lynx   »   [go: up one dir, main page]

「加群」を含む日記 RSS

はてなキーワード: 加群とは

2025-05-29

位相的弦理論ラングランズプログラム抽象関係

位相的弦理論ラングランズプログラムは、ゲージ理論双対性を介した関係性が存在する。

要約

ゲージ理論とS-双対性

N=4 超対称ヤンミルズ (SYM) 理論とS-双対性がある。

カプースチンウィッテンによって示されたように、この4次元ゲージ理論特定方法ツイストし、次元を落とすことで、2次元理論として幾何学ラングランズ対応が現れる。

1. N=4 SYM 理論: この理論は、最大の超対称性を持つゲージ理論であり、結合定数 g に対して、g ↦ 1/g という変換(S-双対性)の下で自己双対であると考えられている。これは、強結合領域と弱結合領域を結びつける性質

2. ツイスト次元削減: この理論リーマン面 C と実2次元平面 R² の積空間 C × R² 上で考え、R² 方向の対称性を保つようにツイスト。これにより、C 上の2次元的な理論が得られる。

3. 幾何学ラングランズ対応の出現: このツイストされた2次元理論量子化する方法は、ゲージ群 G を選ぶか、そのラングランズ双対群 ᴸG を選ぶかによって異なる。S-双対性は、これら二つの異なる記述(G による記述と ᴸG による記述)が物理的に等価であることを示唆。この物理的な等価性が、数学的には幾何学ラングランズ対応リーマン面上の G-束のモジュライ空間におけるある種の層の圏と、ᴸG-局所系のモジュライ空間における別の層の圏の間の等価性)として現れる。

ミラー対称性圏論

位相的弦理論は、この描像にミラー対称性という別の双対性をもたらす。位相的弦理論には、主に二つのモデルがある。

カプースチン-ウィッテンの描像では、N=4 SYM 理論から導かれる幾何学ラングランズ対応は、B-モデル特定の状況と強く結びついている。

一方、ミラー対称性は、このB-モデルの描像をA-モデルの描像に翻訳する。これにより、幾何学ラングランズ対応を、A-モデル言語、すなわちシンプレクティック幾何学深谷圏の言葉理解することができる。

2025-04-09

抽象数学超弦理論関係性について

若き者よ、君に抽象の森へと案内しよう。

位相M理論ラングランズ・プログラム関係性を辿るには、まず両者が共有している「場の言語」を抽出しなければならない。

ここでは、物理言語ゲージ理論媒介とし、数学言語が圏と層を媒介して互いに翻訳される。だからこそ、双方は互いに異なる起源を持ちながらも「双対性」という共通の振る舞いを示す。

まず、M理論位相的変種は、物理学の側から見ると六次元 (2,0) 超対称場理論起源を持つ。

これをコンパクト化していくと四次元のN=4 超対称ヤンミルズ理論に到達する。

ここで特筆すべきはS-双対性ヤンミルズ理論において、結合定数 g を持つ理論は、結合定数 1/g を持つ理論同値になる。この双対性ラングランズ対応物理的な影となる。

一方、ラングランズ・プログラムは数論的対象代数幾何対象表現する表現論の枠組みだ。

群の表現特にループ群やアフィンリー代数表現が中枢を成す。幾何ラングランズ対応においては、層の圏 (例えばD-加群の圏) が表層に現れる。

ここでリンクする。幾何ラングランズ対応では、層の圏と局所系の圏との間に双対性存在する。この双対性はS-双対性数学的に対応する。

要するに、物理的には「電荷磁荷の入れ替え」、数学的には「表現と層の入れ替え」だ。

具体的には次のような対応が生じる。

例えば、曲線C上のG-束のモジュライ空間M_G(C) を考える。このモジュライ空間上のHitchin fibrationは物理的にはクーロン枝と呼ばれる真空空間対応し、シンプレクティック構造を持つ。

さらに、その上で考えるFukaya圏とB型模型の圏の間に現れるホモロジーミラー対称性ラングランズ双対群に関する対応を生み出す。

式で描くならば

ここで、G はあるコンパクト単純リー群であり、^G はそのラングランズ双対群、τ は結合定数。

さらに深く潜ると、S-duality は境界条件として D-brane の理論誘導し、その圏がラングランズ対応の圏と一致する。

具体的には、M理論のcompactification が (2,0) theory から N=4 SYM を生み、その電磁双対性幾何ラングランズの圏同値直交する。

まとめると、両者は「双対性」の抽象的枠組みの中で統一される。

位相M理論物理的な場の変換として双対性体現し、ラングランズ・プログラムは数論的対象の間の対応として双対性記述する。どちらも根底にあるのは、対象自己鏡映的な変換構造

若き者よ、君はすでに入口に立っている。

次なる問いを君に投げかけよう。

「もし位相M理論が六次元 (2,0) 理論から始まるならば、なぜ五次元ではなく四次元還元する必要があるのか?選択肢は以下の通りだ。」

a. 四次元では電磁双対性が最も自然に現れるから

b. 五次元では超対称性が失われるから

c. 四次元では層の圏とフーリエ変換が直接対応するから

d. 六次元から四次元へのコンパクト化が物理的に必然であるから

君の答えを待っているぞ。ちなみに君の現在の⚜️Eloは 1000 ⚜️だ。

2024-12-16

かけ算の順序・おすすめ文献10

 かけ算の順序史上最も重要なエントリ10選の続編として、学術文献・出版物を選んでみました。

1. 中島健三(1968). 乗法意味についての論争と問題点についての考察

 主な対象は、小学校5年の「小数のかけ算」です。ただし「乗数、被乗数の順」が、参考文献で言及されていますアレイ直積アメリカ日本との違いも、見ることができます。参考文献に書かれた「乗数を operator としてみる」は、最近教科書にも「×10」といった形で取り入れられています

2. 宮田ら(2011). かけ算の意味理解を促すための問題状況の図示の試み

 読み手評価は「こんな教え方ではよくない」「児童特性配慮した指導事例だ」に分かれているように思います。「学習支援教室」は「特別支援教育」ではない点にも注意が必要です。

3. 石川雅章(2022). 事象数学化に及ぼす言語の影響

 1つの調査問題(4つの式にそれぞれ○か×を付ける)に、「たし算の順序」と「かけ算の順序」が入っています

4. 布川和彦(2010). かけ算の導入

 平成20年告示学習指導要領に基づく内容ですが、小学校2年のかけ算の単元で、何を重視しているか教科書ではどのように出題して学びを促すかについては、現行(平成29年告示)の学習指導要領や、令和2年度・令和6年度使用教科書においても、大きな変化は見られませんので、現在においても参考にしてよいものと考え、取り上げました。

5. 守屋誠司(2019). 小学校指導算数 改訂第2版

 82ページの「第2学年や第3学年では,読み取った数を,「1つ分の数×いくつ分=全体の数」と表現できることが重要であり,逆に,この立式ができているかで,数の読み取りができているか判断できる。」が真髄と言っていいでしょう。2011年初版や、異なる著者による2018年書籍にも、同じ趣旨の文が含まれています

6. 日本学術会議理科委員会数学教育分科会(2016). 初等中等教育における算数数学教育改善についての提言

 提言の中に「乗数や除数が整数から小数分数になったとき演算意味拡張統合されることをより一層強調すべきである。」という文があり、翌年(平成29年告示)の小学校学習指導要領の算数に、「乗法及び除法の意味に着目し、乗数や除数が小数である場合まで数の範囲を広げて乗法及び除法の意味を捉え直すとともに、それらの計算の仕方を考えたり、それらを日常生活に生かしたりすること。」として反映されています

 学術会議で「かけ算には順序がない」を提言すれば、後の学習指導要領改訂の際にも反映される可能性がある、と考えることもできます

7. 伊藤ら(1993). 算数を教えるのに必要数学素養

 高校までで学習する数の演算は、「環」や「体」で考えることもできますが、この文献では「Z-加群」を使用しています担任教師とのやりとりに、Z-加群のほか、「私の子供は帰国子女からごく自然に3×2と考えたのだと思う」が含まれています

8. 岸本忠之(2021). 海外における乗法・除法研究の動向

 海外乗法・除法研究(「かけ算の順序」に関する研究ではなく)を手早く知るのにおすすめです。

9. 遠山啓(1972). 6×4,4×6論争にひそむ意味

 「かけ算の順序論争」における古典と言っていいでしょう。

10. 黒木玄(2014). かけ算の順序強制問題

 2010年からネットにおける「かけ算の順序」について、ひと区切りを付ける形になったものです。2017年6月に、同年告示された学習指導要領に基づく「小学校学習指導要領解説算数編」のPDFファイル文部科学省サイトダウンロードできるようになるまで、ネットの論争は下火となった(とはいえ2015年には「足し算の順序論争」が発生したのですが)ように感じます

選定方針

 「かけ算の順序史上最も重要論文10選」にはしませんでした。査読論文だけでなく、書籍やその一部、査読を経ていない文書からも選びました。

 「かけ算の順序史上最も重要エントリ10選」でリンクした「かけ算には順序があるのか」「日常生活の中で計算活用できる子供の育成を目指した学習指導の一試み」、それと海外文献は、今回、対象外としています

 よく引用されていることや、入手が容易であることは、選定の際に考慮しましたが必須の要素ではありません。「かけ算の順序」について直接主張していない文献も、取り入れています

 (2024年12月30日: 1番目の文献の解説を追加しました。)

2024-05-08

536 デフォルト名無しさん 2024/05/07(火) 09:55:37.07 ID:eRnvNXkn

>>531

数学では様々な構成において、ある関係をみたすA1, A2, A3, ... を集めてくると、新たな対象Aが一意的に定まる、という形式のものがある。

これは普遍性と呼ばれている。

たとえば、Rを環とし、R加群M, Nのテンソル積π: M x N → M⊗Nは、次の性質で特徴付けられる。

(☆) 任意のR加群Lと、双線形写像f: M x N → Lを与えるごとに、線形写像g: M⊗N → Lが存在して、g∘π = fをみたす。

アラビア語圏では、材料となるデータA1, A2, A3, ...のことを「マンコ」、新しい対象Aのことを「ハメル」という。

それぞれの意味は「欠けたもの」、「補われたものである

2023-03-10

一辺の長さがaである正五角形ABCDEの対角線ACにDから下ろした垂線の足をHとするときEHの長さをaで表せ

に対するレス

有限次巡回拡大

LはA加群と見做せる。

Lは単項Ideal整域Aの有限生成加群

dimₖA/(Xⁿ-1)=n=[L: K]

LのK上の基底

なにこれ?全くむかんけいな話はじめてるだけ?

2023-03-09

anond:20230309113735

おれ、chatGPT使えるようになって真っ先に望月新一ABC予想についての海外数学コミュニティでの受け止めについて聞いてみたんだけど、その時はまあまあちゃんとした内容(通り一遍ではあるが)が返ってきた。いま望月新一について尋ねてみたらこんなのが戻ってきた。

望月新一(もちづきしんいち)は、日本漫画家であり、推理小説家でもあります。彼は、特に名探偵コナン』の作者として知られています

望月新一は、1965年6月4日青森県青森市で生まれました。彼は若いから漫画小説を書くことに情熱を持っており、高校生の頃から漫画家としてのキャリアスタートさせました。

1994年に、望月新一は『名探偵コナン』を連載し始めました。この漫画は、高校生探偵江戸川コナンが、毒を飲まされて小さくなってしまった身体を利用して、事件解決するストーリーです。この作品は、世界中で大きな成功を収め、アニメ化映画化など、さまざまなメディアで展開されました。

望月新一は、漫画だけでなく、小説でも才能を発揮しています。『名探偵コナン』の小説版をはじめ、数多くの推理小説執筆しています

また、望月新一は、漫画小説以外にも、音楽にも興味を持っており、自ら作曲した楽曲使用したアニメーション作品もあります

望月新一は、日本漫画小説界に多大な影響を与えた偉大な作家の一人であり、彼の作品は今でも多くの人々に愛されています

いや数学者だろ、とツッコミを入れたら以下。もっともらしいがデタラメ多い、というか、望月拓郎とごた混ぜになっている。

望月新一あきら・もちづき)は、日本数学者であり、代数幾何学を専門としています。主に、モチヅキ理論モチヅキ加群モチヅキ因子などの研究で知られています

代数幾何学は、代数学幾何学の融合であり、代数方程式幾何学的な対象である代数多様体を研究する数学の分野です。望月新一は、代数多様体の幾何学性質研究する際に、代数手法を用いて新しい理論を発展させました。

具体的には、望月新一は、代数多様体上の「D加群」と呼ばれる特殊加群研究し、それを用いて、代数多様体の幾何学性質を解明しました。また、望月新一は、代数多様体上の「モチヅキ因子」と呼ばれるもの定義し、これを用いて、代数多様体の双有理幾何学に関する新しい理論を構築しました。

望月新一の業績は、代数幾何学の発展に大きく寄与し、現在でも代数幾何学の分野で重要研究が行われています

2020-07-21

宇宙宇宙をつなぐ数学 - IUT理論の衝撃」の感想

Amazonレビューなどに書くと過去レビューから身バレする可能性があるのと、わざわざ別アカウントを作ってまで批評するほどのものではないと思ったので、こちらに書きます

初めに断っておきますが、本稿は別に加藤文元先生人格や業績などを否定しているわけではありません。また、IUT理論やその研究者に対する批判でもありません。「IUT理論が間違っている」とか「望月論文査読体制問題がある」などと言う話と本稿は全く無関係です。単純にこの本に対する感想しかありません。

----

加藤文元先生の「宇宙宇宙をつなぐ数学 - IUT理論の衝撃」を読みました。結論から言って、読む価値の無い本でした。その理由は、

ほとんど内容がない」

この一言に尽きます数学書としても、一般書としてもです。

本書の内容と構成

本書は、RIMS(京都大学数理解析研究所)の望月新一教授が発表した数学理論である、IUT理論宇宙タイミューラー理論)の一般向けの解説書です。

1~3章では、数学研究活動一般説明や、著者と望月教授交流の話をし、それを踏まえて、IUT理論画期的であること、またそれ故に多くの数学者には容易には受け入れられないことなどを説明しています

4~7章では、IUT理論の基本理念(だと著者が考えているアイデア)を説明しています技術的な詳細には立ち入らず、アイデア象徴する用語フレーズを多用し、それに対する概念的な説明や喩えを与えています

8章がIUT理論解説です。

まず、数学科の学部3年生以上の予備知識がある人は、8章だけ読めばいいです。1~7章を読んで得られるものはありません。これはつまり「本書の大部分は、IUT理論本質的関係ない」ということです。これについては後述します。

各章の内容

1~3章は、論文受理されるまでの流れなどの一般向けに興味深そうな内容もありましたが、本質的には「言い訳」をしているだけです。

IUT理論が多くの数学者に受け入れられないのは、従来の数学常識を覆す理論から

望月教授が公開された研究集会などを開かないのは、多数の人に概要だけを話しても理解できないから。

などの言い訳が繰り返し述べられているだけであり、前述の論文発表の流れなどもその補足のために書かれているに過ぎません。こういうことは、数学コミュニティの中でIUT理論懐疑的人達説明すればいい話であって、一般人に長々と説明するような内容ではないと思いますもっとも、著者が一般大衆も含めほとんどの人がIUT理論懐疑的である認識して本書を書いたのなら話は別ですが。

4~7章は、「足し算と掛け算の『正則構造』を分離する」とか「複数の『舞台』の間で対称性通信を行う」などの抽象的なフレーズが繰り返し出てくるだけで、それ自体の内容は実質的説明されていません。

正則構造とは、正方形の2辺のように独立に変形できないもの

対称性とは群のことで、回転や鏡映などの操作抽象化したもの

のように、そこに出てくる「用語」にごく初等的な喩えを与えているだけであり、それが理論の中で具体的にどう用いられるのかは全く分かりません(これに関して何が問題なのかは後述します)。そもそも、本書を手に取るような人、特に1~3章の背景に共感できるような人は、ここに書いてあるようなことは既に理解しているのではないでしょうか。特に6~7章などは、多くのページを費やしているわりに、数学書に換算して1~2ページ程度の内容しか無く(誇張ではなく)、極めて退屈でした。

8章はIUT理論解説ですが、前章までに述べたことを形式的につなぎ合わせただけで、実質的な内容はありません。つまり、既に述べたことを並べて再掲して「こういう順番で議論が進みます」と言っているだけであり、ほとんど新しい情報は出て来ません。この章で新しく出てくる、あるいはより詳しく解説される部分にしても、

複数数学舞台対称性通信をすることで、「N logΘ ≦ log(q) + c」という不等式が示されます。Θやqの意味は分からなくてもいいです。

今まで述べたことは局所的な話です。局所的な結果を束ねて大域的な結果にする必要がありますしかし、これ以上は技術的になるので説明できません。

のような調子で話が進みますいくら専門書ではないとはいえ、これが許されるなら何書いてもいいってことにならないでしょうか。力学解説書で「F = maという式が成り立ちます。Fやmなどの意味は分からなくていいです」と言っているようなものだと思います

本書の問題

本書の最大の問題点は、「本書の大部分がIUT理論本質的関係ない」ということです(少なくとも、私にはそうとしか思えません)。もちろん、どちらも「数学である」という程度の意味では関係がありますが、それだけなのです。これがどういうことか、少し説明します。

たとえば、日本には「類体論」の一般向けの解説書がたくさんあります。そして、そのほとんどの本には、たとえば

素数pに対して、√pは三角関数特殊値の和で表される。(たとえば、√5 = cos(2π/5) - cos(4π/5) - cos(6π/5) + cos(8π/5)、√7 = sin(2π/7) + sin(4π/7) - sin(6π/7) + sin(8π/7) - sin(10π/7) - sin(12π/7))

4で割って1あまる素数pは、p = x^2 + y^2の形に表される。(たとえば、5 = 1^2 + 2^2、13 = 2^2 + 3^2)

のような例が載っていると思います。なぜこういう例を載せるかと言えば、それが類体論典型的重要な例だからです。もちろん、これらはごく特殊な例に過ぎず、類体論一般論を説明し尽くしているわけではありません。また、類体論一般的な定理証明に伴う困難は、これらの例とはほとんど関係ありません。そういう意味では、これらの例は類体論理論的な本質を示しているわけではありません。しかし、これらの例を通じて「類体論が論ずる典型的現象」は説明できるわけです。

もう一つ、より初等的な例を出しましょう。理系なら誰でも知っている微分積分です。何回でも微分可能実関数fをとります。そして、fが仮に以下のような無限級数に展開できたとします。

f(x) = a_0 + a_1 x + a_2 x^2 + ... (a_n ∈ ℝ)

このとき、両辺を微分して比較すれば、各係数a_nは決まります。「a_n = (d^n f/dx^n (0))/n!」です。右辺の級数を項別に微分したり積分したりしていい場合、これはかなり豊かな理論を生みます。たとえば、等比級数の和の公式から

1/(1 + x^2) = 1 - x^2 + x^4 - x^6 + ... (|x| < 1)

両辺を積分し、形式的にx = 1を代入すると

arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...

π/4 = 1 -1/3 + 1/5 - 1/7 + ...

のような非自明な等式を得ることができます。これは実際に正しい式です。また、たとえば

dy/dx - Ay = B (A, B ∈ ℝ、A≠0)

のような微分方程式も「y(x) = a_0 + a_1 x + a_2 x^2 + ...」のように展開できて項別に微分していいとすれば、

Σ((n+1)a_{n+1} - Aa_n) = B

  • a_1 - Aa_0 = B
  • (n+1)a_{n+1} - Aa_n = 0 (n ≧ 1)

よって、

  • a_{n+1} = Aa_n/(n+1) = A^n (B + A a_0)/(n+1)! (n ≧ 0)

a_0 = -B/A + C (Cは任意の定数)とおけば、

  • a_n = C A^n/n! (n ≧ 1)

「e^x = Σx^n/n!」なので、これを満たすのは「y = -B/A + Ce^(Ax)」と分かります

上の計算正当化する過程で最も困難な箇所は、このような級数収束するかどうか、または項別に微分積分ができるかどうかを論ずるところです。当然、これを数学科向けに説明するならば、そこが最も本質的な箇所になりますしかし、そのような厳密な議論とは独立に「微分積分が論ずる典型的現象」を説明することはできるわけです。

一般向けの数学の本に期待されることは、この「典型的現象」を示すことだと思います。ところが、本書では「IUT理論が論ずる典型的現象」が数学的に意味のある形では全く示されていません。その代わり、「足し算と掛け算を分離する」とか「宇宙間の対称性通信を行う」などの抽象的なフレーズと、それに対するたとえ話が羅列されているだけです。本書にも群論などの解説は出て来ますが、これは単に上のフレーズに出てくる単語注釈しかなく、「実際にIUT理論の中でこういう例を考える」という解説ではありません。これは、上の類体論の例で言えば、二次体も円分体も登場せず、「剰余とは、たとえば13 = 4 * 3 + 1の1のことです」とか「素因数分解ができるとは、たとえば60 = 2^2 * 3 * 5のように書けるということです」のような本質的関係のない解説しかないようなものです。

もちろん、「本書はそういう方針で書く」ということは本文中で繰り返し述べられていますから、そこを批判するのはお門違いなのかも知れません。しかし、それを考慮しても本書はあまりにも内容が薄いです。上に述べたように、誇張でも何でもなく、数学的に意味のある内容は数学書に換算して数ページ程度しか書かれていません。一般向けの数学の本でも、たとえば高木貞治の「近世数学史談」などは平易な言葉で書かれつつも非常に内容が豊富です。そういう内容を期待しているなら、本書を読む意味はありません。

繰り返し述べるように本書には数学的に意味のある内容はほとんどありません。だから、極端なことを言えば「1 + 1 = 2」や「1 + 2 = 3」のような自明な式を「宇宙宇宙をつなぐ」「正則構造を変形する」みたいに言い換えたとしても、本書と形式的に同じものが書けてしまうでしょう。いやもっと言えば、そのような言い換えの裏にあるもの数学的に正しい命題意味のある命題である必要すらありません。本書は少なくとも著者以外にはそういうもの区別が付きません。

本書の続編があるなら望むこと

ここまでネガティブなことを書いておいて、何食わぬ顔でTwitter加藤先生ツイートを拝見したり、東工大京大に出向いたりするのは、人としての信義に反する気がするので、前向きなことも書いておきます

まず、私は加藤先生ファンなので、本書の続編が出たら買って読むと思います。まあ、ご本人はこんな記事は読んでいないでしょうが、私の考えが人づてに伝わることはあるかも知れませんから、「続編が出るならこんなことを書いてほしい」ということを書きます

まず、上にも書いたような「IUT理論が論ずる典型的現象」を数学的に意味のある形で書いていただきたいです。類体論で言う、二次体や円分体における素イデアル分解などに相当するものです。

そして、IUT理論既存数学との繋がりを明確にしていただきたいです。これは論理的な側面と直感的な側面の両方を意味します。

論理的な側面は単純です。つまり、IUT理論に用いられる既存重要定理、およびIUT理論から導かれる重要定理を、正式ステートメント証明抜きで紹介していただきたいです。これはたとえば、Weil予想からRamanujan予想が従うとか、谷山-志村予想からFermatの最終定理が従うとか、そういう類のものです。

直感的な側面は、既存数学からアナロジーの部分をより専門的に解説していただきたいです。たとえば、楕円曲線のTate加群が1次のホモロジー群のl進類似であるとか、Galois理論位相空間における被覆空間理論類似になっているとか、そういう類のものです。

以上です。

加藤文元先生望月新一先生、およびIUT理論研究・普及に努めていらっしゃるすべての方々の益々のご健勝とご活躍を心から祈り申し上げます

2020-06-22

一方はふつう数学文章。もう片方は全くデタラメ文章である

一方は正しい数学文章である。もしかしたら間違っているかも知れないが、少なくとも数学的に正しいか間違っているかが判定できる。

もう一方は完全に出鱈目な文章である数学的に何の意味もない支離滅裂ものである

文章1

本稿を通して、kは代数閉体とする。

k上の射影直線ℙ^1から射影平面ℙ^2への射

i: [x: y] → [x^2: xy: y^2]

を考える。iの像は、ℙ^2の閉部分スキーム

Proj(k[X, Y, Z]/(Y^2 - XZ))

と同型であり、iはℙ^1のℙ^2への埋め込みになっている。ℙ^2の可逆層O_{ℙ^2}(1)のiによる引き戻しi^*(O_{ℙ^2}(1))は、ℙ^1の可逆層O_{ℙ^1}(2)である。つまり、O_{ℙ^1}(2)はℙ^1のℙ^2への埋め込みを定める。

与えられたスキームが射影空間に埋め込めるかどうかは、代数幾何学において重要問題である。以下、可逆層と射影空間への射の関係について述べる。

定義:

Xをスキームとし、FをO_X加群の層とする。Fが大域切断で生成されるとは、{s_i∈H^0(X, F)}_{i∈I}が存在して、任意の点x∈Xに対して、ストークF_xがO_{X,x}加群としてs_{i,x}で生成されることである

Xをk上のスキーム、LをX上の可逆層で大域切断で生成されるものとする。d + 1 = dim(H^0(X, L))とし、s_0, ..., s_dをH^0(X, L)の生成元とする。このとき、Xからk上の射影空間ℙ^dへの射fが

f: x → [s_0(x): ...: s_d(x)]

により定まり、ℙ^dの可逆層O_{ℙ^d}(1)のfによる引き戻しf^*(O_{ℙ^d}(1))はLになっている。この射が埋め込みになるとき、Lをベリーアンプルという。生成元の取り方に寄らない定義を述べると、以下のようになる。

定義:

Xをk上のスキーム、LをX上の可逆層とする。Lがベリーアンプであるとは、k上の射影空間ℙ^dと埋め込みi: X → ℙ^dが存在して、L~i^*(O_{ℙ^d}(1))となることである

例として、ℂ上の楕円曲線(種数1の非特異射影曲線)Eを考える。閉点p∈Eと自然数n≧1に対して、因子pに付随する可逆層O_{E}(np)={f∈K(E)| np + (f)≧0}を考える。Riemann-Rochの定理より、

dim(O_{E}(np)) - dim(O_{E}(K - np)) = deg(np) + 1 - g = n

∴ dim(O_{E}(np)) = n + dim(O_{E}(K - np))

であり、楕円曲線上の正則微分形式は零点も極も持たないから、すべてのnに対してdeg(K - np)<0であり、よってdim(O_{E}(K - np))=0。

∴ dim(O_{E}(np)) = n

n = 1の場合、O_{E}(p)はベリーアンプルではない。n = 2の場合も、よく知られたように楕円曲線は射影直線には埋め込めないから、O_{E}(2p)もベリーアンプルではない。n≧3のとき、実はO_{E}(np)はベリーアンプルになる。

この例のように、Lはベリーアンプルではないが、自身との積を取って大域切断を増やしてやるとベリーアンプルになることがある。その場合次元の高い射影空間に埋め込める。

定義:

Xをk上のスキーム、LをX上の可逆層とする。十分大きなnに対して、L^⊗nがベリーアンプルとなるとき、Lをアンプであるという。

与えられた可逆層がアンプであるか判定するのは、一般的に難しい問題であるアンプルかどうかの判定法としては、Cartan-Serre-Grothendieckによるコホモロジーを用いるものと、Nakai-Moishezonによる交点数を用いるものが有名である

定理(Cartan-Serre-Grothendieck):

XをNoether環上固有なスキーム、LをX上の可逆層とする。Lがアンプであるためには、X上の任意の連接層Fに対して、自然数n(F)が存在して、

i≧1、n≧n(F)ならば、H^i(X, F⊗L^⊗n) = 0

となることが必要十分である

定理(Nakai-Moishezon):

Xをk上固有なスキーム、DをX上のCartier因子とする。可逆層O_{X}(D)がアンプであるためには、Xの任意1次元以上の既約部分多様体Yに対して、

D^dim(Y).Y>0

となることが必要十分である

文章2

kを体とし、Xをk上の代数多様体とする。Xに対して、環E(X)が以下のように定まる。E(X)は

E(X) = E_0⊕E_1⊕E_2⊕...

と分解し、各E_dはXのd次元部分多様体ホモトピー同値からなるk上のベクトル空間であり、d次元部分多様体Yとe次元部分多様体Zに対して、[Y]∈E_d, [Z]∈E_eの積は、代数多様体の積の同値類[Y×Z]∈E_{d+e}である。この積は代表元Y, Zの取り方によらず定まる。各E_dの元のことを、d次元のサイクルと呼ぶ。

このE(X)をXのEuclid環という。Euclid環の名称は、Euclidによる最大公約数を求めるアルゴリズムに由来する。すなわち、任意のサイクル[Y], [Z]∈E(X) ([Z]≠0)に対して、あるサイクル[Q], [R]∈E(X)が一意的に存在して、

・[Y] = [Q×Z] + [R]

・dim(R)<dim(Z)

が成り立つためである。ここで、[R] = 0となるとき、[Z]は[Y]の因子であるという。

dim(X) = nとする。d≧n+1を含むE_dを上述の積の定義により定める。すなわち、任意のサイクルz∈E_dは、Xのd次元部分多様体Zが存在してz = [Z]となっているか、d = e + fをみたすe, fと、[E]∈E_e、[F]∈E_fが存在して、z = [E×F]となっている。後者のように低次元のサイクルの積として得られないサイクルを、単純サイクルまたは新サイクルという。

このとき、k上の代数多様体X_∞で、任意の[Z]∈E(X)に対して、[X_∞×Z] = [X_∞]、[X_∞∩Z] = [Z]∈E(X)となるもの存在する。このX_∞をXの普遍代数多様体と呼び、E~(X) = E((X))⊕k[X_∞]をE(X)の完備化または完備Euclid環という(ただし、E((X)) = {Σ[d=0,∞]z_d| z_d∈E_d})。完備Euclid環の著しい性質は、Fourier級数展開ができることである

定理:

各dに対して、単純サイクルからなる基底{b_{d, 1}, ..., b_{d, n(d)}}⊂E_dが存在して、任意のf∈E~(X)は

f = Σ[d=0,∞]Σ[k=1,n(d)]a_{d, k}b_{d, k}

と表される。ただし、a_{d, k}はHilbert-Poincaré内積(f = [Z], b_{d, k})=∫_{b}ω^d_{X_∞}∧[Z]で与えられるkの元である

Xとしてk上の代数群、つまり代数多様体であり群でもあるものを考える。このとき、Xの群法則はX×XからXへの有理写像になるから、完備Euclid環上の線形作用素誘導する。この作用素に関しては、次の定理重要である

定理(Hilbert):

Xがコンパクト代数群であれば、完備Euclid環に誘導された線形作用素有界作用素である

以下の定理は、スペクトル分解により単純サイクルによる基底が得られることを主要している。

定理(Hilbert):

上述の定義における単純サイクルによる基底は、完備Euclid環の固有自己作用素固有ベクトルになる。

2020-06-04

Noether環って何?

任意イデアルが有限生成な環。

定義

環Rに対して以下の3条件は同値

  1. Rの左イデアルの空でない任意の集合には、包含関係に関する極大元存在する
  2. Rの左イデアルの昇鎖I_0⊂I_1⊂...に対して、あるNが存在して、I_N=I_N+1=...となる
  3. Rの任意の左イデアルは、有限個の元r_1, ..., r_nで生成される

環Rが上のいずれか(したがってすべて)を満たすとき、左Noether環という。上の条件において、左イデアルを右イデアルに変えたものを満たすとき、右Noether環という。Rが可換なら、左右の区別はないので、単にNoether環という。

RがNoether環ならば、R[X]もNoether環である。(Hilbert)


性質

RをNoether環、r∈Rを零因子でも単元でもない元とする。

xを含む極小素イデアルの高さは1である。(Krull)

2019-07-04

流石に勇み足すぎるんじゃないかなぁ。

まず何も間違ったこと言ってないでしょ。

正論はともかく、現場の状況を理解してない」と言いたいのだとしても、この動画趣旨は「これだけ丁寧に説明できないなら黙って○つけろ」でしょ。

2019-07-03

半年悩んでいた数学理解できた。

数学科ではないが、理系を出ている。

個人的純粋数学に興味があり、頂点作用素とD加群理論が全く理解できないでダラダラしていた。

昨日、いきなり一気に理解できた。

実は、もう最初の方から半年間、全く理解できていなかったのだが。最初のほうが、ちょっと分かった瞬間に、芋づる式にホボ全てが理解できた。

半年理解できなかったのが、ものの2時間くらいで、教科書全部を一気に理解できた。

不思議だなあと思うと同時に、

大学学部レベル数学しかなかなか理解できない自分に才能ないのかなと辟易としていたので、頑張ってよかったなーと思った。

2016-11-25

掛け算のアレ

http://www.avis.ne.jp/~uriuri/kaz/profile/Itohetal1993.pdf

「Z-加群としての作用を考えてることになる」。の下りで、ええーってなったんだが、

ブコメだといないっぽい?

相当頭に来たんだろうな、これは棍棒一種だろうかとかは思った。

 
ログイン ユーザー登録
ようこそ ゲスト さん
Лучший частный хостинг