lynx   »   [go: up one dir, main page]

タグ

ProgrammingとWikipediaに関するTaKUMAのブックマーク (7)

  • 畳み込み - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "畳み込み" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2016年7月) 2つの正方形による畳み込み。解として得る波形は三角波となる。黄色の領域で示されている面積が2つの方形波の合成積である。 正方形がRC回路に入力された場合の出力信号波形を得るために、RC回路のインパルス応答と方形波の畳み込みを行っている。 黄色の領域で示されている面積が合成積である。 畳み込み(たたみこみ、英: convolution)とは、関数 g を平行移動しながら関数 f に重ね足し合わせる二項演算である。あるいはコンボリューションとも呼ばれる。

    畳み込み - Wikipedia
  • 形式手法 - Wikipedia

    Z言語を使った形式仕様記述の例 形式手法(けいしきしゅほう、英: formal methods)は、ソフトウェア工学における数学を基盤としたソフトウェアおよびハードウェアシステムの仕様記述、開発、検証の技術である[1]。ソフトウェアおよびハードウェア設計への形式手法の適用は、他の工学分野と同様、適切な数学的解析を行うことで設計の信頼性と頑健性が向上するという予想によって動機付けられている[2]。 形式手法は理論計算機科学の様々な成果を基盤として応用したものであり、数理論理学、形式言語、オートマタ理論、プログラム意味論、型システム、代数的データ型などを活用して、ソフトウェアおよびハードウェアの仕様記述とその検証を行う[3]。 形式手法はいくつかの水準で使用可能である: 水準0 形式仕様記述を行い、プログラム自体を非形式主義的に行う。「軽い形式手法」と呼ぶ。費用対効果が早く得ることができる選択

    形式手法 - Wikipedia
  • Audrey Tang - Wikipedia

    Official portrait, 2016 Tang Feng (Chinese: 唐鳳; pinyin: Táng Fèng; born 18 April 1981), also known by her English name Audrey, is a Taiwanese politician and free software programmer who served as the first Minister of Digital Affairs of Taiwan from August 2022 to May 2024.[1] She has been described as one of the "ten greatest Taiwanese computing personalities".[2] In August 2016, Tang was invited

    Audrey Tang - Wikipedia
  • チャーチ=チューリングのテーゼ - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Church–Turing thesis|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針につ

  • OCaml - Wikipedia

    OCaml([oʊˈkæməl] oh-KAM-əl、オーキャムル、オーキャメル)は、フランスの INRIA が開発したプログラミング言語MLの方言とその実装である。MLの各要素に加え、オブジェクト指向的要素の追加が特長である。かつては Objective Caml という名前で、その略として OCaml と広く呼ばれていたが、正式に OCaml に改名された[2]。 もとはCamlという名前の、MLの方言の処理系実装、および言語であった。この名前はcategorical abstract machine languageの頭字語に由来する(en:Categorical abstract machineも参照)。やがて、categorical abstract machineよりも効率の良い抽象機械ベースに書き直され、クラスや継承などクラスベースオブジェクト指向の言語機能が追加され Obj

  • 再帰理論 - Wikipedia

    この記事は、全部または一部が他の記事や節と重複しています。 具体的には計算可能性理論との重複です。 記事のノートページで議論し、 重複箇所を重複先記事へのリンクと要約文にする(ウィキペディアの要約スタイル参照)か 重複記事同士を統合する(ページの分割と統合参照)か 重複部分を削除して残りを新たな記事としてください。 (2023年12月) 再帰理論(さいきりろん、英:Recursion theory)は、数理論理学の一分野で、1930年代の計算可能関数とチューリング次数の研究が源となっている。 発展の過程で、この分野は計算可能性や定義可能性全般を対象に含むようになった。これらの領域においては、再帰理論は証明論や エフェクティブ記述集合論(en)とも密接に関係する。 再帰理論の根的疑問は「自然数から自然数への関数が計算可能であるとはどういう意味か?」と、「計算不能関数は、その計算不能性のレベ

  • ラムダ計算 - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2020年5月) ラムダ計算(ラムダけいさん、英語: lambda calculus)は、計算模型のひとつで、計算の実行を関数への引数の評価(英語: evaluation)と適用(英語: application)としてモデル化・抽象化した計算体系である。ラムダ算法とも言う。関数を表現する式に文字ラムダ (λ) を使うという慣習からその名がある。アロンゾ・チャーチとスティーヴン・コール・クリーネによって1930年代に考案された。1936年にチャーチはラムダ計算を用いて一階述語論理の決定可能性問題を(否定的に)解いた。ラムダ計算は「計算可能な関数」とはなにかを定義するために用いられることもある。計算の意味論や型理論

  • 1
Лучший частный хостинг