
1460        (ptr, alloc)
1461    }
1462
1463    /// Provides a raw pointer to the data.
1464    ///
1465    /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid
1466    /// for as long as there are strong counts in the `Rc`.
1467    ///
1468    /// # Examples
1469    ///
1470    /// ```
1471    /// use std::rc::Rc;
1472    ///
1473    /// let x = Rc::new(0);
1474    /// let y = Rc::clone(&x);
1475    /// let x_ptr = Rc::as_ptr(&x);
1476    /// assert_eq!(x_ptr, Rc::as_ptr(&y));
1477    /// assert_eq!(unsafe { *x_ptr }, 0);
1478    /// ```
1479    #[stable(feature = "weak_into_raw", since = "1.45.0")]
1480    #[rustc_never_returns_null_ptr]
1481    pub fn as_ptr(this: &Self) -> *const T {
1482        let ptr: *mut RcInner<T> = NonNull::as_ptr(this.ptr);
1483
1484        // SAFETY: This cannot go through Deref::deref or Rc::inner because
1485        // this is required to retain raw/mut provenance such that e.g. `get_mut` can
1486        // write through the pointer after the Rc is recovered through `from_raw`.
1487        unsafe { &raw mut (*ptr).value }
1488    }
1489
1490    /// Constructs an `Rc<T, A>` from a raw pointer in the provided allocator.
1491    ///
1492    /// The raw pointer must have been previously returned by a call to [`Rc<U,
1493    /// A>::into_raw`][into_raw] with the following requirements:
1494    ///
1495    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1496    ///   is trivially true if `U` is `T`.
1497    /// * If `U` is unsized, its data pointer must have the same size and
1498    ///   alignment as `T`. This is trivially true if `Rc<U>` was constructed
1499    ///   through `Rc<T>` and then converted to `Rc<U>` through an [unsized
1500    ///   coercion].
1501    ///
1502    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1503    /// and alignment, this is basically like transmuting references of
1504    /// different types. See [`mem::transmute`][transmute] for more information
1505    /// on what restrictions apply in this case.
1506    ///
1507    /// The raw pointer must point to a block of memory allocated by `alloc`
1508    ///
1509    /// The user of `from_raw` has to make sure a specific value of `T` is only
1510    /// dropped once.
1511    ///
1512    /// This function is unsafe because improper use may lead to memory unsafety,
1513    /// even if the returned `Rc<T>` is never accessed.
1514    ///
1515    /// [into_raw]: Rc::into_raw
1516    /// [transmute]: core::mem::transmute
1517    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1518    ///
1519    /// # Examples
1520    ///
1521    /// ```
1522    /// #![feature(allocator_api)]
1523    ///
1524    /// use std::rc::Rc;
1525    /// use std::alloc::System;
1526    ///
1527    /// let x = Rc::new_in("hello".to_owned(), System);
1528    /// let x_ptr = Rc::into_raw(x);
1529    ///
1530    /// unsafe {
1531    ///     // Convert back to an `Rc` to prevent leak.
1532    ///     let x = Rc::from_raw_in(x_ptr, System);
1533    ///     assert_eq!(&*x, "hello");
1534    ///
1535    ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
1536    /// }
1537    ///
1538    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1539    /// ```
1540    ///
1541    /// Convert a slice back into its original array:
1542    ///
1543    /// ```
1544    /// #![feature(allocator_api)]
1545    ///
1546    /// use std::rc::Rc;
1547    /// use std::alloc::System;
1548    ///
1549    /// let x: Rc<[u32], _> = Rc::new_in([1, 2, 3], System);
1550    /// let x_ptr: *const [u32] = Rc::into_raw(x);
1551    ///
1552    /// unsafe {
1553    ///     let x: Rc<[u32; 3], _> = Rc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
1554    ///     assert_eq!(&*x, &[1, 2, 3]);
1555    /// }
1556    /// ```
1557    #[unstable(feature = "allocator_api", issue = "32838")]
1558    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
1559        let offset = unsafe { data_offset(ptr) };
1560
1561        // Reverse the offset to find the original RcInner.
1562        let rc_ptr = unsafe { ptr.byte_sub(offset) as *mut RcInner<T> };
1563
1564        unsafe { Self::from_ptr_in(rc_ptr, alloc) }
1565    }
1566
1567    /// Creates a new [`Weak`] pointer to this allocation.
1568    ///
1569    /// # Examples
1570    ///
1571    /// ```
1572    /// use std::rc::Rc;
1573    ///
1574    /// let five = Rc::new(5);
1575    ///
1576    /// let weak_five = Rc::downgrade(&five);
1577    /// ```
1578    #[must_use = "this returns a new `Weak` pointer, \
1579                  without modifying the original `Rc`"]
1580    #[stable(feature = "rc_weak", since = "1.4.0")]
1581    pub fn downgrade(this: &Self) -> Weak<T, A>
1582    where
1583        A: Clone,
1584    {
1585        this.inner().inc_weak();
1586        // Make sure we do not create a dangling Weak
1587        debug_assert!(!is_dangling(this.ptr.as_ptr()));
1588        Weak { ptr: this.ptr, alloc: this.alloc.clone() }
1589    }
1590
1591    /// Gets the number of [`Weak`] pointers to this allocation.
1592    ///
1593    /// # Examples
1594    ///
1595    /// ```
1596    /// use std::rc::Rc;
1597    ///
1598    /// let five = Rc::new(5);
1599    /// let _weak_five = Rc::downgrade(&five);
1600    ///
1601    /// assert_eq!(1, Rc::weak_count(&five));
1602    /// ```
1603    #[inline]
1604    #[stable(feature = "rc_counts", since = "1.15.0")]
1605    pub fn weak_count(this: &Self) -> usize {
1606        this.inner().weak() - 1
1607    }
1608
1609    /// Gets the number of strong (`Rc`) pointers to this allocation.
1610    ///
1611    /// # Examples
1612    ///
1613    /// ```
1614    /// use std::rc::Rc;
1615    ///
1616    /// let five = Rc::new(5);
1617    /// let _also_five = Rc::clone(&five);
1618    ///
1619    /// assert_eq!(2, Rc::strong_count(&five));
1620    /// ```
1621    #[inline]
1622    #[stable(feature = "rc_counts", since = "1.15.0")]
1623    pub fn strong_count(this: &Self) -> usize {
1624        this.inner().strong()
1625    }
1626
1627    /// Increments the strong reference count on the `Rc<T>` associated with the
1628    /// provided pointer by one.
1629    ///
1630    /// # Safety
1631    ///
1632    /// The pointer must have been obtained through `Rc::into_raw` and must satisfy the
1633    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1634    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1635    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1636    /// allocated by `alloc`.
1637    ///
1638    /// [from_raw_in]: Rc::from_raw_in
1639    ///
1640    /// # Examples
1641    ///
1642    /// ```
1643    /// #![feature(allocator_api)]
1644    ///
1645    /// use std::rc::Rc;
1646    /// use std::alloc::System;
1647    ///
1648    /// let five = Rc::new_in(5, System);
1649    ///
1650    /// unsafe {
1651    ///     let ptr = Rc::into_raw(five);
1652    ///     Rc::increment_strong_count_in(ptr, System);
1653    ///
1654    ///     let five = Rc::from_raw_in(ptr, System);
1655    ///     assert_eq!(2, Rc::strong_count(&five));
1656    /// #   // Prevent leaks for Miri.
1657    /// #   Rc::decrement_strong_count_in(ptr, System);
1658    /// }
1659    /// ```
1660    #[inline]
1661    #[unstable(feature = "allocator_api", issue = "32838")]
1662    pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
1663    where
1664        A: Clone,
1665    {
1666        // Retain Rc, but don't touch refcount by wrapping in ManuallyDrop
1667        let rc = unsafe { mem::ManuallyDrop::new(Rc::<T, A>::from_raw_in(ptr, alloc)) };
1668        // Now increase refcount, but don't drop new refcount either
1669        let _rc_clone: mem::ManuallyDrop<_> = rc.clone();
1670    }
1671
1672    /// Decrements the strong reference count on the `Rc<T>` associated with the
1673    /// provided pointer by one.
1674    ///
1675    /// # Safety
1676    ///
1677    /// The pointer must have been obtained through `Rc::into_raw`and must satisfy the
1678    /// same layout requirements specified in [`Rc::from_raw_in`][from_raw_in].
1679    /// The associated `Rc` instance must be valid (i.e. the strong count must be at
1680    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1681    /// allocated by `alloc`. This method can be used to release the final `Rc` and
1682    /// backing storage, but **should not** be called after the final `Rc` has been released.
1683    ///
1684    /// [from_raw_in]: Rc::from_raw_in
1685    ///
1686    /// # Examples
1687    ///
1688    /// ```
1689    /// #![feature(allocator_api)]
1690    ///
1691    /// use std::rc::Rc;
1692    /// use std::alloc::System;
1693    ///
1694    /// let five = Rc::new_in(5, System);
1695    ///
1696    /// unsafe {
1697    ///     let ptr = Rc::into_raw(five);
1698    ///     Rc::increment_strong_count_in(ptr, System);
1699    ///
1700    ///     let five = Rc::from_raw_in(ptr, System);
1701    ///     assert_eq!(2, Rc::strong_count(&five));
1702    ///     Rc::decrement_strong_count_in(ptr, System);
1703    ///     assert_eq!(1, Rc::strong_count(&five));
1704    /// }
1705    /// ```
1706    #[inline]
1707    #[unstable(feature = "allocator_api", issue = "32838")]
1708    pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
1709        unsafe { drop(Rc::from_raw_in(ptr, alloc)) };
1710    }
1711
1712    /// Returns `true` if there are no other `Rc` or [`Weak`] pointers to
1713    /// this allocation.
1714    #[inline]
1715    fn is_unique(this: &Self) -> bool {
1716        Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
1717    }
1718
1719    /// Returns a mutable reference into the given `Rc`, if there are
1720    /// no other `Rc` or [`Weak`] pointers to the same allocation.
1721    ///
1722    /// Returns [`None`] otherwise, because it is not safe to
1723    /// mutate a shared value.
1724    ///
1725    /// See also [`make_mut`][make_mut], which will [`clone`][clone]
1726    /// the inner value when there are other `Rc` pointers.
1727    ///
1728    /// [make_mut]: Rc::make_mut
1729    /// [clone]: Clone::clone
1730    ///
1731    /// # Examples
1732    ///
1733    /// ```
1734    /// use std::rc::Rc;
1735    ///
1736    /// let mut x = Rc::new(3);
1737    /// *Rc::get_mut(&mut x).unwrap() = 4;
1738    /// assert_eq!(*x, 4);
1739    ///
1740    /// let _y = Rc::clone(&x);
1741    /// assert!(Rc::get_mut(&mut x).is_none());
1742    /// ```
1743    #[inline]
1744    #[stable(feature = "rc_unique", since = "1.4.0")]
1745    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
1746        if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None }
1747    }
1748
1749    /// Returns a mutable reference into the given `Rc`,
1750    /// without any check.
1751    ///
1752    /// See also [`get_mut`], which is safe and does appropriate checks.
1753    ///
1754    /// [`get_mut`]: Rc::get_mut
1755    ///
1756    /// # Safety
1757    ///
1758    /// If any other `Rc` or [`Weak`] pointers to the same allocation exist, then
1759    /// they must not be dereferenced or have active borrows for the duration
1760    /// of the returned borrow, and their inner type must be exactly the same as the
1761    /// inner type of this Rc (including lifetimes). This is trivially the case if no
1762    /// such pointers exist, for example immediately after `Rc::new`.
1763    ///
1764    /// # Examples
1765    ///
1766    /// ```
1767    /// #![feature(get_mut_unchecked)]
1768    ///
1769    /// use std::rc::Rc;
1770    ///
1771    /// let mut x = Rc::new(String::new());
1772    /// unsafe {
1773    ///     Rc::get_mut_unchecked(&mut x).push_str("foo")
1774    /// }
1775    /// assert_eq!(*x, "foo");
1776    /// ```
1777    /// Other `Rc` pointers to the same allocation must be to the same type.
1778    /// ```no_run
1779    /// #![feature(get_mut_unchecked)]
1780    ///
1781    /// use std::rc::Rc;
1782    ///
1783    /// let x: Rc<str> = Rc::from("Hello, world!");
1784    /// let mut y: Rc<[u8]> = x.clone().into();
1785    /// unsafe {
1786    ///     // this is Undefined Behavior, because x's inner type is str, not [u8]
1787    ///     Rc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
1788    /// }
1789    /// println!("{}", &*x); // Invalid UTF-8 in a str
1790    /// ```
1791    /// Other `Rc` pointers to the same allocation must be to the exact same type, including lifetimes.
1792    /// ```no_run
1793    /// #![feature(get_mut_unchecked)]
1794    ///
1795    /// use std::rc::Rc;
1796    ///
1797    /// let x: Rc<&str> = Rc::new("Hello, world!");
1798    /// {
1799    ///     let s = String::from("Oh, no!");
1800    ///     let mut y: Rc<&str> = x.clone();
1801    ///     unsafe {
1802    ///         // this is Undefined Behavior, because x's inner type
1803    ///         // is &'long str, not &'short str
1804    ///         *Rc::get_mut_unchecked(&mut y) = &s;
1805    ///     }
1806    /// }
1807    /// println!("{}", &*x); // Use-after-free
1808    /// ```
1809    #[inline]
1810    #[unstable(feature = "get_mut_unchecked", issue = "63292")]
1811    pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
1812        // We are careful to *not* create a reference covering the "count" fields, as
1813        // this would conflict with accesses to the reference counts (e.g. by `Weak`).
1814        unsafe { &mut (*this.ptr.as_ptr()).value }
1815    }
1816
1817    #[inline]
1818    #[stable(feature = "ptr_eq", since = "1.17.0")]
1819    /// Returns `true` if the two `Rc`s point to the same allocation in a vein similar to
1820    /// [`ptr::eq`]. This function ignores the metadata of  `dyn Trait` pointers.
1821    ///
1822    /// # Examples
1823    ///
1824    /// ```
1825    /// use std::rc::Rc;
1826    ///
1827    /// let five = Rc::new(5);
1828    /// let same_five = Rc::clone(&five);
1829    /// let other_five = Rc::new(5);
1830    ///
1831    /// assert!(Rc::ptr_eq(&five, &same_five));
1832    /// assert!(!Rc::ptr_eq(&five, &other_five));
1833    /// ```
1834    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1835        ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
1836    }
1837}
1838
1839#[cfg(not(no_global_oom_handling))]
1840impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Rc<T, A> {
1841    /// Makes a mutable reference into the given `Rc`.
1842    ///
1843    /// If there are other `Rc` pointers to the same allocation, then `make_mut` will
1844    /// [`clone`] the inner value to a new allocation to ensure unique ownership.  This is also
1845    /// referred to as clone-on-write.
1846    ///
1847    /// However, if there are no other `Rc` pointers to this allocation, but some [`Weak`]
1848    /// pointers, then the [`Weak`] pointers will be disassociated and the inner value will not
1849    /// be cloned.
1850    ///
1851    /// See also [`get_mut`], which will fail rather than cloning the inner value
1852    /// or disassociating [`Weak`] pointers.
1853    ///
1854    /// [`clone`]: Clone::clone
1855    /// [`get_mut`]: Rc::get_mut
1856    ///
1857    /// # Examples
1858    ///
1859    /// ```
1860    /// use std::rc::Rc;
1861    ///
1862    /// let mut data = Rc::new(5);
1863    ///
1864    /// *Rc::make_mut(&mut data) += 1;         // Won't clone anything
1865    /// let mut other_data = Rc::clone(&data); // Won't clone inner data
1866    /// *Rc::make_mut(&mut data) += 1;         // Clones inner data
1867    /// *Rc::make_mut(&mut data) += 1;         // Won't clone anything
1868    /// *Rc::make_mut(&mut other_data) *= 2;   // Won't clone anything
1869    ///
1870    /// // Now `data` and `other_data` point to different allocations.
1871    /// assert_eq!(*data, 8);
1872    /// assert_eq!(*other_data, 12);
1873    /// ```
1874    ///
1875    /// [`Weak`] pointers will be disassociated:
1876    ///
1877    /// ```
1878    /// use std::rc::Rc;
1879    ///
1880    /// let mut data = Rc::new(75);
1881    /// let weak = Rc::downgrade(&data);
1882    ///
1883    /// assert!(75 == *data);
1884    /// assert!(75 == *weak.upgrade().unwrap());
1885    ///
1886    /// *Rc::make_mut(&mut data) += 1;
1887    ///
1888    /// assert!(76 == *data);
1889    /// assert!(weak.upgrade().is_none());
1890    /// ```
1891    #[inline]
1892    #[stable(feature = "rc_unique", since = "1.4.0")]
1893    pub fn make_mut(this: &mut Self) -> &mut T {
1894        let size_of_val = size_of_val::<T>(&**this);
1895
1896        if Rc::strong_count(this) != 1 {
1897            // Gotta clone the data, there are other Rcs.
1898
1899            let this_data_ref: &T = &**this;
1900            // `in_progress` drops the allocation if we panic before finishing initializing it.
1901            let mut in_progress: UniqueRcUninit<T, A> =
1902                UniqueRcUninit::new(this_data_ref, this.alloc.clone());
1903
1904            // Initialize with clone of this.
1905            let initialized_clone = unsafe {
1906                // Clone. If the clone panics, `in_progress` will be dropped and clean up.
1907                this_data_ref.clone_to_uninit(in_progress.data_ptr().cast());
1908                // Cast type of pointer, now that it is initialized.
1909                in_progress.into_rc()
1910            };
1911
1912            // Replace `this` with newly constructed Rc.
1913            *this = initialized_clone;
1914        } else if Rc::weak_count(this) != 0 {
1915            // Can just steal the data, all that's left is Weaks
1916
1917            // We don't need panic-protection like the above branch does, but we might as well
1918            // use the same mechanism.
1919            let mut in_progress: UniqueRcUninit<T, A> =
1920                UniqueRcUninit::new(&**this, this.alloc.clone());
1921            unsafe {
1922                // Initialize `in_progress` with move of **this.
1923                // We have to express this in terms of bytes because `T: ?Sized`; there is no
1924                // operation that just copies a value based on its `size_of_val()`.
1925                ptr::copy_nonoverlapping(
1926                    ptr::from_ref(&**this).cast::<u8>(),
1927                    in_progress.data_ptr().cast::<u8>(),
1928                    size_of_val,
1929                );
1930
1931                this.inner().dec_strong();
1932                // Remove implicit strong-weak ref (no need to craft a fake
1933                // Weak here -- we know other Weaks can clean up for us)
1934                this.inner().dec_weak();
1935                // Replace `this` with newly constructed Rc that has the moved data.
1936                ptr::write(this, in_progress.into_rc());
1937            }
1938        }
1939        // This unsafety is ok because we're guaranteed that the pointer
1940        // returned is the *only* pointer that will ever be returned to T. Our
1941        // reference count is guaranteed to be 1 at this point, and we required
1942        // the `Rc<T>` itself to be `mut`, so we're returning the only possible
1943        // reference to the allocation.
1944        unsafe { &mut this.ptr.as_mut().value }
1945    }
1946}
1947
1948impl<T: Clone, A: Allocator> Rc<T, A> {
1949    /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
1950    /// clone.
1951    ///
1952    /// Assuming `rc_t` is of type `Rc<T>`, this function is functionally equivalent to
1953    /// `(*rc_t).clone()`, but will avoid cloning the inner value where possible.
1954    ///
1955    /// # Examples
1956    ///
1957    /// ```
1958    /// # use std::{ptr, rc::Rc};
1959    /// let inner = String::from("test");
1960    /// let ptr = inner.as_ptr();
1961    ///
1962    /// let rc = Rc::new(inner);
1963    /// let inner = Rc::unwrap_or_clone(rc);
1964    /// // The inner value was not cloned
1965    /// assert!(ptr::eq(ptr, inner.as_ptr()));
1966    ///
1967    /// let rc = Rc::new(inner);
1968    /// let rc2 = rc.clone();
1969    /// let inner = Rc::unwrap_or_clone(rc);
1970    /// // Because there were 2 references, we had to clone the inner value.
1971    /// assert!(!ptr::eq(ptr, inner.as_ptr()));
1972    /// // `rc2` is the last reference, so when we unwrap it we get back
1973    /// // the original `String`.
1974    /// let inner = Rc::unwrap_or_clone(rc2);
1975    /// assert!(ptr::eq(ptr, inner.as_ptr()));
1976    /// ```
1977    #[inline]
1978    #[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
1979    pub fn unwrap_or_clone(this: Self) -> T {
1980        Rc::try_unwrap(this).unwrap_or_else(|rc| (*rc).clone())
1981    }
1982}
1983
1984impl<A: Allocator> Rc<dyn Any, A> {
1985    /// Attempts to downcast the `Rc<dyn Any>` to a concrete type.
1986    ///
1987    /// # Examples
1988    ///
1989    /// ```
1990    /// use std::any::Any;
1991    /// use std::rc::Rc;
1992    ///
1993    /// fn print_if_string(value: Rc<dyn Any>) {
1994    ///     if let Ok(string) = value.downcast::<String>() {
1995    ///         println!("String ({}): {}", string.len(), string);
1996    ///     }
1997    /// }
1998    ///
1999    /// let my_string = "Hello World".to_string();
2000    /// print_if_string(Rc::new(my_string));
2001    /// print_if_string(Rc::new(0i8));
2002    /// ```
2003    #[inline]
2004    #[stable(feature = "rc_downcast", since = "1.29.0")]
2005    pub fn downcast<T: Any>(self) -> Result<Rc<T, A>, Self> {
2006        if (*self).is::<T>() {
2007            unsafe {
2008                let (ptr, alloc) = Rc::into_inner_with_allocator(self);
2009                Ok(Rc::from_inner_in(ptr.cast(), alloc))
2010            }
2011        } else {
2012            Err(self)
2013        }
2014    }
2015
2016    /// Downcasts the `Rc<dyn Any>` to a concrete type.
2017    ///
2018    /// For a safe alternative see [`downcast`].
2019    ///
2020    /// # Examples
2021    ///
2022    /// ```
2023    /// #![feature(downcast_unchecked)]
2024    ///
2025    /// use std::any::Any;
2026    /// use std::rc::Rc;
2027    ///
2028    /// let x: Rc<dyn Any> = Rc::new(1_usize);
2029    ///
2030    /// unsafe {
2031    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2032    /// }
2033    /// ```
2034    ///
2035    /// # Safety
2036    ///
2037    /// The contained value must be of type `T`. Calling this method
2038    /// with the incorrect type is *undefined behavior*.
2039    ///
2040    ///
2041    /// [`downcast`]: Self::downcast
2042    #[inline]
2043    #[unstable(feature = "downcast_unchecked", issue = "90850")]
2044    pub unsafe fn downcast_unchecked<T: Any>(self) -> Rc<T, A> {
2045        unsafe {
2046            let (ptr, alloc) = Rc::into_inner_with_allocator(self);
2047            Rc::from_inner_in(ptr.cast(), alloc)
2048        }
2049    }
2050}
2051
2052impl<T: ?Sized> Rc<T> {
2053    /// Allocates an `RcInner<T>` with sufficient space for
2054    /// a possibly-unsized inner value where the value has the layout provided.
2055    ///
2056    /// The function `mem_to_rc_inner` is called with the data pointer
2057    /// and must return back a (potentially fat)-pointer for the `RcInner<T>`.
2058    #[cfg(not(no_global_oom_handling))]
2059    unsafe fn allocate_for_layout(
2060        value_layout: Layout,
2061        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
2062        mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>,
2063    ) -> *mut RcInner<T> {
2064        let layout = rc_inner_layout_for_value_layout(value_layout);
2065        unsafe {
2066            Rc::try_allocate_for_layout(value_layout, allocate, mem_to_rc_inner)
2067                .unwrap_or_else(|_| handle_alloc_error(layout))
2068        }
2069    }
2070
2071    /// Allocates an `RcInner<T>` with sufficient space for
2072    /// a possibly-unsized inner value where the value has the layout provided,
2073    /// returning an error if allocation fails.
2074    ///
2075    /// The function `mem_to_rc_inner` is called with the data pointer
2076    /// and must return back a (potentially fat)-pointer for the `RcInner<T>`.
2077    #[inline]
2078    unsafe fn try_allocate_for_layout(
2079        value_layout: Layout,
2080        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
2081        mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>,
2082    ) -> Result<*mut RcInner<T>, AllocError> {
2083        let layout = rc_inner_layout_for_value_layout(value_layout);
2084
2085        // Allocate for the layout.
2086        let ptr = allocate(layout)?;
2087
2088        // Initialize the RcInner
2089        let inner = mem_to_rc_inner(ptr.as_non_null_ptr().as_ptr());
2090        unsafe {
2091            debug_assert_eq!(Layout::for_value_raw(inner), layout);
2092
2093            (&raw mut (*inner).strong).write(Cell::new(1));
2094            (&raw mut (*inner).weak).write(Cell::new(1));
2095        }
2096
2097        Ok(inner)
2098    }
2099}
2100
2101impl<T: ?Sized, A: Allocator> Rc<T, A> {
2102    /// Allocates an `RcInner<T>` with sufficient space for an unsized inner value
2103    #[cfg(not(no_global_oom_handling))]
2104    unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut RcInner<T> {
2105        // Allocate for the `RcInner<T>` using the given value.
2106        unsafe {
2107            Rc::<T>::allocate_for_layout(
2108                Layout::for_value_raw(ptr),
2109                |layout| alloc.allocate(layout),
2110                |mem| mem.with_metadata_of(ptr as *const RcInner<T>),
2111            )
2112        }
2113    }
2114
2115    #[cfg(not(no_global_oom_handling))]
2116    fn from_box_in(src: Box<T, A>) -> Rc<T, A> {
2117        unsafe {
2118            let value_size = size_of_val(&*src);
2119            let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));
2120
2121            // Copy value as bytes
2122            ptr::copy_nonoverlapping(
2123                (&raw const *src) as *const u8,
2124                (&raw mut (*ptr).value) as *mut u8,
2125                value_size,
2126            );
2127
2128            // Free the allocation without dropping its contents
2129            let (bptr, alloc) = Box::into_raw_with_allocator(src);
2130            let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
2131            drop(src);
2132
2133            Self::from_ptr_in(ptr, alloc)
2134        }
2135    }
2136}
2137
2138impl<T> Rc<[T]> {
2139    /// Allocates an `RcInner<[T]>` with the given length.
2140    #[cfg(not(no_global_oom_handling))]
2141    unsafe fn allocate_for_slice(len: usize) -> *mut RcInner<[T]> {
2142        unsafe {
2143            Self::allocate_for_layout(
2144                Layout::array::<T>(len).unwrap(),
2145                |layout| Global.allocate(layout),
2146                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>,
2147            )
2148        }
2149    }
2150
2151    /// Copy elements from slice into newly allocated `Rc<[T]>`
2152    ///
2153    /// Unsafe because the caller must either take ownership or bind `T: Copy`
2154    #[cfg(not(no_global_oom_handling))]
2155    unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
2156        unsafe {
2157            let ptr = Self::allocate_for_slice(v.len());
2158            ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).value) as *mut T, v.len());
2159            Self::from_ptr(ptr)
2160        }
2161    }
2162
2163    /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size.
2164    ///
2165    /// Behavior is undefined should the size be wrong.
2166    #[cfg(not(no_global_oom_handling))]
2167    unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Rc<[T]> {
2168        // Panic guard while cloning T elements.
2169        // In the event of a panic, elements that have been written
2170        // into the new RcInner will be dropped, then the memory freed.
2171        struct Guard<T> {
2172            mem: NonNull<u8>,
2173            elems: *mut T,
2174            layout: Layout,
2175            n_elems: usize,
2176        }
2177
2178        impl<T> Drop for Guard<T> {
2179            fn drop(&mut self) {
2180                unsafe {
2181                    let slice = from_raw_parts_mut(self.elems, self.n_elems);
2182                    ptr::drop_in_place(slice);
2183
2184                    Global.deallocate(self.mem, self.layout);
2185                }
2186            }
2187        }
2188
2189        unsafe {
2190            let ptr = Self::allocate_for_slice(len);
2191
2192            let mem = ptr as *mut _ as *mut u8;
2193            let layout = Layout::for_value_raw(ptr);
2194
2195            // Pointer to first element
2196            let elems = (&raw mut (*ptr).value) as *mut T;
2197
2198            let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
2199
2200            for (i, item) in iter.enumerate() {
2201                ptr::write(elems.add(i), item);
2202                guard.n_elems += 1;
2203            }
2204
2205            // All clear. Forget the guard so it doesn't free the new RcInner.
2206            mem::forget(guard);
2207
2208            Self::from_ptr(ptr)
2209        }
2210    }
2211}
2212
2213impl<T, A: Allocator> Rc<[T], A> {
2214    /// Allocates an `RcInner<[T]>` with the given length.
2215    #[inline]
2216    #[cfg(not(no_global_oom_handling))]
2217    unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut RcInner<[T]> {
2218        unsafe {
2219            Rc::<[T]>::allocate_for_layout(
2220                Layout::array::<T>(len).unwrap(),
2221                |layout| alloc.allocate(layout),
2222                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>,
2223            )
2224        }
2225    }
2226}
2227
2228#[cfg(not(no_global_oom_handling))]
2229/// Specialization trait used for `From<&[T]>`.
2230trait RcFromSlice<T> {
2231    fn from_slice(slice: &[T]) -> Self;
2232}
2233
2234#[cfg(not(no_global_oom_handling))]
2235impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
2236    #[inline]
2237    default fn from_slice(v: &[T]) -> Self {
2238        unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
2239    }
2240}
2241
2242#[cfg(not(no_global_oom_handling))]
2243impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
2244    #[inline]
2245    fn from_slice(v: &[T]) -> Self {
2246        unsafe { Rc::copy_from_slice(v) }
2247    }
2248}
2249
2250#[stable(feature = "rust1", since = "1.0.0")]
2251impl<T: ?Sized, A: Allocator> Deref for Rc<T, A> {
2252    type Target = T;
2253
2254    #[inline(always)]
2255    fn deref(&self) -> &T {
2256        &self.inner().value
2257    }
2258}
2259
2260#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2261unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Rc<T, A> {}
2262
2263//#[unstable(feature = "unique_rc_arc", issue = "112566")]
2264#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2265unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for UniqueRc<T, A> {}
2266
2267#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2268unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}
2269
2270#[unstable(feature = "deref_pure_trait", issue = "87121")]
2271unsafe impl<T: ?Sized, A: Allocator> DerefPure for Rc<T, A> {}
2272
2273//#[unstable(feature = "unique_rc_arc", issue = "112566")]
2274#[unstable(feature = "deref_pure_trait", issue = "87121")]
2275unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueRc<T, A> {}
2276
2277#[unstable(feature = "legacy_receiver_trait", issue = "none")]
2278impl<T: ?Sized> LegacyReceiver for Rc<T> {}
2279
2280#[stable(feature = "rust1", since = "1.0.0")]
2281unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Rc<T, A> {
2282    /// Drops the `Rc`.
2283    ///
2284    /// This will decrement the strong reference count. If the strong reference
2285    /// count reaches zero then the only other references (if any) are
2286    /// [`Weak`], so we `drop` the inner value.
2287    ///
2288    /// # Examples
2289    ///
2290    /// ```
2291    /// use std::rc::Rc;
2292    ///
2293    /// struct Foo;
2294    ///
2295    /// impl Drop for Foo {
2296    ///     fn drop(&mut self) {
2297    ///         println!("dropped!");
2298    ///     }
2299    /// }
2300    ///
2301    /// let foo  = Rc::new(Foo);
2302    /// let foo2 = Rc::clone(&foo);
2303    ///
2304    /// drop(foo);    // Doesn't print anything
2305    /// drop(foo2);   // Prints "dropped!"
2306    /// ```
2307    #[inline]
2308    fn drop(&mut self) {
2309        unsafe {
2310            self.inner().dec_strong();
2311            if self.inner().strong() == 0 {
2312                self.drop_slow();
2313            }
2314        }
2315    }
2316}
2317
2318#[stable(feature = "rust1", since = "1.0.0")]
2319impl<T: ?Sized, A: Allocator + Clone> Clone for Rc<T, A> {
2320    /// Makes a clone of the `Rc` pointer.
2321    ///
2322    /// This creates another pointer to the same allocation, increasing the
2323    /// strong reference count.
2324    ///
2325    /// # Examples
2326    ///
2327    /// ```
2328    /// use std::rc::Rc;
2329    ///
2330    /// let five = Rc::new(5);
2331    ///
2332    /// let _ = Rc::clone(&five);
2333    /// ```
2334    #[inline]
2335    fn clone(&self) -> Self {
2336        unsafe {
2337            self.inner().inc_strong();
2338            Self::from_inner_in(self.ptr, self.alloc.clone())
2339        }
2340    }
2341}
2342
2343#[unstable(feature = "ergonomic_clones", issue = "132290")]
2344impl<T: ?Sized, A: Allocator + Clone> UseCloned for Rc<T, A> {}
2345
2346#[cfg(not(no_global_oom_handling))]
2347#[stable(feature = "rust1", since = "1.0.0")]
2348impl<T: Default> Default for Rc<T> {
2349    /// Creates a new `Rc<T>`, with the `Default` value for `T`.
2350    ///
2351    /// # Examples
2352    ///
2353    /// ```
2354    /// use std::rc::Rc;
2355    ///
2356    /// let x: Rc<i32> = Default::default();
2357    /// assert_eq!(*x, 0);
2358    /// ```
2359    #[inline]
2360    fn default() -> Rc<T> {
2361        unsafe {
2362            Self::from_inner(
2363                Box::leak(Box::write(
2364                    Box::new_uninit(),
2365                    RcInner { strong: Cell::new(1), weak: Cell::new(1), value: T::default() },
2366                ))
2367                .into(),
2368            )
2369        }
2370    }
2371}
2372
2373#[cfg(not(no_global_oom_handling))]
2374#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
2375impl Default for Rc<str> {
2376    /// Creates an empty str inside an Rc
2377    ///
2378    /// This may or may not share an allocation with other Rcs on the same thread.
2379    #[inline]
2380    fn default() -> Self {
2381        let rc = Rc::<[u8]>::default();
2382        // `[u8]` has the same layout as `str`.
2383        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
2384    }
2385}
2386
2387#[cfg(not(no_global_oom_handling))]
2388#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
2389impl<T> Default for Rc<[T]> {
2390    /// Creates an empty `[T]` inside an Rc
2391    ///
2392    /// This may or may not share an allocation with other Rcs on the same thread.
2393    #[inline]
2394    fn default() -> Self {
2395        let arr: [T; 0] = [];
2396        Rc::from(arr)
2397    }
2398}
2399
2400#[stable(feature = "rust1", since = "1.0.0")]
2401trait RcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
2402    fn eq(&self, other: &Rc<T, A>) -> bool;
2403    fn ne(&self, other: &Rc<T, A>) -> bool;
2404}
2405
2406#[stable(feature = "rust1", since = "1.0.0")]
2407impl<T: ?Sized + PartialEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> {
2408    #[inline]
2409    default fn eq(&self, other: &Rc<T, A>) -> bool {
2410        **self == **other
2411    }
2412
2413    #[inline]
2414    default fn ne(&self, other: &Rc<T, A>) -> bool {
2415        **self != **other
2416    }
2417}
2418
2419// Hack to allow specializing on `Eq` even though `Eq` has a method.
2420#[rustc_unsafe_specialization_marker]
2421pub(crate) trait MarkerEq: PartialEq<Self> {}
2422
2423impl<T: Eq> MarkerEq for T {}
2424
2425/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
2426/// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to
2427/// store large values, that are slow to clone, but also heavy to check for equality, causing this
2428/// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to
2429/// the same value, than two `&T`s.
2430///
2431/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
2432#[stable(feature = "rust1", since = "1.0.0")]
2433impl<T: ?Sized + MarkerEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> {
2434    #[inline]
2435    fn eq(&self, other: &Rc<T, A>) -> bool {
2436        Rc::ptr_eq(self, other) || **self == **other
2437    }
2438
2439    #[inline]
2440    fn ne(&self, other: &Rc<T, A>) -> bool {
2441        !Rc::ptr_eq(self, other) && **self != **other
2442    }
2443}
2444
2445#[stable(feature = "rust1", since = "1.0.0")]
2446impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Rc<T, A> {
2447    /// Equality for two `Rc`s.
2448    ///
2449    /// Two `Rc`s are equal if their inner values are equal, even if they are
2450    /// stored in different allocation.
2451    ///
2452    /// If `T` also implements `Eq` (implying reflexivity of equality),
2453    /// two `Rc`s that point to the same allocation are
2454    /// always equal.
2455    ///
2456    /// # Examples
2457    ///
2458    /// ```
2459    /// use std::rc::Rc;
2460    ///
2461    /// let five = Rc::new(5);
2462    ///
2463    /// assert!(five == Rc::new(5));
2464    /// ```
2465    #[inline]
2466    fn eq(&self, other: &Rc<T, A>) -> bool {
2467        RcEqIdent::eq(self, other)
2468    }
2469
2470    /// Inequality for two `Rc`s.
2471    ///
2472    /// Two `Rc`s are not equal if their inner values are not equal.
2473    ///
2474    /// If `T` also implements `Eq` (implying reflexivity of equality),
2475    /// two `Rc`s that point to the same allocation are
2476    /// always equal.
2477    ///
2478    /// # Examples
2479    ///
2480    /// ```
2481    /// use std::rc::Rc;
2482    ///
2483    /// let five = Rc::new(5);
2484    ///
2485    /// assert!(five != Rc::new(6));
2486    /// ```
2487    #[inline]
2488    fn ne(&self, other: &Rc<T, A>) -> bool {
2489        RcEqIdent::ne(self, other)
2490    }
2491}
2492
2493#[stable(feature = "rust1", since = "1.0.0")]
2494impl<T: ?Sized + Eq, A: Allocator> Eq for Rc<T, A> {}
2495
2496#[stable(feature = "rust1", since = "1.0.0")]
2497impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Rc<T, A> {
2498    /// Partial comparison for two `Rc`s.
2499    ///
2500    /// The two are compared by calling `partial_cmp()` on their inner values.
2501    ///
2502    /// # Examples
2503    ///
2504    /// ```
2505    /// use std::rc::Rc;
2506    /// use std::cmp::Ordering;
2507    ///
2508    /// let five = Rc::new(5);
2509    ///
2510    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
2511    /// ```
2512    #[inline(always)]
2513    fn partial_cmp(&self, other: &Rc<T, A>) -> Option<Ordering> {
2514        (**self).partial_cmp(&**other)
2515    }
2516
2517    /// Less-than comparison for two `Rc`s.
2518    ///
2519    /// The two are compared by calling `<` on their inner values.
2520    ///
2521    /// # Examples
2522    ///
2523    /// ```
2524    /// use std::rc::Rc;
2525    ///
2526    /// let five = Rc::new(5);
2527    ///
2528    /// assert!(five < Rc::new(6));
2529    /// ```
2530    #[inline(always)]
2531    fn lt(&self, other: &Rc<T, A>) -> bool {
2532        **self < **other
2533    }
2534
2535    /// 'Less than or equal to' comparison for two `Rc`s.
2536    ///
2537    /// The two are compared by calling `<=` on their inner values.
2538    ///
2539    /// # Examples
2540    ///
2541    /// ```
2542    /// use std::rc::Rc;
2543    ///
2544    /// let five = Rc::new(5);
2545    ///
2546    /// assert!(five <= Rc::new(5));
2547    /// ```
2548    #[inline(always)]
2549    fn le(&self, other: &Rc<T, A>) -> bool {
2550        **self <= **other
2551    }
2552
2553    /// Greater-than comparison for two `Rc`s.
2554    ///
2555    /// The two are compared by calling `>` on their inner values.
2556    ///
2557    /// # Examples
2558    ///
2559    /// ```
2560    /// use std::rc::Rc;
2561    ///
2562    /// let five = Rc::new(5);
2563    ///
2564    /// assert!(five > Rc::new(4));
2565    /// ```
2566    #[inline(always)]
2567    fn gt(&self, other: &Rc<T, A>) -> bool {
2568        **self > **other
2569    }
2570
2571    /// 'Greater than or equal to' comparison for two `Rc`s.
2572    ///
2573    /// The two are compared by calling `>=` on their inner values.
2574    ///
2575    /// # Examples
2576    ///
2577    /// ```
2578    /// use std::rc::Rc;
2579    ///
2580    /// let five = Rc::new(5);
2581    ///
2582    /// assert!(five >= Rc::new(5));
2583    /// ```
2584    #[inline(always)]
2585    fn ge(&self, other: &Rc<T, A>) -> bool {
2586        **self >= **other
2587    }
2588}
2589
2590#[stable(feature = "rust1", since = "1.0.0")]
2591impl<T: ?Sized + Ord, A: Allocator> Ord for Rc<T, A> {
2592    /// Comparison for two `Rc`s.
2593    ///
2594    /// The two are compared by calling `cmp()` on their inner values.
2595    ///
2596    /// # Examples
2597    ///
2598    /// ```
2599    /// use std::rc::Rc;
2600    /// use std::cmp::Ordering;
2601    ///
2602    /// let five = Rc::new(5);
2603    ///
2604    /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
2605    /// ```
2606    #[inline]
2607    fn cmp(&self, other: &Rc<T, A>) -> Ordering {
2608        (**self).cmp(&**other)
2609    }
2610}
2611
2612#[stable(feature = "rust1", since = "1.0.0")]
2613impl<T: ?Sized + Hash, A: Allocator> Hash for Rc<T, A> {
2614    fn hash<H: Hasher>(&self, state: &mut H) {
2615        (**self).hash(state);
2616    }
2617}
2618
2619#[stable(feature = "rust1", since = "1.0.0")]
2620impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Rc<T, A> {
2621    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2622        fmt::Display::fmt(&**self, f)
2623    }
2624}
2625
2626#[stable(feature = "rust1", since = "1.0.0")]
2627impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Rc<T, A> {
2628    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2629        fmt::Debug::fmt(&**self, f)
2630    }
2631}
2632
2633#[stable(feature = "rust1", since = "1.0.0")]
2634impl<T: ?Sized, A: Allocator> fmt::Pointer for Rc<T, A> {
2635    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2636        fmt::Pointer::fmt(&(&raw const **self), f)
2637    }
2638}
2639
2640#[cfg(not(no_global_oom_handling))]
2641#[stable(feature = "from_for_ptrs", since = "1.6.0")]
2642impl<T> From<T> for Rc<T> {
2643    /// Converts a generic type `T` into an `Rc<T>`
2644    ///
2645    /// The conversion allocates on the heap and moves `t`
2646    /// from the stack into it.
2647    ///
2648    /// # Example
2649    /// ```rust
2650    /// # use std::rc::Rc;
2651    /// let x = 5;
2652    /// let rc = Rc::new(5);
2653    ///
2654    /// assert_eq!(Rc::from(x), rc);
2655    /// ```
2656    fn from(t: T) -> Self {
2657        Rc::new(t)
2658    }
2659}
2660
2661#[cfg(not(no_global_oom_handling))]
2662#[stable(feature = "shared_from_array", since = "1.74.0")]
2663impl<T, const N: usize> From<[T; N]> for Rc<[T]> {
2664    /// Converts a [`[T; N]`](prim@array) into an `Rc<[T]>`.
2665    ///
2666    /// The conversion moves the array into a newly allocated `Rc`.
2667    ///
2668    /// # Example
2669    ///
2670    /// ```
2671    /// # use std::rc::Rc;
2672    /// let original: [i32; 3] = [1, 2, 3];
2673    /// let shared: Rc<[i32]> = Rc::from(original);
2674    /// assert_eq!(&[1, 2, 3], &shared[..]);
2675    /// ```
2676    #[inline]
2677    fn from(v: [T; N]) -> Rc<[T]> {
2678        Rc::<[T; N]>::from(v)
2679    }
2680}
2681
2682#[cfg(not(no_global_oom_handling))]
2683#[stable(feature = "shared_from_slice", since = "1.21.0")]
2684impl<T: Clone> From<&[T]> for Rc<[T]> {
2685    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
2686    ///
2687    /// # Example
2688    ///
2689    /// ```
2690    /// # use std::rc::Rc;
2691    /// let original: &[i32] = &[1, 2, 3];
2692    /// let shared: Rc<[i32]> = Rc::from(original);
2693    /// assert_eq!(&[1, 2, 3], &shared[..]);
2694    /// ```
2695    #[inline]
2696    fn from(v: &[T]) -> Rc<[T]> {
2697        <Self as RcFromSlice<T>>::from_slice(v)
2698    }
2699}
2700
2701#[cfg(not(no_global_oom_handling))]
2702#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2703impl<T: Clone> From<&mut [T]> for Rc<[T]> {
2704    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
2705    ///
2706    /// # Example
2707    ///
2708    /// ```
2709    /// # use std::rc::Rc;
2710    /// let mut original = [1, 2, 3];
2711    /// let original: &mut [i32] = &mut original;
2712    /// let shared: Rc<[i32]> = Rc::from(original);
2713    /// assert_eq!(&[1, 2, 3], &shared[..]);
2714    /// ```
2715    #[inline]
2716    fn from(v: &mut [T]) -> Rc<[T]> {
2717        Rc::from(&*v)
2718    }
2719}
2720
2721#[cfg(not(no_global_oom_handling))]
2722#[stable(feature = "shared_from_slice", since = "1.21.0")]
2723impl From<&str> for Rc<str> {
2724    /// Allocates a reference-counted string slice and copies `v` into it.
2725    ///
2726    /// # Example
2727    ///
2728    /// ```
2729    /// # use std::rc::Rc;
2730    /// let shared: Rc<str> = Rc::from("statue");
2731    /// assert_eq!("statue", &shared[..]);
2732    /// ```
2733    #[inline]
2734    fn from(v: &str) -> Rc<str> {
2735        let rc = Rc::<[u8]>::from(v.as_bytes());
2736        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
2737    }
2738}
2739
2740#[cfg(not(no_global_oom_handling))]
2741#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2742impl From<&mut str> for Rc<str> {
2743    /// Allocates a reference-counted string slice and copies `v` into it.
2744    ///
2745    /// # Example
2746    ///
2747    /// ```
2748    /// # use std::rc::Rc;
2749    /// let mut original = String::from("statue");
2750    /// let original: &mut str = &mut original;
2751    /// let shared: Rc<str> = Rc::from(original);
2752    /// assert_eq!("statue", &shared[..]);
2753    /// ```
2754    #[inline]
2755    fn from(v: &mut str) -> Rc<str> {
2756        Rc::from(&*v)
2757    }
2758}
2759
2760#[cfg(not(no_global_oom_handling))]
2761#[stable(feature = "shared_from_slice", since = "1.21.0")]
2762impl From<String> for Rc<str> {
2763    /// Allocates a reference-counted string slice and copies `v` into it.
2764    ///
2765    /// # Example
2766    ///
2767    /// ```
2768    /// # use std::rc::Rc;
2769    /// let original: String = "statue".to_owned();
2770    /// let shared: Rc<str> = Rc::from(original);
2771    /// assert_eq!("statue", &shared[..]);
2772    /// ```
2773    #[inline]
2774    fn from(v: String) -> Rc<str> {
2775        Rc::from(&v[..])
2776    }
2777}
2778
2779#[cfg(not(no_global_oom_handling))]
2780#[stable(feature = "shared_from_slice", since = "1.21.0")]
2781impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Rc<T, A> {
2782    /// Move a boxed object to a new, reference counted, allocation.
2783    ///
2784    /// # Example
2785    ///
2786    /// ```
2787    /// # use std::rc::Rc;
2788    /// let original: Box<i32> = Box::new(1);
2789    /// let shared: Rc<i32> = Rc::from(original);
2790    /// assert_eq!(1, *shared);
2791    /// ```
2792    #[inline]
2793    fn from(v: Box<T, A>) -> Rc<T, A> {
2794        Rc::from_box_in(v)
2795    }
2796}
2797
2798#[cfg(not(no_global_oom_handling))]
2799#[stable(feature = "shared_from_slice", since = "1.21.0")]
2800impl<T, A: Allocator> From<Vec<T, A>> for Rc<[T], A> {
2801    /// Allocates a reference-counted slice and moves `v`'s items into it.
2802    ///
2803    /// # Example
2804    ///
2805    /// ```
2806    /// # use std::rc::Rc;
2807    /// let unique: Vec<i32> = vec![1, 2, 3];
2808    /// let shared: Rc<[i32]> = Rc::from(unique);
2809    /// assert_eq!(&[1, 2, 3], &shared[..]);
2810    /// ```
2811    #[inline]
2812    fn from(v: Vec<T, A>) -> Rc<[T], A> {
2813        unsafe {
2814            let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
2815
2816            let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
2817            ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).value) as *mut T, len);
2818
2819            // Create a `Vec<T, &A>` with length 0, to deallocate the buffer
2820            // without dropping its contents or the allocator
2821            let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);
2822
2823            Self::from_ptr_in(rc_ptr, alloc)
2824        }
2825    }
2826}
2827
2828#[stable(feature = "shared_from_cow", since = "1.45.0")]
2829impl<'a, B> From<Cow<'a, B>> for Rc<B>
2830where
2831    B: ToOwned + ?Sized,
2832    Rc<B>: From<&'a B> + From<B::Owned>,
2833{
2834    /// Creates a reference-counted pointer from a clone-on-write pointer by
2835    /// copying its content.
2836    ///
2837    /// # Example
2838    ///
2839    /// ```rust
2840    /// # use std::rc::Rc;
2841    /// # use std::borrow::Cow;
2842    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
2843    /// let shared: Rc<str> = Rc::from(cow);
2844    /// assert_eq!("eggplant", &shared[..]);
2845    /// ```
2846    #[inline]
2847    fn from(cow: Cow<'a, B>) -> Rc<B> {
2848        match cow {
2849            Cow::Borrowed(s) => Rc::from(s),
2850            Cow::Owned(s) => Rc::from(s),
2851        }
2852    }
2853}
2854
2855#[stable(feature = "shared_from_str", since = "1.62.0")]
2856impl From<Rc<str>> for Rc<[u8]> {
2857    /// Converts a reference-counted string slice into a byte slice.
2858    ///
2859    /// # Example
2860    ///
2861    /// ```
2862    /// # use std::rc::Rc;
2863    /// let string: Rc<str> = Rc::from("eggplant");
2864    /// let bytes: Rc<[u8]> = Rc::from(string);
2865    /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
2866    /// ```
2867    #[inline]
2868    fn from(rc: Rc<str>) -> Self {
2869        // SAFETY: `str` has the same layout as `[u8]`.
2870        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const [u8]) }
2871    }
2872}
2873
2874#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
2875impl<T, A: Allocator, const N: usize> TryFrom<Rc<[T], A>> for Rc<[T; N], A> {
2876    type Error = Rc<[T], A>;
2877
2878    fn try_from(boxed_slice: Rc<[T], A>) -> Result<Self, Self::Error> {
2879        if boxed_slice.len() == N {
2880            let (ptr, alloc) = Rc::into_inner_with_allocator(boxed_slice);
2881            Ok(unsafe { Rc::from_inner_in(ptr.cast(), alloc) })
2882        } else {
2883            Err(boxed_slice)
2884        }
2885    }
2886}
2887
2888#[cfg(not(no_global_oom_handling))]
2889#[stable(feature = "shared_from_iter", since = "1.37.0")]
2890impl<T> FromIterator<T> for Rc<[T]> {
2891    /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`.
2892    ///
2893    /// # Performance characteristics
2894    ///
2895    /// ## The general case
2896    ///
2897    /// In the general case, collecting into `Rc<[T]>` is done by first
2898    /// collecting into a `Vec<T>`. That is, when writing the following:
2899    ///
2900    /// ```rust
2901    /// # use std::rc::Rc;
2902    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
2903    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2904    /// ```
2905    ///
2906    /// this behaves as if we wrote:
2907    ///
2908    /// ```rust
2909    /// # use std::rc::Rc;
2910    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
2911    ///     .collect::<Vec<_>>() // The first set of allocations happens here.
2912    ///     .into(); // A second allocation for `Rc<[T]>` happens here.
2913    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2914    /// ```
2915    ///
2916    /// This will allocate as many times as needed for constructing the `Vec<T>`
2917    /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`.
2918    ///
2919    /// ## Iterators of known length
2920    ///
2921    /// When your `Iterator` implements `TrustedLen` and is of an exact size,
2922    /// a single allocation will be made for the `Rc<[T]>`. For example:
2923    ///
2924    /// ```rust
2925    /// # use std::rc::Rc;
2926    /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
2927    /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
2928    /// ```
2929    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
2930        ToRcSlice::to_rc_slice(iter.into_iter())
2931    }
2932}
2933
2934/// Specialization trait used for collecting into `Rc<[T]>`.
2935#[cfg(not(no_global_oom_handling))]
2936trait ToRcSlice<T>: Iterator<Item = T> + Sized {
2937    fn to_rc_slice(self) -> Rc<[T]>;
2938}
2939
2940#[cfg(not(no_global_oom_handling))]
2941impl<T, I: Iterator<Item = T>> ToRcSlice<T> for I {
2942    default fn to_rc_slice(self) -> Rc<[T]> {
2943        self.collect::<Vec<T>>().into()
2944    }
2945}
2946
2947#[cfg(not(no_global_oom_handling))]
2948impl<T, I: iter::TrustedLen<Item = T>> ToRcSlice<T> for I {
2949    fn to_rc_slice(self) -> Rc<[T]> {
2950        // This is the case for a `TrustedLen` iterator.
2951        let (low, high) = self.size_hint();
2952        if let Some(high) = high {
2953            debug_assert_eq!(
2954                low,
2955                high,
2956                "TrustedLen iterator's size hint is not exact: {:?}",
2957                (low, high)
2958            );
2959
2960            unsafe {
2961                // SAFETY: We need to ensure that the iterator has an exact length and we have.
2962                Rc::from_iter_exact(self, low)
2963            }
2964        } else {
2965            // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
2966            // length exceeding `usize::MAX`.
2967            // The default implementation would collect into a vec which would panic.
2968            // Thus we panic here immediately without invoking `Vec` code.
2969            panic!("capacity overflow");
2970        }
2971    }
2972}
2973
2974/// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
2975/// managed allocation.
2976///
2977/// The allocation is accessed by calling [`upgrade`] on the `Weak`
2978/// pointer, which returns an <code>[Option]<[Rc]\<T>></code>.
2979///
2980/// Since a `Weak` reference does not count towards ownership, it will not
2981/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
2982/// guarantees about the value still being present. Thus it may return [`None`]
2983/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
2984/// itself (the backing store) from being deallocated.
2985///
2986/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
2987/// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to
2988/// prevent circular references between [`Rc`] pointers, since mutual owning references
2989/// would never allow either [`Rc`] to be dropped. For example, a tree could
2990/// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
2991/// pointers from children back to their parents.
2992///
2993/// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
2994///
2995/// [`upgrade`]: Weak::upgrade
2996#[stable(feature = "rc_weak", since = "1.4.0")]
2997#[rustc_diagnostic_item = "RcWeak"]
2998pub struct Weak<
2999    T: ?Sized,
3000    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
3001> {
3002    // This is a `NonNull` to allow optimizing the size of this type in enums,
3003    // but it is not necessarily a valid pointer.
3004    // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
3005    // to allocate space on the heap. That's not a value a real pointer
3006    // will ever have because RcInner has alignment at least 2.
3007    // This is only possible when `T: Sized`; unsized `T` never dangle.
3008    ptr: NonNull<RcInner<T>>,
3009    alloc: A,
3010}
3011
3012#[stable(feature = "rc_weak", since = "1.4.0")]
3013impl<T: ?Sized, A: Allocator> !Send for Weak<T, A> {}
3014#[stable(feature = "rc_weak", since = "1.4.0")]
3015impl<T: ?Sized, A: Allocator> !Sync for Weak<T, A> {}
3016
3017#[unstable(feature = "coerce_unsized", issue = "18598")]
3018impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}
3019
3020#[unstable(feature = "dispatch_from_dyn", issue = "none")]
3021impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
3022
3023impl<T> Weak<T> {
3024    /// Constructs a new `Weak<T>`, without allocating any memory.
3025    /// Calling [`upgrade`] on the return value always gives [`None`].
3026    ///
3027    /// [`upgrade`]: Weak::upgrade
3028    ///
3029    /// # Examples
3030    ///
3031    /// ```
3032    /// use std::rc::Weak;
3033    ///
3034    /// let empty: Weak<i64> = Weak::new();
3035    /// assert!(empty.upgrade().is_none());
3036    /// ```
3037    #[inline]
3038    #[stable(feature = "downgraded_weak", since = "1.10.0")]
3039    #[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
3040    #[must_use]
3041    pub const fn new() -> Weak<T> {
3042        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc: Global }
3043    }
3044}
3045
3046impl<T, A: Allocator> Weak<T, A> {
3047    /// Constructs a new `Weak<T>`, without allocating any memory, technically in the provided
3048    /// allocator.
3049    /// Calling [`upgrade`] on the return value always gives [`None`].
3050    ///
3051    /// [`upgrade`]: Weak::upgrade
3052    ///
3053    /// # Examples
3054    ///
3055    /// ```
3056    /// use std::rc::Weak;
3057    ///
3058    /// let empty: Weak<i64> = Weak::new();
3059    /// assert!(empty.upgrade().is_none());
3060    /// ```
3061    #[inline]
3062    #[unstable(feature = "allocator_api", issue = "32838")]
3063    pub fn new_in(alloc: A) -> Weak<T, A> {
3064        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc }
3065    }
3066}
3067
3068pub(crate) fn is_dangling<T: ?Sized>(ptr: *const T) -> bool {
3069    (ptr.cast::<()>()).addr() == usize::MAX
3070}
3071
3072/// Helper type to allow accessing the reference counts without
3073/// making any assertions about the data field.
3074struct WeakInner<'a> {
3075    weak: &'a Cell<usize>,
3076    strong: &'a Cell<usize>,
3077}
3078
3079impl<T: ?Sized> Weak<T> {
3080    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
3081    ///
3082    /// This can be used to safely get a strong reference (by calling [`upgrade`]
3083    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
3084    ///
3085    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
3086    /// as these don't own anything; the method still works on them).
3087    ///
3088    /// # Safety
3089    ///
3090    /// The pointer must have originated from the [`into_raw`] and must still own its potential
3091    /// weak reference, and `ptr` must point to a block of memory allocated by the global allocator.
3092    ///
3093    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3094    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3095    /// count is not modified by this operation) and therefore it must be paired with a previous
3096    /// call to [`into_raw`].
3097    ///
3098    /// # Examples
3099    ///
3100    /// ```
3101    /// use std::rc::{Rc, Weak};
3102    ///
3103    /// let strong = Rc::new("hello".to_owned());
3104    ///
3105    /// let raw_1 = Rc::downgrade(&strong).into_raw();
3106    /// let raw_2 = Rc::downgrade(&strong).into_raw();
3107    ///
3108    /// assert_eq!(2, Rc::weak_count(&strong));
3109    ///
3110    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3111    /// assert_eq!(1, Rc::weak_count(&strong));
3112    ///
3113    /// drop(strong);
3114    ///
3115    /// // Decrement the last weak count.
3116    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3117    /// ```
3118    ///
3119    /// [`into_raw`]: Weak::into_raw
3120    /// [`upgrade`]: Weak::upgrade
3121    /// [`new`]: Weak::new
3122    #[inline]
3123    #[stable(feature = "weak_into_raw", since = "1.45.0")]
3124    pub unsafe fn from_raw(ptr: *const T) -> Self {
3125        unsafe { Self::from_raw_in(ptr, Global) }
3126    }
3127}
3128
3129impl<T: ?Sized, A: Allocator> Weak<T, A> {
3130    /// Returns a reference to the underlying allocator.
3131    #[inline]
3132    #[unstable(feature = "allocator_api", issue = "32838")]
3133    pub fn allocator(&self) -> &A {
3134        &self.alloc
3135    }
3136
3137    /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
3138    ///
3139    /// The pointer is valid only if there are some strong references. The pointer may be dangling,
3140    /// unaligned or even [`null`] otherwise.
3141    ///
3142    /// # Examples
3143    ///
3144    /// ```
3145    /// use std::rc::Rc;
3146    /// use std::ptr;
3147    ///
3148    /// let strong = Rc::new("hello".to_owned());
3149    /// let weak = Rc::downgrade(&strong);
3150    /// // Both point to the same object
3151    /// assert!(ptr::eq(&*strong, weak.as_ptr()));
3152    /// // The strong here keeps it alive, so we can still access the object.
3153    /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
3154    ///
3155    /// drop(strong);
3156    /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
3157    /// // undefined behavior.
3158    /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
3159    /// ```
3160    ///
3161    /// [`null`]: ptr::null
3162    #[must_use]
3163    #[stable(feature = "rc_as_ptr", since = "1.45.0")]
3164    pub fn as_ptr(&self) -> *const T {
3165        let ptr: *mut RcInner<T> = NonNull::as_ptr(self.ptr);
3166
3167        if is_dangling(ptr) {
3168            // If the pointer is dangling, we return the sentinel directly. This cannot be
3169            // a valid payload address, as the payload is at least as aligned as RcInner (usize).
3170            ptr as *const T
3171        } else {
3172            // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
3173            // The payload may be dropped at this point, and we have to maintain provenance,
3174            // so use raw pointer manipulation.
3175            unsafe { &raw mut (*ptr).value }
3176        }
3177    }
3178
3179    /// Consumes the `Weak<T>` and turns it into a raw pointer.
3180    ///
3181    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
3182    /// one weak reference (the weak count is not modified by this operation). It can be turned
3183    /// back into the `Weak<T>` with [`from_raw`].
3184    ///
3185    /// The same restrictions of accessing the target of the pointer as with
3186    /// [`as_ptr`] apply.
3187    ///
3188    /// # Examples
3189    ///
3190    /// ```
3191    /// use std::rc::{Rc, Weak};
3192    ///
3193    /// let strong = Rc::new("hello".to_owned());
3194    /// let weak = Rc::downgrade(&strong);
3195    /// let raw = weak.into_raw();
3196    ///
3197    /// assert_eq!(1, Rc::weak_count(&strong));
3198    /// assert_eq!("hello", unsafe { &*raw });
3199    ///
3200    /// drop(unsafe { Weak::from_raw(raw) });
3201    /// assert_eq!(0, Rc::weak_count(&strong));
3202    /// ```
3203    ///
3204    /// [`from_raw`]: Weak::from_raw
3205    /// [`as_ptr`]: Weak::as_ptr
3206    #[must_use = "losing the pointer will leak memory"]
3207    #[stable(feature = "weak_into_raw", since = "1.45.0")]
3208    pub fn into_raw(self) -> *const T {
3209        mem::ManuallyDrop::new(self).as_ptr()
3210    }
3211
3212    /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
3213    ///
3214    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
3215    /// one weak reference (the weak count is not modified by this operation). It can be turned
3216    /// back into the `Weak<T>` with [`from_raw_in`].
3217    ///
3218    /// The same restrictions of accessing the target of the pointer as with
3219    /// [`as_ptr`] apply.
3220    ///
3221    /// # Examples
3222    ///
3223    /// ```
3224    /// #![feature(allocator_api)]
3225    /// use std::rc::{Rc, Weak};
3226    /// use std::alloc::System;
3227    ///
3228    /// let strong = Rc::new_in("hello".to_owned(), System);
3229    /// let weak = Rc::downgrade(&strong);
3230    /// let (raw, alloc) = weak.into_raw_with_allocator();
3231    ///
3232    /// assert_eq!(1, Rc::weak_count(&strong));
3233    /// assert_eq!("hello", unsafe { &*raw });
3234    ///
3235    /// drop(unsafe { Weak::from_raw_in(raw, alloc) });
3236    /// assert_eq!(0, Rc::weak_count(&strong));
3237    /// ```
3238    ///
3239    /// [`from_raw_in`]: Weak::from_raw_in
3240    /// [`as_ptr`]: Weak::as_ptr
3241    #[must_use = "losing the pointer will leak memory"]
3242    #[inline]
3243    #[unstable(feature = "allocator_api", issue = "32838")]
3244    pub fn into_raw_with_allocator(self) -> (*const T, A) {
3245        let this = mem::ManuallyDrop::new(self);
3246        let result = this.as_ptr();
3247        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
3248        let alloc = unsafe { ptr::read(&this.alloc) };
3249        (result, alloc)
3250    }
3251
3252    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
3253    ///
3254    /// This can be used to safely get a strong reference (by calling [`upgrade`]
3255    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
3256    ///
3257    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
3258    /// as these don't own anything; the method still works on them).
3259    ///
3260    /// # Safety
3261    ///
3262    /// The pointer must have originated from the [`into_raw`] and must still own its potential
3263    /// weak reference, and `ptr` must point to a block of memory allocated by `alloc`.
3264    ///
3265    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3266    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3267    /// count is not modified by this operation) and therefore it must be paired with a previous
3268    /// call to [`into_raw`].
3269    ///
3270    /// # Examples
3271    ///
3272    /// ```
3273    /// use std::rc::{Rc, Weak};
3274    ///
3275    /// let strong = Rc::new("hello".to_owned());
3276    ///
3277    /// let raw_1 = Rc::downgrade(&strong).into_raw();
3278    /// let raw_2 = Rc::downgrade(&strong).into_raw();
3279    ///
3280    /// assert_eq!(2, Rc::weak_count(&strong));
3281    ///
3282    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3283    /// assert_eq!(1, Rc::weak_count(&strong));
3284    ///
3285    /// drop(strong);
3286    ///
3287    /// // Decrement the last weak count.
3288    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3289    /// ```
3290    ///
3291    /// [`into_raw`]: Weak::into_raw
3292    /// [`upgrade`]: Weak::upgrade
3293    /// [`new`]: Weak::new
3294    #[inline]
3295    #[unstable(feature = "allocator_api", issue = "32838")]
3296    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
3297        // See Weak::as_ptr for context on how the input pointer is derived.
3298
3299        let ptr = if is_dangling(ptr) {
3300            // This is a dangling Weak.
3301            ptr as *mut RcInner<T>
3302        } else {
3303            // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
3304            // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
3305            let offset = unsafe { data_offset(ptr) };
3306            // Thus, we reverse the offset to get the whole RcInner.
3307            // SAFETY: the pointer originated from a Weak, so this offset is safe.
3308            unsafe { ptr.byte_sub(offset) as *mut RcInner<T> }
3309        };
3310
3311        // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
3312        Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
3313    }
3314
3315    /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying
3316    /// dropping of the inner value if successful.
3317    ///
3318    /// Returns [`None`] if the inner value has since been dropped.
3319    ///
3320    /// # Examples
3321    ///
3322    /// ```
3323    /// use std::rc::Rc;
3324    ///
3325    /// let five = Rc::new(5);
3326    ///
3327    /// let weak_five = Rc::downgrade(&five);
3328    ///
3329    /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
3330    /// assert!(strong_five.is_some());
3331    ///
3332    /// // Destroy all strong pointers.
3333    /// drop(strong_five);
3334    /// drop(five);
3335    ///
3336    /// assert!(weak_five.upgrade().is_none());
3337    /// ```
3338    #[must_use = "this returns a new `Rc`, \
3339                  without modifying the original weak pointer"]
3340    #[stable(feature = "rc_weak", since = "1.4.0")]
3341    pub fn upgrade(&self) -> Option<Rc<T, A>>
3342    where
3343        A: Clone,
3344    {
3345        let inner = self.inner()?;
3346
3347        if inner.strong() == 0 {
3348            None
3349        } else {
3350            unsafe {
3351                inner.inc_strong();
3352                Some(Rc::from_inner_in(self.ptr, self.alloc.clone()))
3353            }
3354        }
3355    }
3356
3357    /// Gets the number of strong (`Rc`) pointers pointing to this allocation.
3358    ///
3359    /// If `self` was created using [`Weak::new`], this will return 0.
3360    #[must_use]
3361    #[stable(feature = "weak_counts", since = "1.41.0")]
3362    pub fn strong_count(&self) -> usize {
3363        if let Some(inner) = self.inner() { inner.strong() } else { 0 }
3364    }
3365
3366    /// Gets the number of `Weak` pointers pointing to this allocation.
3367    ///
3368    /// If no strong pointers remain, this will return zero.
3369    #[must_use]
3370    #[stable(feature = "weak_counts", since = "1.41.0")]
3371    pub fn weak_count(&self) -> usize {
3372        if let Some(inner) = self.inner() {
3373            if inner.strong() > 0 {
3374                inner.weak() - 1 // subtract the implicit weak ptr
3375            } else {
3376                0
3377            }
3378        } else {
3379            0
3380        }
3381    }
3382
3383    /// Returns `None` when the pointer is dangling and there is no allocated `RcInner`,
3384    /// (i.e., when this `Weak` was created by `Weak::new`).
3385    #[inline]
3386    fn inner(&self) -> Option<WeakInner<'_>> {
3387        if is_dangling(self.ptr.as_ptr()) {
3388            None
3389        } else {
3390            // We are careful to *not* create a reference covering the "data" field, as
3391            // the field may be mutated concurrently (for example, if the last `Rc`
3392            // is dropped, the data field will be dropped in-place).
3393            Some(unsafe {
3394                let ptr = self.ptr.as_ptr();
3395                WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
3396            })
3397        }
3398    }
3399
3400    /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
3401    /// both don't point to any allocation (because they were created with `Weak::new()`). However,
3402    /// this function ignores the metadata of  `dyn Trait` pointers.
3403    ///
3404    /// # Notes
3405    ///
3406    /// Since this compares pointers it means that `Weak::new()` will equal each
3407    /// other, even though they don't point to any allocation.
3408    ///
3409    /// # Examples
3410    ///
3411    /// ```
3412    /// use std::rc::Rc;
3413    ///
3414    /// let first_rc = Rc::new(5);
3415    /// let first = Rc::downgrade(&first_rc);
3416    /// let second = Rc::downgrade(&first_rc);
3417    ///
3418    /// assert!(first.ptr_eq(&second));
3419    ///
3420    /// let third_rc = Rc::new(5);
3421    /// let third = Rc::downgrade(&third_rc);
3422    ///
3423    /// assert!(!first.ptr_eq(&third));
3424    /// ```
3425    ///
3426    /// Comparing `Weak::new`.
3427    ///
3428    /// ```
3429    /// use std::rc::{Rc, Weak};
3430    ///
3431    /// let first = Weak::new();
3432    /// let second = Weak::new();
3433    /// assert!(first.ptr_eq(&second));
3434    ///
3435    /// let third_rc = Rc::new(());
3436    /// let third = Rc::downgrade(&third_rc);
3437    /// assert!(!first.ptr_eq(&third));
3438    /// ```
3439    #[inline]
3440    #[must_use]
3441    #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
3442    pub fn ptr_eq(&self, other: &Self) -> bool {
3443        ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
3444    }
3445}
3446
3447#[stable(feature = "rc_weak", since = "1.4.0")]
3448unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
3449    /// Drops the `Weak` pointer.
3450    ///
3451    /// # Examples
3452    ///
3453    /// ```
3454    /// use std::rc::{Rc, Weak};
3455    ///
3456    /// struct Foo;
3457    ///
3458    /// impl Drop for Foo {
3459    ///     fn drop(&mut self) {
3460    ///         println!("dropped!");
3461    ///     }
3462    /// }
3463    ///
3464    /// let foo = Rc::new(Foo);
3465    /// let weak_foo = Rc::downgrade(&foo);
3466    /// let other_weak_foo = Weak::clone(&weak_foo);
3467    ///
3468    /// drop(weak_foo);   // Doesn't print anything
3469    /// drop(foo);        // Prints "dropped!"
3470    ///
3471    /// assert!(other_weak_foo.upgrade().is_none());
3472    /// ```
3473    fn drop(&mut self) {
3474        let inner = if let Some(inner) = self.inner() { inner } else { return };
3475
3476        inner.dec_weak();
3477        // the weak count starts at 1, and will only go to zero if all
3478        // the strong pointers have disappeared.
3479        if inner.weak() == 0 {
3480            unsafe {
3481                self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
3482            }
3483        }
3484    }
3485}
3486
3487#[stable(feature = "rc_weak", since = "1.4.0")]
3488impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
3489    /// Makes a clone of the `Weak` pointer that points to the same allocation.
3490    ///
3491    /// # Examples
3492    ///
3493    /// ```
3494    /// use std::rc::{Rc, Weak};
3495    ///
3496    /// let weak_five = Rc::downgrade(&Rc::new(5));
3497    ///
3498    /// let _ = Weak::clone(&weak_five);
3499    /// ```
3500    #[inline]
3501    fn clone(&self) -> Weak<T, A> {
3502        if let Some(inner) = self.inner() {
3503            inner.inc_weak()
3504        }
3505        Weak { ptr: self.ptr, alloc: self.alloc.clone() }
3506    }
3507}
3508
3509#[unstable(feature = "ergonomic_clones", issue = "132290")]
3510impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {}
3511
3512#[stable(feature = "rc_weak", since = "1.4.0")]
3513impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
3514    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3515        write!(f, "(Weak)")
3516    }
3517}
3518
3519#[stable(feature = "downgraded_weak", since = "1.10.0")]
3520impl<T> Default for Weak<T> {
3521    /// Constructs a new `Weak<T>`, without allocating any memory.
3522    /// Calling [`upgrade`] on the return value always gives [`None`].
3523    ///
3524    /// [`upgrade`]: Weak::upgrade
3525    ///
3526    /// # Examples
3527    ///
3528    /// ```
3529    /// use std::rc::Weak;
3530    ///
3531    /// let empty: Weak<i64> = Default::default();
3532    /// assert!(empty.upgrade().is_none());
3533    /// ```
3534    fn default() -> Weak<T> {
3535        Weak::new()
3536    }
3537}
3538
3539// NOTE: We checked_add here to deal with mem::forget safely. In particular
3540// if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
3541// you can free the allocation while outstanding Rcs (or Weaks) exist.
3542// We abort because this is such a degenerate scenario that we don't care about
3543// what happens -- no real program should ever experience this.
3544//
3545// This should have negligible overhead since you don't actually need to
3546// clone these much in Rust thanks to ownership and move-semantics.
3547
3548#[doc(hidden)]
3549trait RcInnerPtr {
3550    fn weak_ref(&self) -> &Cell<usize>;
3551    fn strong_ref(&self) -> &Cell<usize>;
3552
3553    #[inline]
3554    fn strong(&self) -> usize {
3555        self.strong_ref().get()
3556    }
3557
3558    #[inline]
3559    fn inc_strong(&self) {
3560        let strong = self.strong();
3561
3562        // We insert an `assume` here to hint LLVM at an otherwise
3563        // missed optimization.
3564        // SAFETY: The reference count will never be zero when this is
3565        // called.
3566        unsafe {
3567            hint::assert_unchecked(strong != 0);
3568        }
3569
3570        let strong = strong.wrapping_add(1);
3571        self.strong_ref().set(strong);
3572
3573        // We want to abort on overflow instead of dropping the value.
3574        // Checking for overflow after the store instead of before
3575        // allows for slightly better code generation.
3576        if core::intrinsics::unlikely(strong == 0) {
3577            abort();
3578        }
3579    }
3580
3581    #[inline]
3582    fn dec_strong(&self) {
3583        self.strong_ref().set(self.strong() - 1);
3584    }
3585
3586    #[inline]
3587    fn weak(&self) -> usize {
3588        self.weak_ref().get()
3589    }
3590
3591    #[inline]
3592    fn inc_weak(&self) {
3593        let weak = self.weak();
3594
3595        // We insert an `assume` here to hint LLVM at an otherwise
3596        // missed optimization.
3597        // SAFETY: The reference count will never be zero when this is
3598        // called.
3599        unsafe {
3600            hint::assert_unchecked(weak != 0);
3601        }
3602
3603        let weak = weak.wrapping_add(1);
3604        self.weak_ref().set(weak);
3605
3606        // We want to abort on overflow instead of dropping the value.
3607        // Checking for overflow after the store instead of before
3608        // allows for slightly better code generation.
3609        if core::intrinsics::unlikely(weak == 0) {
3610            abort();
3611        }
3612    }
3613
3614    #[inline]
3615    fn dec_weak(&self) {
3616        self.weak_ref().set(self.weak() - 1);
3617    }
3618}
3619
3620impl<T: ?Sized> RcInnerPtr for RcInner<T> {
3621    #[inline(always)]
3622    fn weak_ref(&self) -> &Cell<usize> {
3623        &self.weak
3624    }
3625
3626    #[inline(always)]
3627    fn strong_ref(&self) -> &Cell<usize> {
3628        &self.strong
3629    }
3630}
3631
3632impl<'a> RcInnerPtr for WeakInner<'a> {
3633    #[inline(always)]
3634    fn weak_ref(&self) -> &Cell<usize> {
3635        self.weak
3636    }
3637
3638    #[inline(always)]
3639    fn strong_ref(&self) -> &Cell<usize> {
3640        self.strong
3641    }
3642}
3643
3644#[stable(feature = "rust1", since = "1.0.0")]
3645impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Rc<T, A> {
3646    fn borrow(&self) -> &T {
3647        &**self
3648    }
3649}
3650
3651#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
3652impl<T: ?Sized, A: Allocator> AsRef<T> for Rc<T, A> {
3653    fn as_ref(&self) -> &T {
3654        &**self
3655    }
3656}
3657
3658#[stable(feature = "pin", since = "1.33.0")]
3659impl<T: ?Sized, A: Allocator> Unpin for Rc<T, A> {}
3660
3661/// Gets the offset within an `RcInner` for the payload behind a pointer.
3662///
3663/// # Safety
3664///
3665/// The pointer must point to (and have valid metadata for) a previously
3666/// valid instance of T, but the T is allowed to be dropped.
3667unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
3668    // Align the unsized value to the end of the RcInner.
3669    // Because RcInner is repr(C), it will always be the last field in memory.
3670    // SAFETY: since the only unsized types possible are slices, trait objects,
3671    // and extern types, the input safety requirement is currently enough to
3672    // satisfy the requirements of align_of_val_raw; this is an implementation
3673    // detail of the language that must not be relied upon outside of std.
3674    unsafe { data_offset_align(align_of_val_raw(ptr)) }
3675}
3676
3677#[inline]
3678fn data_offset_align(align: usize) -> usize {
3679    let layout = Layout::new::<RcInner<()>>();
3680    layout.size() + layout.padding_needed_for(align)
3681}
3682
3683/// A uniquely owned [`Rc`].
3684///
3685/// This represents an `Rc` that is known to be uniquely owned -- that is, have exactly one strong
3686/// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
3687/// references will fail unless the `UniqueRc` they point to has been converted into a regular `Rc`.
3688///
3689/// Because they are uniquely owned, the contents of a `UniqueRc` can be freely mutated. A common
3690/// use case is to have an object be mutable during its initialization phase but then have it become
3691/// immutable and converted to a normal `Rc`.
3692///
3693/// This can be used as a flexible way to create cyclic data structures, as in the example below.
3694///
3695/// ```
3696/// #![feature(unique_rc_arc)]
3697/// use std::rc::{Rc, Weak, UniqueRc};
3698///
3699/// struct Gadget {
3700///     #[allow(dead_code)]
3701///     me: Weak<Gadget>,
3702/// }
3703///
3704/// fn create_gadget() -> Option<Rc<Gadget>> {
3705///     let mut rc = UniqueRc::new(Gadget {
3706///         me: Weak::new(),
3707///     });
3708///     rc.me = UniqueRc::downgrade(&rc);
3709///     Some(UniqueRc::into_rc(rc))
3710/// }
3711///
3712/// create_gadget().unwrap();
3713/// ```
3714///
3715/// An advantage of using `UniqueRc` over [`Rc::new_cyclic`] to build cyclic data structures is that
3716/// [`Rc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
3717/// previous example, `UniqueRc` allows for more flexibility in the construction of cyclic data,
3718/// including fallible or async constructors.
3719#[unstable(feature = "unique_rc_arc", issue = "112566")]
3720pub struct UniqueRc<
3721    T: ?Sized,
3722    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
3723> {
3724    ptr: NonNull<RcInner<T>>,
3725    // Define the ownership of `RcInner<T>` for drop-check
3726    _marker: PhantomData<RcInner<T>>,
3727    // Invariance is necessary for soundness: once other `Weak`
3728    // references exist, we already have a form of shared mutability!
3729    _marker2: PhantomData<*mut T>,
3730    alloc: A,
3731}
3732
3733// Not necessary for correctness since `UniqueRc` contains `NonNull`,
3734// but having an explicit negative impl is nice for documentation purposes
3735// and results in nicer error messages.
3736#[unstable(feature = "unique_rc_arc", issue = "112566")]
3737impl<T: ?Sized, A: Allocator> !Send for UniqueRc<T, A> {}
3738
3739// Not necessary for correctness since `UniqueRc` contains `NonNull`,
3740// but having an explicit negative impl is nice for documentation purposes
3741// and results in nicer error messages.
3742#[unstable(feature = "unique_rc_arc", issue = "112566")]
3743impl<T: ?Sized, A: Allocator> !Sync for UniqueRc<T, A> {}
3744
3745#[unstable(feature = "unique_rc_arc", issue = "112566")]
3746impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueRc<U, A>>
3747    for UniqueRc<T, A>
3748{
3749}
3750
3751//#[unstable(feature = "unique_rc_arc", issue = "112566")]
3752#[unstable(feature = "dispatch_from_dyn", issue = "none")]
3753impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueRc<U>> for UniqueRc<T> {}
3754
3755#[unstable(feature = "unique_rc_arc", issue = "112566")]
3756impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueRc<T, A> {
3757    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3758        fmt::Display::fmt(&**self, f)
3759    }
3760}
3761
3762#[unstable(feature = "unique_rc_arc", issue = "112566")]
3763impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueRc<T, A> {
3764    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3765        fmt::Debug::fmt(&**self, f)
3766    }
3767}
3768
3769#[unstable(feature = "unique_rc_arc", issue = "112566")]
3770impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueRc<T, A> {
3771    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3772        fmt::Pointer::fmt(&(&raw const **self), f)
3773    }
3774}
3775
3776#[unstable(feature = "unique_rc_arc", issue = "112566")]
3777impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueRc<T, A> {
3778    fn borrow(&self) -> &T {
3779        &**self
3780    }
3781}
3782
3783#[unstable(feature = "unique_rc_arc", issue = "112566")]
3784impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueRc<T, A> {
3785    fn borrow_mut(&mut self) -> &mut T {
3786        &mut **self
3787    }
3788}
3789
3790#[unstable(feature = "unique_rc_arc", issue = "112566")]
3791impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueRc<T, A> {
3792    fn as_ref(&self) -> &T {
3793        &**self
3794    }
3795}
3796
3797#[unstable(feature = "unique_rc_arc", issue = "112566")]
3798impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueRc<T, A> {
3799    fn as_mut(&mut self) -> &mut T {
3800        &mut **self
3801    }
3802}
3803
3804#[unstable(feature = "unique_rc_arc", issue = "112566")]
3805impl<T: ?Sized, A: Allocator> Unpin for UniqueRc<T, A> {}
3806
3807#[unstable(feature = "unique_rc_arc", issue = "112566")]
3808impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueRc<T, A> {
3809    /// Equality for two `UniqueRc`s.
3810    ///
3811    /// Two `UniqueRc`s are equal if their inner values are equal.
3812    ///
3813    /// # Examples
3814    ///
3815    /// ```
3816    /// #![feature(unique_rc_arc)]
3817    /// use std::rc::UniqueRc;
3818    ///
3819    /// let five = UniqueRc::new(5);
3820    ///
3821    /// assert!(five == UniqueRc::new(5));
3822    /// ```
3823    #[inline]
3824    fn eq(&self, other: &Self) -> bool {
3825        PartialEq::eq(&**self, &**other)
3826    }
3827
3828    /// Inequality for two `UniqueRc`s.
3829    ///
3830    /// Two `UniqueRc`s are not equal if their inner values are not equal.
3831    ///
3832    /// # Examples
3833    ///
3834    /// ```
3835    /// #![feature(unique_rc_arc)]
3836    /// use std::rc::UniqueRc;
3837    ///
3838    /// let five = UniqueRc::new(5);
3839    ///
3840    /// assert!(five != UniqueRc::new(6));
3841    /// ```
3842    #[inline]
3843    fn ne(&self, other: &Self) -> bool {
3844        PartialEq::ne(&**self, &**other)
3845    }
3846}
3847
3848#[unstable(feature = "unique_rc_arc", issue = "112566")]
3849impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueRc<T, A> {
3850    /// Partial comparison for two `UniqueRc`s.
3851    ///
3852    /// The two are compared by calling `partial_cmp()` on their inner values.
3853    ///
3854    /// # Examples
3855    ///
3856    /// ```
3857    /// #![feature(unique_rc_arc)]
3858    /// use std::rc::UniqueRc;
3859    /// use std::cmp::Ordering;
3860    ///
3861    /// let five = UniqueRc::new(5);
3862    ///
3863    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueRc::new(6)));
3864    /// ```
3865    #[inline(always)]
3866    fn partial_cmp(&self, other: &UniqueRc<T, A>) -> Option<Ordering> {
3867        (**self).partial_cmp(&**other)
3868    }
3869
3870    /// Less-than comparison for two `UniqueRc`s.
3871    ///
3872    /// The two are compared by calling `<` on their inner values.
3873    ///
3874    /// # Examples
3875    ///
3876    /// ```
3877    /// #![feature(unique_rc_arc)]
3878    /// use std::rc::UniqueRc;
3879    ///
3880    /// let five = UniqueRc::new(5);
3881    ///
3882    /// assert!(five < UniqueRc::new(6));
3883    /// ```
3884    #[inline(always)]
3885    fn lt(&self, other: &UniqueRc<T, A>) -> bool {
3886        **self < **other
3887    }
3888
3889    /// 'Less than or equal to' comparison for two `UniqueRc`s.
3890    ///
3891    /// The two are compared by calling `<=` on their inner values.
3892    ///
3893    /// # Examples
3894    ///
3895    /// ```
3896    /// #![feature(unique_rc_arc)]
3897    /// use std::rc::UniqueRc;
3898    ///
3899    /// let five = UniqueRc::new(5);
3900    ///
3901    /// assert!(five <= UniqueRc::new(5));
3902    /// ```
3903    #[inline(always)]
3904    fn le(&self, other: &UniqueRc<T, A>) -> bool {
3905        **self <= **other
3906    }
3907
3908    /// Greater-than comparison for two `UniqueRc`s.
3909    ///
3910    /// The two are compared by calling `>` on their inner values.
3911    ///
3912    /// # Examples
3913    ///
3914    /// ```
3915    /// #![feature(unique_rc_arc)]
3916    /// use std::rc::UniqueRc;
3917    ///
3918    /// let five = UniqueRc::new(5);
3919    ///
3920    /// assert!(five > UniqueRc::new(4));
3921    /// ```
3922    #[inline(always)]
3923    fn gt(&self, other: &UniqueRc<T, A>) -> bool {
3924        **self > **other
3925    }
3926
3927    /// 'Greater than or equal to' comparison for two `UniqueRc`s.
3928    ///
3929    /// The two are compared by calling `>=` on their inner values.
3930    ///
3931    /// # Examples
3932    ///
3933    /// ```
3934    /// #![feature(unique_rc_arc)]
3935    /// use std::rc::UniqueRc;
3936    ///
3937    /// let five = UniqueRc::new(5);
3938    ///
3939    /// assert!(five >= UniqueRc::new(5));
3940    /// ```
3941    #[inline(always)]
3942    fn ge(&self, other: &UniqueRc<T, A>) -> bool {
3943        **self >= **other
3944    }
3945}
3946
3947#[unstable(feature = "unique_rc_arc", issue = "112566")]
3948impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueRc<T, A> {
3949    /// Comparison for two `UniqueRc`s.
3950    ///
3951    /// The two are compared by calling `cmp()` on their inner values.
3952    ///
3953    /// # Examples
3954    ///
3955    /// ```
3956    /// #![feature(unique_rc_arc)]
3957    /// use std::rc::UniqueRc;
3958    /// use std::cmp::Ordering;
3959    ///
3960    /// let five = UniqueRc::new(5);
3961    ///
3962    /// assert_eq!(Ordering::Less, five.cmp(&UniqueRc::new(6)));
3963    /// ```
3964    #[inline]
3965    fn cmp(&self, other: &UniqueRc<T, A>) -> Ordering {
3966        (**self).cmp(&**other)
3967    }
3968}
3969
3970#[unstable(feature = "unique_rc_arc", issue = "112566")]
3971impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueRc<T, A> {}
3972
3973#[unstable(feature = "unique_rc_arc", issue = "112566")]
3974impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueRc<T, A> {
3975    fn hash<H: Hasher>(&self, state: &mut H) {
3976        (**self).hash(state);
3977    }
3978}
3979
3980// Depends on A = Global
3981impl<T> UniqueRc<T> {
3982    /// Creates a new `UniqueRc`.
3983    ///
3984    /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading
3985    /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`].
3986    /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will
3987    /// point to the new [`Rc`].
3988    #[cfg(not(no_global_oom_handling))]
3989    #[unstable(feature = "unique_rc_arc", issue = "112566")]
3990    pub fn new(value: T) -> Self {
3991        Self::new_in(value, Global)
3992    }
3993}
3994
3995impl<T, A: Allocator> UniqueRc<T, A> {
3996    /// Creates a new `UniqueRc` in the provided allocator.
3997    ///
3998    /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading
3999    /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`].
4000    /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will
4001    /// point to the new [`Rc`].
4002    #[cfg(not(no_global_oom_handling))]
4003    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4004    pub fn new_in(value: T, alloc: A) -> Self {
4005        let (ptr, alloc) = Box::into_unique(Box::new_in(
4006            RcInner {
4007                strong: Cell::new(0),
4008                // keep one weak reference so if all the weak pointers that are created are dropped
4009                // the UniqueRc still stays valid.
4010                weak: Cell::new(1),
4011                value,
4012            },
4013            alloc,
4014        ));
4015        Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc }
4016    }
4017}
4018
4019impl<T: ?Sized, A: Allocator> UniqueRc<T, A> {
4020    /// Converts the `UniqueRc` into a regular [`Rc`].
4021    ///
4022    /// This consumes the `UniqueRc` and returns a regular [`Rc`] that contains the `value` that
4023    /// is passed to `into_rc`.
4024    ///
4025    /// Any weak references created before this method is called can now be upgraded to strong
4026    /// references.
4027    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4028    pub fn into_rc(this: Self) -> Rc<T, A> {
4029        let mut this = ManuallyDrop::new(this);
4030
4031        // Move the allocator out.
4032        // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in
4033        // a `ManuallyDrop`.
4034        let alloc: A = unsafe { ptr::read(&this.alloc) };
4035
4036        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4037        unsafe {
4038            // Convert our weak reference into a strong reference
4039            this.ptr.as_mut().strong.set(1);
4040            Rc::from_inner_in(this.ptr, alloc)
4041        }
4042    }
4043}
4044
4045impl<T: ?Sized, A: Allocator + Clone> UniqueRc<T, A> {
4046    /// Creates a new weak reference to the `UniqueRc`.
4047    ///
4048    /// Attempting to upgrade this weak reference will fail before the `UniqueRc` has been converted
4049    /// to a [`Rc`] using [`UniqueRc::into_rc`].
4050    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4051    pub fn downgrade(this: &Self) -> Weak<T, A> {
4052        // SAFETY: This pointer was allocated at creation time and we guarantee that we only have
4053        // one strong reference before converting to a regular Rc.
4054        unsafe {
4055            this.ptr.as_ref().inc_weak();
4056        }
4057        Weak { ptr: this.ptr, alloc: this.alloc.clone() }
4058    }
4059}
4060
4061#[unstable(feature = "unique_rc_arc", issue = "112566")]
4062impl<T: ?Sized, A: Allocator> Deref for UniqueRc<T, A> {
4063    type Target = T;
4064
4065    fn deref(&self) -> &T {
4066        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4067        unsafe { &self.ptr.as_ref().value }
4068    }
4069}
4070
4071#[unstable(feature = "unique_rc_arc", issue = "112566")]
4072impl<T: ?Sized, A: Allocator> DerefMut for UniqueRc<T, A> {
4073    fn deref_mut(&mut self) -> &mut T {
4074        // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
4075        // have unique ownership and therefore it's safe to make a mutable reference because
4076        // `UniqueRc` owns the only strong reference to itself.
4077        unsafe { &mut (*self.ptr.as_ptr()).value }
4078    }
4079}
4080
4081#[unstable(feature = "unique_rc_arc", issue = "112566")]
4082unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for UniqueRc<T, A> {
4083    fn drop(&mut self) {
4084        unsafe {
4085            // destroy the contained object
4086            drop_in_place(DerefMut::deref_mut(self));
4087
4088            // remove the implicit "strong weak" pointer now that we've destroyed the contents.
4089            self.ptr.as_ref().dec_weak();
4090
4091            if self.ptr.as_ref().weak() == 0 {
4092                self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
4093            }
4094        }
4095    }
4096}
4097
4098/// A unique owning pointer to a [`RcInner`] **that does not imply the contents are initialized,**
4099/// but will deallocate it (without dropping the value) when dropped.
4100///
4101/// This is a helper for [`Rc::make_mut()`] to ensure correct cleanup on panic.
4102/// It is nearly a duplicate of `UniqueRc<MaybeUninit<T>, A>` except that it allows `T: !Sized`,
4103/// which `MaybeUninit` does not.
4104#[cfg(not(no_global_oom_handling))]
4105struct UniqueRcUninit<T: ?Sized, A: Allocator> {
4106    ptr: NonNull<RcInner<T>>,
4107    layout_for_value: Layout,
4108    alloc: Option<A>,
4109}
4110
4111#[cfg(not(no_global_oom_handling))]
4112impl<T: ?Sized, A: Allocator> UniqueRcUninit<T, A> {
4113    /// Allocates a RcInner with layout suitable to contain `for_value` or a clone of it.
4114    fn new(for_value: &T, alloc: A) -> UniqueRcUninit<T, A> {
4115        let layout = Layout::for_value(for_value);
4116        let ptr = unsafe {
4117            Rc::allocate_for_layout(
4118                layout,
4119                |layout_for_rc_inner| alloc.allocate(layout_for_rc_inner),
4120                |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const RcInner<T>),
4121            )
4122        };
4123        Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
4124    }
4125
4126    /// Returns the pointer to be written into to initialize the [`Rc`].
4127    fn data_ptr(&mut self) -> *mut T {
4128        let offset = data_offset_align(self.layout_for_value.align());
4129        unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
4130    }
4131
4132    /// Upgrade this into a normal [`Rc`].
4133    ///
4134    /// # Safety
4135    ///
4136    /// The data must have been initialized (by writing to [`Self::data_ptr()`]).
4137    unsafe fn into_rc(self) -> Rc<T, A> {
4138        let mut this = ManuallyDrop::new(self);
4139        let ptr = this.ptr;
4140        let alloc = this.alloc.take().unwrap();
4141
4142        // SAFETY: The pointer is valid as per `UniqueRcUninit::new`, and the caller is responsible
4143        // for having initialized the data.
4144        unsafe { Rc::from_ptr_in(ptr.as_ptr(), alloc) }
4145    }
4146}
4147
4148#[cfg(not(no_global_oom_handling))]
4149impl<T: ?Sized, A: Allocator> Drop for UniqueRcUninit<T, A> {
4150    fn drop(&mut self) {
4151        // SAFETY:
4152        // * new() produced a pointer safe to deallocate.
4153        // * We own the pointer unless into_rc() was called, which forgets us.
4154        unsafe {
4155            self.alloc.take().unwrap().deallocate(
4156                self.ptr.cast(),
4157                rc_inner_layout_for_value_layout(self.layout_for_value),
4158            );
4159        }
4160    }
4161}
Лучший частный хостинг