lynx   »   [go: up one dir, main page]

タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

機械学習に関するmasuhajimeのブックマーク (6)

  • ディープラーニングチュートリアル 応用編

    Transcript 1. 大規模データから単語の 意味表現学習-word2vec ボレガラ ダヌシカ 博士(情報理工学) 英国リバープール大学計算機科学科准教授 2. 2 2005 2008~10 学部 修士 博士 助教/講師 東京大学 工学部 東京大学大学院情報理工学系 文書自動要約における 重要文順序学習 同姓同名抽出 別名抽出 属性類似性計測 関係類似性計測 評判分類の分野適応 関係抽出の分野適応 進化計算を用いたWeb 検索結果順序学習 ソーシャルネットワーク の関係予測 対話型協調 Web検索エンジン 潜在関係検索 エンジン 自己紹介 専門分野:自然言語処理, 機械学習,データマイニング 2006~07 2010~13 2010~現在 准教授 リバープール大学 深層学習 3. 今回の講演の背景 •深層学習に関する活動 •2014年9月に深層学習のチュートリアルをCyberAge

    ディープラーニングチュートリアル 応用編
  • Scikit learnで学ぶ機械学習入門

    勉強会で話した、Scikit-learnの入門資料です。speakerdecでも共有しましたが、slideshare一化のためこちらにも上げますRead less

    Scikit learnで学ぶ機械学習入門
  • scikit-learnを用いた機械学習チュートリアル

    【第40回AIセミナー】 「説明できるAI 〜AIはブラックボックスなのか?〜」 https://www.airc.aist.go.jp/seminar_detail/seminar_040.html 【講演タイトル】 機械学習モデルの判断根拠の説明 【講演概要】 講演では、機械学習モデルの判断根拠を提示するための説明法について紹介する。高精度な認識・識別が可能な機械学習モデルは一般に非常に複雑な構造をしており、どのような基準で判断が下されているかを人間が窺い知ることは困難である。このようなモデルのブラックボックス性を解消するために、近年様々なモデルの説明法が研究・提案されてきている。講演ではこれら近年の代表的な説明法について紹介する。

    scikit-learnを用いた機械学習チュートリアル
  • 12. Choosing the right estimator

    12. Choosing the right estimator# Often the hardest part of solving a machine learning problem can be finding the right estimator for the job. Different estimators are better suited for different types of data and different problems. The flowchart below is designed to give users a bit of a rough guide on how to approach problems with regard to which estimators to try on your data. Click on any est

  • scikit-learnでよく利用する関数の紹介

    ヤフー株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。LINEヤフー Tech Blog はじめに こんにちは。ヤフーで広告プロダクトのデータ分析をしている田中と申します。 今回のAdvent Calendar 2014では、データサイエンスのプロセスの中の「分析・モデリング」で私がよく利用しているツールについて書いています。 どうぞよろしくお願い致します。 データサイエンスのプロセスについては、いろいろと定義があると思いますが 基的に以下の5つのプロセスからなると自分は考えています。 ・問題設定 ・データ抽出・加工 ・分析・モデリング ・評価 ・ビジネス提案/プロダクト実装 どのプロセスもとても大事で、例えば「問題設定」では、ビジネス的な課題(売上低迷・KPI低下)を分析課題に落とすのですが、ここを間違えてしまうと

    scikit-learnでよく利用する関数の紹介
  • Caffeで手軽に画像分類

    ヤフー株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。LINEヤフー Tech Blog こんにちは。システム統括部 データソリューション部の宮崎です。 最近ディープラーニングと呼ばれる技術の話題を耳にすることが増えてきました。 この記事ではディープラーニングの手法を実装し画像認識系の用途で便利に使えるCaffeというツールの使い方を紹介します。 Caffeの概要 Caffeは、C++で実装されGPUに対応した高速なディープラーニングのライブラリです。 大規模画像認識のコンテストILSVRCで2012年にトップとなった畳込みニューラルネットワークの画像分類モデル[1]がすぐに利用できるようになっています。 Caffeは、カリフォルニア大学バークレー校のコンピュータビジョンおよび機械学習に関する研究センターであるBV

    Caffeで手軽に画像分類
  • 1
Лучший частный хостинг