"Scattering matrix" redirects here. For the meaning in linear electrical networks, see Scattering parameters. In physics, the S-matrix or scattering matrix is a matrix that relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT). More formally, in the context of QFT, the S-
Wine glass in LCD projectors light beam makes the beam scatter. In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviati
散乱状態は、入射平面波と散乱球面波の足しあわせであると考える。 また、ルジャンドル多項式は完全系をなす。 よって散乱振幅をの線形結合で表すことができる。 その展開係数をとすると、 よって(2)式に(1)、(3)式を代入すると、が非常に大きいところでの散乱状態は、 この括弧内の第一項目は外向き球面波を、第二項目は内向き球面波をそれぞれ表している。
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "摂動" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2014年11月) 摂動(せつどう、 英語: perturbation)とは、一般に力学系において、主要な力の寄与(主要項)による運動が、他の副次的な力の寄与(摂動項)によって乱される現象である。摂動という語は元来、古典力学において、ある天体の運動が他の天体から受ける引力によって乱れることを指していたが、その類推から量子力学において、粒子の運動が複数粒子の間に相互作用が働くことによって乱れることも指すようになった。なお、転じて摂動現象をもたらす副次的な力のことを摂動と呼ぶ場合がある
ボルン近似(英: Born approximation)とは、量子力学の散乱理論における散乱振幅や遷移確率振幅を、相互作用を表すパラメータについてべき級数展開して、最初の少数項のみをとる近似方法である。マックス・ボルンにちなんで命名された。 この近似は通常高エネルギー散乱に対して用いられるが、低エネルギー散乱でも散乱ポテンシャルが小さいときには有効である。 運動量がpで、外向き(+)または内向き(−)の境界条件をみたす散乱状態のリップマン‐シュウィンガー方程式は以下のように表せる。 ここでは自由粒子のグリーン関数、 は正の無限小量、Vは散乱ポテンシャル、は自由粒子の状態ベクトルで、入射波とも呼ばれる。 ボルン近似によって、この方程式は以下のようになる。 この式は、右辺が未知のに依存しないので容易に解ける。
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "部分波展開" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2017年5月) 部分波展開(ぶぶんはてんかい、英語: partial wave expansion)とは、波動関数を決まった軌道角運動量 ごとに分解する方法である。また、分解して得られる各成分を部分波(partial wave)と呼ぶ。またl = 0の部分波をS波、l = 1の部分波をP波、などと呼ぶ。 この方法は、低エネルギー散乱を取り扱うのに便利なのでよく用いられる。また、波動関数を衝突径数によって分解したという古典的な見方もでき、ポテンシャルなどがどの程度離れたところ
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "多重散乱理論" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2016年4月) 散乱理論では単独のポテンシャルにおける電子(散乱するものは電子以外にも光や他の粒子など様々なものが存在)の散乱を扱ったが、現実の散乱は、多数のポテンシャル下でかつ散乱される対象も多数存在する。また一つの電子に限っても、散乱は一回限りでなく複数回散乱される。このような多重な散乱を扱う理論が多重散乱理論(Multiple scattering theory)である。
散乱理論(さんらんりろん、英: Theory of Scattering)は、粒子などの散乱を扱う理論のこと。 物質の微視的な構造を調べるときに最も一般的な方法は、その物体に粒子(または波動)を衝突させて、散乱された粒子の分布の様子を調べることである。現代物理学の実験的研究の結果の多くは量子力学における散乱理論に基づく計算の結果と比較されることになる。[1] 実験では電子、光子(電磁波)、中性子、陽子、イオンなどが、原子、分子、原子核、素粒子などによって散乱される。 通常、量子力学を用いてこれらの散乱を記述する理論のことを散乱理論と言う場合が多いが、古典力学によって扱われる散乱もある。以下は、量子力学の立場による記述である。 散乱現象を理論的に扱う方法には2つの方法が考えられる。[1] 例として、ホースから出た水が散乱体にぶつかって四方八方に飛び散るような散乱現象を考える。 第一の方法では
この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2022年7月) リップマン–シュウィンガー方程式(リップマン–シュウィンガーほうていしき、英語: Lippmann–Schwinger equation)またはLS方程式は量子力学の散乱理論における基礎方程式である。 ここで、は散乱状態の状態ベクトル、は自由粒子の状態ベクトル、は自由粒子のグリーン演算子であり、 は外向き散乱を、は内向き散乱を表す。数学的には散乱問題の解として外向きと内向きの両方が得られるが、実際は内向き散乱が起こるような系を準備することは困難である。 この方程式は時間依存シュレーディンガー方程式と定常状態のシュレーディンガー方程式のどちらからも導出することができる。よってリップマン–シュウィ
散乱理論ではしばしば、シュレディンガー方程式を以下の積分方程式(リップマン-シュウィンガー方程式)に書き換えて問題を解く。 ここでは入射状態、は散乱状態(+は外向き、-は内向きを表す)、は散乱体との相互作用を表す演算子、は相互作用が無い状態のグリーン演算子である。 遷移演算子は、次のように入射状態と散乱状態を結びつける演算子として定義される。 よって遷移演算子を用いるとリップマン-シュウィンガー方程式は以下のように書き換えられる。 これはもはや積分方程式ではなく、右辺で未知なものは遷移演算子のみである。つまりリップマン-シュウィンガー方程式を解く代わりに遷移演算子を求めることで散乱状態が求められることになる。 遷移演算子を、相互作用領域への入射状態と散乱状態を用いて行列表示したものを遷移行列という。 よって行列要素はとなる。
S行列(Sぎょうれつ)または散乱行列(さんらんぎょうれつ、英: scattering matrix)とは、散乱過程の始状態と終状態に関係する行列である。量子力学、散乱理論、場の量子論、マイクロ波工学などで用いられる。 量子論における散乱演算子は、ヒルベルト空間上の粒子の漸近的な状態をつなぐユニタリ演算子として定義される。 つまり、始状態 の後に散乱過程が起こり、終状態 に到達したときの、時間発展演算子 が散乱演算子である。この散乱演算子を行列表示したものがS行列である。 散乱過程を始状態から終状態への転移としてとらえる散乱理論では、その転移確率を時間依存シュレディンガー方程式を用いて求める(時間発展についてはシュレディンガー描像から相互作用描像に書き換えてから計算することもある)。この方法は量子力学の考え方に沿った方法であり、非弾性散乱なども扱えるため一般性がある。 系の時間発展は相互作用
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く