lynx   »   [go: up one dir, main page]

「経路積分」を含む日記 RSS

はてなキーワード: 経路積分とは

2025-03-06

統合失調症における最小作原理の逸脱と異常体験理論

統合失調症病態理解する新たな理論的枠組みとして、神経回路レベル情報処理における「最小作用の原理からの逸脱が異常体験を引き起こすという仮説を提唱する[1][2][3]。

この理論は、従来のドーパミン仮説や神経回路異常説を統合し、自由エネルギー原理ベイズ推論の破綻量子力学アナロジー説明する。

前頭葉-辺縁系ドーパミン伝達異常が神経回路の同期性を乱すことで、脳内の「作用積分」最小化プロセスが阻害され、確率的経路探索が活性化される。

その結果、通常は抑制される量子力学的な重ね合わせ状態認知プロセス顕在化し、幻覚妄想などの陽性症状が発現するメカニズム提案する。

神経回路の最適化原理としての最小作用の原理

自由エネルギー原理作用積分最小化の数理的等価

神経回路の情報処理を特徴づける自由エネルギー原理は、ベイズ推論による予測誤差最小化の過程を定式化したもの解釈できる[3]。

この理論的枠組みにおいて、脳は外界の生成モデルを内在化し、感覚入力との予測誤差を最小化するように神経活動最適化する。

この過程物理系の「作用積分」最小化と数学的に等価プロセスとして再解釈する。

神経回路の時々刻々の活動パターンは、ラグランジアン関数定義される作用積分の極小値を探索する経路として記述可能である[3]。

ドーパミン調節システム役割再考

従来のドーパミン仮説では、中脳辺縁系D2受容体活動陽性症状の原因とされてきた[1]。

この理論拡張として、ドーパミンシグナルが作用積分の地形形成寄与する要因と位置づける。

具体的には、ドーパミンが神経回路の接続重み(シナプス強度)を調整することで、作用積分局所的最小値の分布を変化させる。

統合失調症ではこの調節機能破綻し、最適経路から外れた異常な作用極小値へのトラップが生じると考える[2][3]。

統合失調症における作用最小化の破綻メカニズム

海馬-前頭前皮質ループの同期異常

理研モデルマウス研究で示された海馬場所細胞異常[2]は、空間認知における作用積分最小化の失敗例と解釈できる。

通常、迷路探索時の神経活動経路積分最適化過程を反映するが、カルシニューリン変異マウスでは過剰な神経発火が作用地形の乱れを引き起こす。

この現象を、量子力学における経路積分確率的広がりと数学的に類似した過程としてモデル化する。

ドーパミン変調による確率経路の活性化

前頭葉ドーパミン伝達の低下が皮質下系の過活動を引き起こすという修正ドーパミン仮説[1]を、作用積分の多極化現象として再解釈する。

ドーパミン濃度の地域差が神経回路の「温度パラメータ」として機能し、確率的経路選択の度合いを調整すると仮定する。

統合失調症患者ではこのパラメータが異常値を示し、確率的重み付けが狂うことで通常は無視される高エネルギー経路が選択されやすくなる[3]。

異常体験の発生機序

認知プロセスにおける経路積分確率解釈

通常の認知処理では、多数の可能な神経活動経路のうち作用積分が最小となる古典的経路が支配である

しか統合失調症では、神経回路のノイズ特性変化やドーパミン調節異常により、経路積分確率分布が歪む。

この状態シュレーディンガー方程式の非調和振動子モデル記述し、固有状態の重ね合わせが異常知覚として体験されると考える。

観測問題神経科学対応

観測問題を神経活動マクロ収束過程対応づける。通常、意識的注意が神経活動波動関数特定状態収束させるが、統合失調症ではこの収束プロセス不安定化する。

特にデフォルトモードネットワークの過活動[2]が、内在的な観測機能を阻害し、重ね合わせ状態の持続を許容すると仮定する。

理論予測実証可能

神経活動経路積分計測

マルチエレクトロード記録と光遺伝学を組み合わせ、迷路課題中の海馬神経集団活動経路を作用積分定量化する[2]。

統合失調症モデル動物経路積分分散が増大することを予測し、抗精神病薬投与によりこの分散収束するかを検証する。

量子もつれ指標の開発

神経細胞集団間の同期性を量子もつれアナロジーで測定する新規指標提案する。

fMRIと脳磁図(MEG)を組み合わせ、デフォルトモードネットワーク内のコヒーレンス持続時間を計測することで、異常な量子状態の持続性を評価する[2][3]。

治療戦略への示唆

作用地形の最適化療法

経頭蓋磁気刺激(TMS)を用いて特定神経回路の作用積分地形を改変する。前頭前皮質への高周波刺激により、異常な局所最小値から脱出するエネルギー障壁を低下させる[1][3]。

量子経路選択薬理学制御

ドーパミン受容体部分作動薬により神経回路の「温度パラメータ」を調整し、確率的経路選択の重み付けを正常化する。

特にD1/D2受容体バランス調節が、作用積分の地形平滑化に寄与すると予測する[1][3]。

結論

理論は、統合失調症病態を神経回路レベル情報最適化プロセス破綻として再解釈し、異常体験の発生機序説明する。

自由エネルギー原理作用積分最小化の数学等価性[3]、海馬の経路符号化異常[2]、ドーパミン調節障害[1]を統合する新パラダイム提示した。

今後の課題は、量子神経科学手法による理論実証と、作用地形を標的とした新規治療法の開発である

これにより、精神疾患理解物理学的原理に基づく統一理論へと発展する可能性が開かれる。

Citations:

[1] https://bsd.neuroinf.jp/wiki/%E3%83%89%E3%83%BC%E3%83%91%E3%83%9F%E3%83%B3%E4%BB%AE%E8%AA%AC%EF%BC%88%E7%B5%B1%E5%90%88%E5%A4%B1%E8%AA%BF%E7%97%87%EF%BC%89

[2] https://www.riken.jp/press/2013/20131017_1/index.html

[3] https://www.riken.jp/press/2022/20220114_3/index.html

2024-02-10

anond:20240210073041

宇宙法則を変えるなら相転移ですね。

究極理論がわからない現状、もし仮に「我々の世界不安定真空にいる」ことを仮定すれば

相応のエネルギーを加えて真の真空に落とす(相転移させる)ことで物理法則が変更されるという

人為的ネオエクスデス「うちゅうの ほうそくが みだれる!」 ができますね。

イメージ的には過冷却です。すでに相転移が起きているのに気がつかないで元の真空にとどまっていますちょっと突くと一瞬で凍ります

  

現に、新しい加速器が作られる度になんかスゲェ無理矢理な模型を作って「加速器のせいで世界が滅びる!」系の論文arXiv投稿されたりします。意外と増田と同じことを考える人がいるんですね。ただしこれらの論文は一瞬で否定されます。なぜならば、加速器で作るビームなんかよりも中性子星ガンマ線バーストのほうがよほど強いからです。宇宙強い。人類技術は弱い。驕るなよ人類

  

 

から不思議だったけど、これらの法則って経験から導き出されたものであって、その法則がどうやって存在してるかは不明なんだよな

 

以下、意味は取らなくて良いので流れと単語だけ拾ってください:

 

宇宙法則対称性で決まっています

保存則はネーターの定理から導き出されます

たとえばエネルギーの保存は時間方向の並進対称性運動量保存則は空間方向の並進対称性から、角運動保存則は回転対称性から導き出されるといえるでしょう。

相対論的には時間空間は同時に取り扱うのですがちょっと難しくなるので簡易な書き方をしています

    

運動方程式最小作用の原理から導き出されます

時空の対称性が決まる → ラグランジアンが決まる  → オイラーラグランジュ方程式運動方程式

  

 

ここまでよんだ?

なら次は、ランダウ・リフシッツ「力学」の最初の20ページくらい読んでください。

前提知識微積分です。ここまで読めば上の文章はだいたい理解できるかと思います

 

そして次にあなたはこう思うでしょう

 

最小作用の原理っていったいなんなんだ? 世界はなぜこんな原理に従う?」

  

そう思ったなら次は量子力学です。JJサクライ「現代量子力学」の経路積分のページまで読み進めましょう。

ここまでくれば霧が晴れるように見通せるようになるはずです。

物理理論とは何であるかが把握できるかと思います。ここから先はご自由に。

  

 

なお、JJサクライは物理科ではちょっと ’進んだ’ 内容とされています普通は2冊目に読む本ですね。が、ハテナーにとってはむしろ読みやすい本かと思いますだってどうせ君ら情報系でしょ?なんかプログラムとか書ける人たちでしょ??なら、ブラケット表記の方が慣れていると思うんですよ。たぶん見ればわかるよ。

 

 

2021-11-14

数学プログラム能力って関係あるの?

微分方程式経路積分とか、プログラム組むのに必要なさそうに見える。

何より数学コンピュータの相性が悪いというか、コンピュータ数値計算すること前提の数学勉強するのに、ハードルがある気がする。

数式で概念勉強したあと、コンピュータ数値計算するには一工夫が必要で、更に計算スピードを求めると更に一工夫が必要となる。

行列計算も、コンピュータ前提で教えて欲しかった。今だと良い書籍あるのだろうか。

2018-10-06

anond:20181006192423

ほら物理屋さんってδ(x)とか経路積分の測度とかみたいな数学的にまともに定義づけをしようとするとややこしいものも、物理計算のために気軽に使うじゃないですか

あいう道具としての数学みたいな姿勢って数学屋さんが嫌うよね的なニュアンスでした。

2018-03-17

5分で読めるホーキングの業績

1. ホーキング放射

“Black hole explosions?” Nature 248 (1974) 30-31 (引用数 2592)


ブラックホールはあらゆるものを吸い込むだけで何も放出しないと長らく考えられていました。

ところで素粒子理論によると真空でも粒子が現れたり消えたりしていることが知られています。(対生成/対消滅

ホーキングブラックホールの表面付近を調べ、これらの粒子が放出されていることを発見しました。粒子が出ていく分ブラックホール質量が減り最終的にブラックホール消滅してしまます




2. ブラックホール熱力学誕生

“Particle Creation by Black Holes” Commun.Math.Phys. 43 (1975) 199-220 (引用数6991)


ホーキング温度

光さえ飲み込むブラックホールは熱放射をせず絶対零度であるとそれまでは考えられていました。

ホーキングは1. の研究に関連してブラックホールの「温度」と「エントロピー」を導出し、ブラックホールにおいて熱力学法則が成り立つことを示しました。

ベッケンスタインホーキング エントロピー

ホーキングの導出したエントロピー

エントロピーブラックホールの表面積に比例する

といういっけんすると奇妙な式でした。

本来ならエントロピーは体積(3次元)に比例するはず。それがなぜか表面積(2次元)に比例している。

ブラックホールーーー重力理論はひょっとして、1次元低い別の理論で表せるのではないか

こうしてホーキングの導出したエントロピーの式から「ホログラフィック原理」の発見へとつながったのです。

量子重力理論

“Wave Function of the Universe ” Phys.Rev. D28 (1983) 2960-2975 (引用数2143)


一般相対論では重力は時空の歪みです。

量子力学ではあらゆる可能性を足し上げて計算します。(経路積分

一般相対論量子力学を融合すると「あらゆる時空の”歪み方”(計量)について足し上げる」ことになります

ホーキングはこの”歪み方”を足しあげるうまい方法提案しました。


ホーキング関連の記事ネタだらけで

業績に触れる記事がないのが悲しかったので自分で書いたよ

専門外なので間違いがあったらごめんね

適当にInspiresしてabst読んでまとめようかと思ったら

citation 1000越えだけで10本、500越えが数十本あって無理だわこれ…ってなった

追悼記事解説記事を書いた人いたらリンク貼るから教えてね

2017-11-22

素人だけど量子コンピューターに感銘を受けたのでちょっと語らせて。

ジン模型って聞いたことある

物質性質研究するのに古くから使われている理論ね。

例えば碁盤の目の上に電子をずらっと並べて、スピンはどっちを向きますか?みたいな研究

スピンがよくわからないなら小さな磁石を考えてもいいよ。隣り合う磁石と反発しあって向きを変える様子を想像してみて。

高温ではみんなバラバラの方向を向いていたのに、ある温度になったらみんな向きをクルッと揃える。これが相転移

どんな方向を向くのかな?相転移の温度はいくつかな?みたいなのを調べるのに物理学者たちはイジン模型計算していたわけ。

ところでね、実は身近な問題もイジン模型で解けるんだ。

たとえば、巡回セールスマン問題。これは「佐川急便配達トラックはどのルートを通るのが最短か?」みたいな問題ね。こういうの最適化問題と呼ぶんだけど。

並んだ電子スピンの向きを計算することで佐川配達ルートがわかっちゃうのよ。すごいね。でも、スパコン使って時間と電力とたくさん消費するの。大変。アルゴリズムめっちゃ研究されているけど大変。

ここでものすごい発想の転換

何も計算しなくてもさ、実際に電子をずらっと並べてスピンがどっち向くか観測したらいいんじゃない

これが量子コンピューター

現実的にはそんなことできないので、実際に並んでいるのはちいさな回路(超電導閉回路)。

回路を電流が「左に回る」か「右に回る」かが、スピンが「上を向く」か「下を向く」かに対応しているの。(D-waveとかね)

この発想すごいよね。

もっと身近な話で例えてみる?

例えばさ、手に持ったボールちょっと投げてみてくれる。

放物線状に飛んだよね?

実はね、量子力学によるとボールはあらゆる軌道で飛ぶ可能性があるのよ。

で、それらの可能性を全部重ね合せると打ち消しあって(経路積分)、

エネルギー(正確には作用)の最も低い軌道だけを残して消えるように見えるの。

残った軌道がさっきボールの飛んだ放物線。

ここでさ、

単にボールを投げたのが、エネルギーについて最適化問題を解いたとも言えるわけ。

こんな感じの発想。すごいよね。

物理現象を解明するために計算するのではなくてさ、

計算をするのに物理現象に手を入れる(イジン模型の結合定数をいじったり外場いれたり)という発想がね、

ちょっと思いつかないな、考えた人すごいなって感銘を受けたんだよ。

誰かと共有したかったんだ。

読んでくれてありがとう

2014-05-30

研究者育成エリート教育

http://anond.hatelabo.jp/20140530200539

これ書いていて思い出したんだけどファインマンの受けた幼少教育がなかなかすごかった。

ファインマン量子力学場の理論活躍した有名な物理学者

経路積分ファインマンダイアグラムパート模型ファインマンだったかな。量子電磁力学で1965年ノーベル賞を受賞。

簡単な模型を作って思考実験考察することを「物理的思考」と呼ぶのだけれどファインマン物理的思考能力天才と云われている。

彼の書いたエッセイ「ご冗談でしょうファインマンさん」の中に父親に関するエピソードがある。

彼の父親から受けた教育はまさに「研究者育成エリート教育」と呼べるようなもので強く印象に残っている。

手元に本がないのでうろ覚えだけど

ファインマン「パパ、あの虫はなぁに?」

親父「辞典を調べてみようか。あの虫は hogehoge 科の fuga だ。でもこれだけだと名前だけだ。何もわかったことにならないね。よし、近づいてもっと観察してみよう」

ファインマン「パパ、どうしてあの鳩達はくちばしで自分の羽を突っついているの?」

親父「何でだと思う?」

(話し合い)

親父「よし、仮説は  1.虫がいて痒い  2.乱れた羽を直している だな」

親父「2 を仮定すると鳩は飛んで着地した後で羽を直す傾向にあるはずだ」

親父「羽を突っつく回数を数えるぞ。着地直後の鳩とそれ以外の鳩で突っつく回数に差があるかを調べるんだ」


こんな感じだった。

スゴイ教育法と思うけれど実践するには相当な時間精神的余裕が必要だよね。

まさに「この父あってこの子あり」と思わせるエピソードなのだけどこの親父、大学どころか高校にも行っていないただの仕立て屋さんで

「どこで科学的態度を身につけたのかわからない」とファインマンが書いていたのがまた衝撃だった。

 
ログイン ユーザー登録
ようこそ ゲスト さん
Лучший частный хостинг