lynx   »   [go: up one dir, main page]

alloc/
slice.rs

1//! Utilities for the slice primitive type.
2//!
3//! *[See also the slice primitive type](slice).*
4//!
5//! Most of the structs in this module are iterator types which can only be created
6//! using a certain function. For example, `slice.iter()` yields an [`Iter`].
7//!
8//! A few functions are provided to create a slice from a value reference
9//! or from a raw pointer.
10#![stable(feature = "rust1", since = "1.0.0")]
11
12use core::borrow::{Borrow, BorrowMut};
13#[cfg(not(no_global_oom_handling))]
14use core::cmp::Ordering::{self, Less};
15#[cfg(not(no_global_oom_handling))]
16use core::mem::MaybeUninit;
17#[cfg(not(no_global_oom_handling))]
18use core::ptr;
19#[unstable(feature = "array_chunks", issue = "74985")]
20pub use core::slice::ArrayChunks;
21#[unstable(feature = "array_chunks", issue = "74985")]
22pub use core::slice::ArrayChunksMut;
23#[unstable(feature = "array_windows", issue = "75027")]
24pub use core::slice::ArrayWindows;
25#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
26pub use core::slice::EscapeAscii;
27#[stable(feature = "get_many_mut", since = "1.86.0")]
28pub use core::slice::GetDisjointMutError;
29#[stable(feature = "slice_get_slice", since = "1.28.0")]
30pub use core::slice::SliceIndex;
31#[cfg(not(no_global_oom_handling))]
32use core::slice::sort;
33#[stable(feature = "slice_group_by", since = "1.77.0")]
34pub use core::slice::{ChunkBy, ChunkByMut};
35#[stable(feature = "rust1", since = "1.0.0")]
36pub use core::slice::{Chunks, Windows};
37#[stable(feature = "chunks_exact", since = "1.31.0")]
38pub use core::slice::{ChunksExact, ChunksExactMut};
39#[stable(feature = "rust1", since = "1.0.0")]
40pub use core::slice::{ChunksMut, Split, SplitMut};
41#[stable(feature = "rust1", since = "1.0.0")]
42pub use core::slice::{Iter, IterMut};
43#[stable(feature = "rchunks", since = "1.31.0")]
44pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
45#[stable(feature = "slice_rsplit", since = "1.27.0")]
46pub use core::slice::{RSplit, RSplitMut};
47#[stable(feature = "rust1", since = "1.0.0")]
48pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut};
49#[stable(feature = "split_inclusive", since = "1.51.0")]
50pub use core::slice::{SplitInclusive, SplitInclusiveMut};
51#[stable(feature = "from_ref", since = "1.28.0")]
52pub use core::slice::{from_mut, from_ref};
53#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
54pub use core::slice::{from_mut_ptr_range, from_ptr_range};
55#[stable(feature = "rust1", since = "1.0.0")]
56pub use core::slice::{from_raw_parts, from_raw_parts_mut};
57#[unstable(feature = "slice_range", issue = "76393")]
58pub use core::slice::{range, try_range};
59
60////////////////////////////////////////////////////////////////////////////////
61// Basic slice extension methods
62////////////////////////////////////////////////////////////////////////////////
63use crate::alloc::Allocator;
64#[cfg(not(no_global_oom_handling))]
65use crate::alloc::Global;
66#[cfg(not(no_global_oom_handling))]
67use crate::borrow::ToOwned;
68use crate::boxed::Box;
69use crate::vec::Vec;
70
71impl<T> [T] {
72    /// Sorts the slice, preserving initial order of equal elements.
73    ///
74    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
75    /// worst-case.
76    ///
77    /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
78    /// may panic; even if the function exits normally, the resulting order of elements in the slice
79    /// is unspecified. See also the note on panicking below.
80    ///
81    /// When applicable, unstable sorting is preferred because it is generally faster than stable
82    /// sorting and it doesn't allocate auxiliary memory. See
83    /// [`sort_unstable`](slice::sort_unstable). The exception are partially sorted slices, which
84    /// may be better served with `slice::sort`.
85    ///
86    /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
87    /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
88    /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
89    /// `slice::sort_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a [total
90    /// order] users can sort slices containing floating-point values. Alternatively, if all values
91    /// in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`] forms a
92    /// [total order], it's possible to sort the slice with `sort_by(|a, b|
93    /// a.partial_cmp(b).unwrap())`.
94    ///
95    /// # Current implementation
96    ///
97    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
98    /// combines the fast average case of quicksort with the fast worst case and partial run
99    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
100    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
101    ///
102    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
103    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
104    /// clamps at `self.len() / 2`.
105    ///
106    /// # Panics
107    ///
108    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
109    /// the [`Ord`] implementation itself panics.
110    ///
111    /// All safe functions on slices preserve the invariant that even if the function panics, all
112    /// original elements will remain in the slice and any possible modifications via interior
113    /// mutability are observed in the input. This ensures that recovery code (for instance inside
114    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
115    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
116    /// to dispose of all contained elements.
117    ///
118    /// # Examples
119    ///
120    /// ```
121    /// let mut v = [4, -5, 1, -3, 2];
122    ///
123    /// v.sort();
124    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
125    /// ```
126    ///
127    /// [driftsort]: https://github.com/Voultapher/driftsort
128    /// [total order]: https://en.wikipedia.org/wiki/Total_order
129    #[cfg(not(no_global_oom_handling))]
130    #[rustc_allow_incoherent_impl]
131    #[stable(feature = "rust1", since = "1.0.0")]
132    #[inline]
133    pub fn sort(&mut self)
134    where
135        T: Ord,
136    {
137        stable_sort(self, T::lt);
138    }
139
140    /// Sorts the slice with a comparison function, preserving initial order of equal elements.
141    ///
142    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
143    /// worst-case.
144    ///
145    /// If the comparison function `compare` does not implement a [total order], the function may
146    /// panic; even if the function exits normally, the resulting order of elements in the slice is
147    /// unspecified. See also the note on panicking below.
148    ///
149    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
150    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
151    /// examples see the [`Ord`] documentation.
152    ///
153    /// # Current implementation
154    ///
155    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
156    /// combines the fast average case of quicksort with the fast worst case and partial run
157    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
158    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
159    ///
160    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
161    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
162    /// clamps at `self.len() / 2`.
163    ///
164    /// # Panics
165    ///
166    /// May panic if `compare` does not implement a [total order], or if `compare` itself panics.
167    ///
168    /// All safe functions on slices preserve the invariant that even if the function panics, all
169    /// original elements will remain in the slice and any possible modifications via interior
170    /// mutability are observed in the input. This ensures that recovery code (for instance inside
171    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
172    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
173    /// to dispose of all contained elements.
174    ///
175    /// # Examples
176    ///
177    /// ```
178    /// let mut v = [4, -5, 1, -3, 2];
179    /// v.sort_by(|a, b| a.cmp(b));
180    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
181    ///
182    /// // reverse sorting
183    /// v.sort_by(|a, b| b.cmp(a));
184    /// assert_eq!(v, [4, 2, 1, -3, -5]);
185    /// ```
186    ///
187    /// [driftsort]: https://github.com/Voultapher/driftsort
188    /// [total order]: https://en.wikipedia.org/wiki/Total_order
189    #[cfg(not(no_global_oom_handling))]
190    #[rustc_allow_incoherent_impl]
191    #[stable(feature = "rust1", since = "1.0.0")]
192    #[inline]
193    pub fn sort_by<F>(&mut self, mut compare: F)
194    where
195        F: FnMut(&T, &T) -> Ordering,
196    {
197        stable_sort(self, |a, b| compare(a, b) == Less);
198    }
199
200    /// Sorts the slice with a key extraction function, preserving initial order of equal elements.
201    ///
202    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
203    /// worst-case, where the key function is *O*(*m*).
204    ///
205    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
206    /// may panic; even if the function exits normally, the resulting order of elements in the slice
207    /// is unspecified. See also the note on panicking below.
208    ///
209    /// # Current implementation
210    ///
211    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
212    /// combines the fast average case of quicksort with the fast worst case and partial run
213    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
214    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
215    ///
216    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
217    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
218    /// clamps at `self.len() / 2`.
219    ///
220    /// # Panics
221    ///
222    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
223    /// the [`Ord`] implementation or the key-function `f` panics.
224    ///
225    /// All safe functions on slices preserve the invariant that even if the function panics, all
226    /// original elements will remain in the slice and any possible modifications via interior
227    /// mutability are observed in the input. This ensures that recovery code (for instance inside
228    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
229    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
230    /// to dispose of all contained elements.
231    ///
232    /// # Examples
233    ///
234    /// ```
235    /// let mut v = [4i32, -5, 1, -3, 2];
236    ///
237    /// v.sort_by_key(|k| k.abs());
238    /// assert_eq!(v, [1, 2, -3, 4, -5]);
239    /// ```
240    ///
241    /// [driftsort]: https://github.com/Voultapher/driftsort
242    /// [total order]: https://en.wikipedia.org/wiki/Total_order
243    #[cfg(not(no_global_oom_handling))]
244    #[rustc_allow_incoherent_impl]
245    #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
246    #[inline]
247    pub fn sort_by_key<K, F>(&mut self, mut f: F)
248    where
249        F: FnMut(&T) -> K,
250        K: Ord,
251    {
252        stable_sort(self, |a, b| f(a).lt(&f(b)));
253    }
254
255    /// Sorts the slice with a key extraction function, preserving initial order of equal elements.
256    ///
257    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \*
258    /// log(*n*)) worst-case, where the key function is *O*(*m*).
259    ///
260    /// During sorting, the key function is called at most once per element, by using temporary
261    /// storage to remember the results of key evaluation. The order of calls to the key function is
262    /// unspecified and may change in future versions of the standard library.
263    ///
264    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
265    /// may panic; even if the function exits normally, the resulting order of elements in the slice
266    /// is unspecified. See also the note on panicking below.
267    ///
268    /// For simple key functions (e.g., functions that are property accesses or basic operations),
269    /// [`sort_by_key`](slice::sort_by_key) is likely to be faster.
270    ///
271    /// # Current implementation
272    ///
273    /// The current implementation is based on [instruction-parallel-network sort][ipnsort] by Lukas
274    /// Bergdoll, which combines the fast average case of randomized quicksort with the fast worst
275    /// case of heapsort, while achieving linear time on fully sorted and reversed inputs. And
276    /// *O*(*k* \* log(*n*)) where *k* is the number of distinct elements in the input. It leverages
277    /// superscalar out-of-order execution capabilities commonly found in CPUs, to efficiently
278    /// perform the operation.
279    ///
280    /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
281    /// length of the slice.
282    ///
283    /// # Panics
284    ///
285    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
286    /// the [`Ord`] implementation panics.
287    ///
288    /// All safe functions on slices preserve the invariant that even if the function panics, all
289    /// original elements will remain in the slice and any possible modifications via interior
290    /// mutability are observed in the input. This ensures that recovery code (for instance inside
291    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
292    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
293    /// to dispose of all contained elements.
294    ///
295    /// # Examples
296    ///
297    /// ```
298    /// let mut v = [4i32, -5, 1, -3, 2, 10];
299    ///
300    /// // Strings are sorted by lexicographical order.
301    /// v.sort_by_cached_key(|k| k.to_string());
302    /// assert_eq!(v, [-3, -5, 1, 10, 2, 4]);
303    /// ```
304    ///
305    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
306    /// [total order]: https://en.wikipedia.org/wiki/Total_order
307    #[cfg(not(no_global_oom_handling))]
308    #[rustc_allow_incoherent_impl]
309    #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
310    #[inline]
311    pub fn sort_by_cached_key<K, F>(&mut self, f: F)
312    where
313        F: FnMut(&T) -> K,
314        K: Ord,
315    {
316        // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
317        macro_rules! sort_by_key {
318            ($t:ty, $slice:ident, $f:ident) => {{
319                let mut indices: Vec<_> =
320                    $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
321                // The elements of `indices` are unique, as they are indexed, so any sort will be
322                // stable with respect to the original slice. We use `sort_unstable` here because
323                // it requires no memory allocation.
324                indices.sort_unstable();
325                for i in 0..$slice.len() {
326                    let mut index = indices[i].1;
327                    while (index as usize) < i {
328                        index = indices[index as usize].1;
329                    }
330                    indices[i].1 = index;
331                    $slice.swap(i, index as usize);
332                }
333            }};
334        }
335
336        let len = self.len();
337        if len < 2 {
338            return;
339        }
340
341        // Avoids binary-size usage in cases where the alignment doesn't work out to make this
342        // beneficial or on 32-bit platforms.
343        let is_using_u32_as_idx_type_helpful =
344            const { size_of::<(K, u32)>() < size_of::<(K, usize)>() };
345
346        // It's possible to instantiate this for u8 and u16 but, doing so is very wasteful in terms
347        // of compile-times and binary-size, the peak saved heap memory for u16 is (u8 + u16) -> 4
348        // bytes * u16::MAX vs (u8 + u32) -> 8 bytes * u16::MAX, the saved heap memory is at peak
349        // ~262KB.
350        if is_using_u32_as_idx_type_helpful && len <= (u32::MAX as usize) {
351            return sort_by_key!(u32, self, f);
352        }
353
354        sort_by_key!(usize, self, f)
355    }
356
357    /// Copies `self` into a new `Vec`.
358    ///
359    /// # Examples
360    ///
361    /// ```
362    /// let s = [10, 40, 30];
363    /// let x = s.to_vec();
364    /// // Here, `s` and `x` can be modified independently.
365    /// ```
366    #[cfg(not(no_global_oom_handling))]
367    #[rustc_allow_incoherent_impl]
368    #[rustc_conversion_suggestion]
369    #[stable(feature = "rust1", since = "1.0.0")]
370    #[inline]
371    pub fn to_vec(&self) -> Vec<T>
372    where
373        T: Clone,
374    {
375        self.to_vec_in(Global)
376    }
377
378    /// Copies `self` into a new `Vec` with an allocator.
379    ///
380    /// # Examples
381    ///
382    /// ```
383    /// #![feature(allocator_api)]
384    ///
385    /// use std::alloc::System;
386    ///
387    /// let s = [10, 40, 30];
388    /// let x = s.to_vec_in(System);
389    /// // Here, `s` and `x` can be modified independently.
390    /// ```
391    #[cfg(not(no_global_oom_handling))]
392    #[rustc_allow_incoherent_impl]
393    #[inline]
394    #[unstable(feature = "allocator_api", issue = "32838")]
395    pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
396    where
397        T: Clone,
398    {
399        return T::to_vec(self, alloc);
400
401        trait ConvertVec {
402            fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
403            where
404                Self: Sized;
405        }
406
407        impl<T: Clone> ConvertVec for T {
408            #[inline]
409            default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
410                struct DropGuard<'a, T, A: Allocator> {
411                    vec: &'a mut Vec<T, A>,
412                    num_init: usize,
413                }
414                impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
415                    #[inline]
416                    fn drop(&mut self) {
417                        // SAFETY:
418                        // items were marked initialized in the loop below
419                        unsafe {
420                            self.vec.set_len(self.num_init);
421                        }
422                    }
423                }
424                let mut vec = Vec::with_capacity_in(s.len(), alloc);
425                let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
426                let slots = guard.vec.spare_capacity_mut();
427                // .take(slots.len()) is necessary for LLVM to remove bounds checks
428                // and has better codegen than zip.
429                for (i, b) in s.iter().enumerate().take(slots.len()) {
430                    guard.num_init = i;
431                    slots[i].write(b.clone());
432                }
433                core::mem::forget(guard);
434                // SAFETY:
435                // the vec was allocated and initialized above to at least this length.
436                unsafe {
437                    vec.set_len(s.len());
438                }
439                vec
440            }
441        }
442
443        impl<T: Copy> ConvertVec for T {
444            #[inline]
445            fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
446                let mut v = Vec::with_capacity_in(s.len(), alloc);
447                // SAFETY:
448                // allocated above with the capacity of `s`, and initialize to `s.len()` in
449                // ptr::copy_to_non_overlapping below.
450                unsafe {
451                    s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len());
452                    v.set_len(s.len());
453                }
454                v
455            }
456        }
457    }
458
459    /// Converts `self` into a vector without clones or allocation.
460    ///
461    /// The resulting vector can be converted back into a box via
462    /// `Vec<T>`'s `into_boxed_slice` method.
463    ///
464    /// # Examples
465    ///
466    /// ```
467    /// let s: Box<[i32]> = Box::new([10, 40, 30]);
468    /// let x = s.into_vec();
469    /// // `s` cannot be used anymore because it has been converted into `x`.
470    ///
471    /// assert_eq!(x, vec![10, 40, 30]);
472    /// ```
473    #[rustc_allow_incoherent_impl]
474    #[stable(feature = "rust1", since = "1.0.0")]
475    #[inline]
476    #[rustc_diagnostic_item = "slice_into_vec"]
477    pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> {
478        unsafe {
479            let len = self.len();
480            let (b, alloc) = Box::into_raw_with_allocator(self);
481            Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
482        }
483    }
484
485    /// Creates a vector by copying a slice `n` times.
486    ///
487    /// # Panics
488    ///
489    /// This function will panic if the capacity would overflow.
490    ///
491    /// # Examples
492    ///
493    /// Basic usage:
494    ///
495    /// ```
496    /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
497    /// ```
498    ///
499    /// A panic upon overflow:
500    ///
501    /// ```should_panic
502    /// // this will panic at runtime
503    /// b"0123456789abcdef".repeat(usize::MAX);
504    /// ```
505    #[rustc_allow_incoherent_impl]
506    #[cfg(not(no_global_oom_handling))]
507    #[stable(feature = "repeat_generic_slice", since = "1.40.0")]
508    pub fn repeat(&self, n: usize) -> Vec<T>
509    where
510        T: Copy,
511    {
512        if n == 0 {
513            return Vec::new();
514        }
515
516        // If `n` is larger than zero, it can be split as
517        // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
518        // `2^expn` is the number represented by the leftmost '1' bit of `n`,
519        // and `rem` is the remaining part of `n`.
520
521        // Using `Vec` to access `set_len()`.
522        let capacity = self.len().checked_mul(n).expect("capacity overflow");
523        let mut buf = Vec::with_capacity(capacity);
524
525        // `2^expn` repetition is done by doubling `buf` `expn`-times.
526        buf.extend(self);
527        {
528            let mut m = n >> 1;
529            // If `m > 0`, there are remaining bits up to the leftmost '1'.
530            while m > 0 {
531                // `buf.extend(buf)`:
532                unsafe {
533                    ptr::copy_nonoverlapping::<T>(
534                        buf.as_ptr(),
535                        (buf.as_mut_ptr()).add(buf.len()),
536                        buf.len(),
537                    );
538                    // `buf` has capacity of `self.len() * n`.
539                    let buf_len = buf.len();
540                    buf.set_len(buf_len * 2);
541                }
542
543                m >>= 1;
544            }
545        }
546
547        // `rem` (`= n - 2^expn`) repetition is done by copying
548        // first `rem` repetitions from `buf` itself.
549        let rem_len = capacity - buf.len(); // `self.len() * rem`
550        if rem_len > 0 {
551            // `buf.extend(buf[0 .. rem_len])`:
552            unsafe {
553                // This is non-overlapping since `2^expn > rem`.
554                ptr::copy_nonoverlapping::<T>(
555                    buf.as_ptr(),
556                    (buf.as_mut_ptr()).add(buf.len()),
557                    rem_len,
558                );
559                // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
560                buf.set_len(capacity);
561            }
562        }
563        buf
564    }
565
566    /// Flattens a slice of `T` into a single value `Self::Output`.
567    ///
568    /// # Examples
569    ///
570    /// ```
571    /// assert_eq!(["hello", "world"].concat(), "helloworld");
572    /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
573    /// ```
574    #[rustc_allow_incoherent_impl]
575    #[stable(feature = "rust1", since = "1.0.0")]
576    pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
577    where
578        Self: Concat<Item>,
579    {
580        Concat::concat(self)
581    }
582
583    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
584    /// given separator between each.
585    ///
586    /// # Examples
587    ///
588    /// ```
589    /// assert_eq!(["hello", "world"].join(" "), "hello world");
590    /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
591    /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
592    /// ```
593    #[rustc_allow_incoherent_impl]
594    #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
595    pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
596    where
597        Self: Join<Separator>,
598    {
599        Join::join(self, sep)
600    }
601
602    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
603    /// given separator between each.
604    ///
605    /// # Examples
606    ///
607    /// ```
608    /// # #![allow(deprecated)]
609    /// assert_eq!(["hello", "world"].connect(" "), "hello world");
610    /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
611    /// ```
612    #[rustc_allow_incoherent_impl]
613    #[stable(feature = "rust1", since = "1.0.0")]
614    #[deprecated(since = "1.3.0", note = "renamed to join", suggestion = "join")]
615    pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
616    where
617        Self: Join<Separator>,
618    {
619        Join::join(self, sep)
620    }
621}
622
623impl [u8] {
624    /// Returns a vector containing a copy of this slice where each byte
625    /// is mapped to its ASCII upper case equivalent.
626    ///
627    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
628    /// but non-ASCII letters are unchanged.
629    ///
630    /// To uppercase the value in-place, use [`make_ascii_uppercase`].
631    ///
632    /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase
633    #[cfg(not(no_global_oom_handling))]
634    #[rustc_allow_incoherent_impl]
635    #[must_use = "this returns the uppercase bytes as a new Vec, \
636                  without modifying the original"]
637    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
638    #[inline]
639    pub fn to_ascii_uppercase(&self) -> Vec<u8> {
640        let mut me = self.to_vec();
641        me.make_ascii_uppercase();
642        me
643    }
644
645    /// Returns a vector containing a copy of this slice where each byte
646    /// is mapped to its ASCII lower case equivalent.
647    ///
648    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
649    /// but non-ASCII letters are unchanged.
650    ///
651    /// To lowercase the value in-place, use [`make_ascii_lowercase`].
652    ///
653    /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase
654    #[cfg(not(no_global_oom_handling))]
655    #[rustc_allow_incoherent_impl]
656    #[must_use = "this returns the lowercase bytes as a new Vec, \
657                  without modifying the original"]
658    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
659    #[inline]
660    pub fn to_ascii_lowercase(&self) -> Vec<u8> {
661        let mut me = self.to_vec();
662        me.make_ascii_lowercase();
663        me
664    }
665}
666
667////////////////////////////////////////////////////////////////////////////////
668// Extension traits for slices over specific kinds of data
669////////////////////////////////////////////////////////////////////////////////
670
671/// Helper trait for [`[T]::concat`](slice::concat).
672///
673/// Note: the `Item` type parameter is not used in this trait,
674/// but it allows impls to be more generic.
675/// Without it, we get this error:
676///
677/// ```error
678/// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
679///    --> library/alloc/src/slice.rs:608:6
680///     |
681/// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
682///     |      ^ unconstrained type parameter
683/// ```
684///
685/// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
686/// such that multiple `T` types would apply:
687///
688/// ```
689/// # #[allow(dead_code)]
690/// pub struct Foo(Vec<u32>, Vec<String>);
691///
692/// impl std::borrow::Borrow<[u32]> for Foo {
693///     fn borrow(&self) -> &[u32] { &self.0 }
694/// }
695///
696/// impl std::borrow::Borrow<[String]> for Foo {
697///     fn borrow(&self) -> &[String] { &self.1 }
698/// }
699/// ```
700#[unstable(feature = "slice_concat_trait", issue = "27747")]
701pub trait Concat<Item: ?Sized> {
702    #[unstable(feature = "slice_concat_trait", issue = "27747")]
703    /// The resulting type after concatenation
704    type Output;
705
706    /// Implementation of [`[T]::concat`](slice::concat)
707    #[unstable(feature = "slice_concat_trait", issue = "27747")]
708    fn concat(slice: &Self) -> Self::Output;
709}
710
711/// Helper trait for [`[T]::join`](slice::join)
712#[unstable(feature = "slice_concat_trait", issue = "27747")]
713pub trait Join<Separator> {
714    #[unstable(feature = "slice_concat_trait", issue = "27747")]
715    /// The resulting type after concatenation
716    type Output;
717
718    /// Implementation of [`[T]::join`](slice::join)
719    #[unstable(feature = "slice_concat_trait", issue = "27747")]
720    fn join(slice: &Self, sep: Separator) -> Self::Output;
721}
722
723#[cfg(not(no_global_oom_handling))]
724#[unstable(feature = "slice_concat_ext", issue = "27747")]
725impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
726    type Output = Vec<T>;
727
728    fn concat(slice: &Self) -> Vec<T> {
729        let size = slice.iter().map(|slice| slice.borrow().len()).sum();
730        let mut result = Vec::with_capacity(size);
731        for v in slice {
732            result.extend_from_slice(v.borrow())
733        }
734        result
735    }
736}
737
738#[cfg(not(no_global_oom_handling))]
739#[unstable(feature = "slice_concat_ext", issue = "27747")]
740impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
741    type Output = Vec<T>;
742
743    fn join(slice: &Self, sep: &T) -> Vec<T> {
744        let mut iter = slice.iter();
745        let first = match iter.next() {
746            Some(first) => first,
747            None => return vec![],
748        };
749        let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
750        let mut result = Vec::with_capacity(size);
751        result.extend_from_slice(first.borrow());
752
753        for v in iter {
754            result.push(sep.clone());
755            result.extend_from_slice(v.borrow())
756        }
757        result
758    }
759}
760
761#[cfg(not(no_global_oom_handling))]
762#[unstable(feature = "slice_concat_ext", issue = "27747")]
763impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
764    type Output = Vec<T>;
765
766    fn join(slice: &Self, sep: &[T]) -> Vec<T> {
767        let mut iter = slice.iter();
768        let first = match iter.next() {
769            Some(first) => first,
770            None => return vec![],
771        };
772        let size =
773            slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1);
774        let mut result = Vec::with_capacity(size);
775        result.extend_from_slice(first.borrow());
776
777        for v in iter {
778            result.extend_from_slice(sep);
779            result.extend_from_slice(v.borrow())
780        }
781        result
782    }
783}
784
785////////////////////////////////////////////////////////////////////////////////
786// Standard trait implementations for slices
787////////////////////////////////////////////////////////////////////////////////
788
789#[stable(feature = "rust1", since = "1.0.0")]
790impl<T, A: Allocator> Borrow<[T]> for Vec<T, A> {
791    fn borrow(&self) -> &[T] {
792        &self[..]
793    }
794}
795
796#[stable(feature = "rust1", since = "1.0.0")]
797impl<T, A: Allocator> BorrowMut<[T]> for Vec<T, A> {
798    fn borrow_mut(&mut self) -> &mut [T] {
799        &mut self[..]
800    }
801}
802
803// Specializable trait for implementing ToOwned::clone_into. This is
804// public in the crate and has the Allocator parameter so that
805// vec::clone_from use it too.
806#[cfg(not(no_global_oom_handling))]
807pub(crate) trait SpecCloneIntoVec<T, A: Allocator> {
808    fn clone_into(&self, target: &mut Vec<T, A>);
809}
810
811#[cfg(not(no_global_oom_handling))]
812impl<T: Clone, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
813    default fn clone_into(&self, target: &mut Vec<T, A>) {
814        // drop anything in target that will not be overwritten
815        target.truncate(self.len());
816
817        // target.len <= self.len due to the truncate above, so the
818        // slices here are always in-bounds.
819        let (init, tail) = self.split_at(target.len());
820
821        // reuse the contained values' allocations/resources.
822        target.clone_from_slice(init);
823        target.extend_from_slice(tail);
824    }
825}
826
827#[cfg(not(no_global_oom_handling))]
828impl<T: Copy, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
829    fn clone_into(&self, target: &mut Vec<T, A>) {
830        target.clear();
831        target.extend_from_slice(self);
832    }
833}
834
835#[cfg(not(no_global_oom_handling))]
836#[stable(feature = "rust1", since = "1.0.0")]
837impl<T: Clone> ToOwned for [T] {
838    type Owned = Vec<T>;
839
840    fn to_owned(&self) -> Vec<T> {
841        self.to_vec()
842    }
843
844    fn clone_into(&self, target: &mut Vec<T>) {
845        SpecCloneIntoVec::clone_into(self, target);
846    }
847}
848
849////////////////////////////////////////////////////////////////////////////////
850// Sorting
851////////////////////////////////////////////////////////////////////////////////
852
853#[inline]
854#[cfg(not(no_global_oom_handling))]
855fn stable_sort<T, F>(v: &mut [T], mut is_less: F)
856where
857    F: FnMut(&T, &T) -> bool,
858{
859    sort::stable::sort::<T, F, Vec<T>>(v, &mut is_less);
860}
861
862#[cfg(not(no_global_oom_handling))]
863#[unstable(issue = "none", feature = "std_internals")]
864impl<T> sort::stable::BufGuard<T> for Vec<T> {
865    fn with_capacity(capacity: usize) -> Self {
866        Vec::with_capacity(capacity)
867    }
868
869    fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<T>] {
870        self.spare_capacity_mut()
871    }
872}
Лучший частный хостинг