はてなキーワード: 加群とは
位相的弦理論とラングランズプログラムは、ゲージ理論と双対性を介した関係性が存在する。
N=4 超対称ヤン・ミルズ (SYM) 理論とS-双対性がある。
カプースチンとウィッテンによって示されたように、この4次元ゲージ理論を特定の方法でツイストし、次元を落とすことで、2次元の理論として幾何学的ラングランズ対応が現れる。
1. N=4 SYM 理論: この理論は、最大の超対称性を持つゲージ理論であり、結合定数 g に対して、g ↦ 1/g という変換(S-双対性)の下で自己双対的であると考えられている。これは、強結合領域と弱結合領域を結びつける性質。
2. ツイストと次元削減: この理論をリーマン面 C と実2次元平面 R² の積空間 C × R² 上で考え、R² 方向の対称性を保つようにツイスト。これにより、C 上の2次元的な理論が得られる。
3. 幾何学的ラングランズ対応の出現: このツイストされた2次元理論を量子化する方法は、ゲージ群 G を選ぶか、そのラングランズ双対群 ᴸG を選ぶかによって異なる。S-双対性は、これら二つの異なる記述(G による記述と ᴸG による記述)が物理的に等価であることを示唆。この物理的な等価性が、数学的には幾何学的ラングランズ対応(リーマン面上の G-束のモジュライ空間におけるある種の層の圏と、ᴸG-局所系のモジュライ空間における別の層の圏の間の等価性)として現れる。
位相的弦理論は、この描像にミラー対称性という別の双対性をもたらす。位相的弦理論には、主に二つのモデルがある。
カプースチン-ウィッテンの描像では、N=4 SYM 理論から導かれる幾何学的ラングランズ対応は、B-モデルの特定の状況と強く結びついている。
一方、ミラー対称性は、このB-モデルの描像をA-モデルの描像に翻訳する。これにより、幾何学的ラングランズ対応を、A-モデルの言語、すなわちシンプレクティック幾何学や深谷圏の言葉で理解することができる。
若き者よ、君に抽象の森へと案内しよう。
位相的M理論とラングランズ・プログラムの関係性を辿るには、まず両者が共有している「場の言語」を抽出しなければならない。
ここでは、物理の言語がゲージ理論を媒介とし、数学の言語が圏と層を媒介して互いに翻訳される。だからこそ、双方は互いに異なる起源を持ちながらも「双対性」という共通の振る舞いを示す。
まず、M理論の位相的変種は、物理学の側から見ると六次元 (2,0) 超対称場理論に起源を持つ。
これをコンパクト化していくと四次元のN=4 超対称ヤン=ミルズ理論に到達する。
ここで特筆すべきはS-双対性。ヤン=ミルズ理論において、結合定数 g を持つ理論は、結合定数 1/g を持つ理論と同値になる。この双対性がラングランズ対応の物理的な影となる。
一方、ラングランズ・プログラムは数論的対象や代数幾何的対象を表現する表現論の枠組みだ。
群の表現、特にループ群やアフィンリー代数の表現が中枢を成す。幾何ラングランズ対応においては、層の圏 (例えばD-加群の圏) が表層に現れる。
ここでリンクする。幾何ラングランズ対応では、層の圏と局所系の圏との間に双対性が存在する。この双対性はS-双対性と数学的に対応する。
要するに、物理的には「電荷と磁荷の入れ替え」、数学的には「表現と層の入れ替え」だ。
具体的には次のような対応が生じる。
例えば、曲線C上のG-束のモジュライ空間M_G(C) を考える。このモジュライ空間上のHitchin fibrationは物理的にはクーロン枝と呼ばれる真空の空間に対応し、シンプレクティック構造を持つ。
さらに、その上で考えるFukaya圏とB型模型の圏の間に現れるホモロジー的ミラー対称性がラングランズ双対群に関する対応を生み出す。
式で描くならば
ここで、G はあるコンパクト単純リー群であり、^G はそのラングランズ双対群、τ は結合定数。
さらに深く潜ると、S-duality は境界条件として D-brane の理論を誘導し、その圏がラングランズ対応の圏と一致する。
具体的には、M理論のcompactification が (2,0) theory から N=4 SYM を生み、その電磁双対性が幾何ラングランズの圏同値と直交する。
まとめると、両者は「双対性」の抽象的枠組みの中で統一される。
位相的M理論は物理的な場の変換として双対性を体現し、ラングランズ・プログラムは数論的対象の間の対応として双対性を記述する。どちらも根底にあるのは、対象の自己鏡映的な変換構造。
若き者よ、君はすでに入口に立っている。
次なる問いを君に投げかけよう。
「もし位相的M理論が六次元 (2,0) 理論から始まるならば、なぜ五次元ではなく四次元に還元する必要があるのか?選択肢は以下の通りだ。」
かけ算の順序史上最も重要なエントリ10選の続編として、学術文献・出版物を選んでみました。
主な対象は、小学校5年の「小数のかけ算」です。ただし「乗数、被乗数の順」が、参考文献で言及されています。アレイや直積、アメリカと日本との違いも、見ることができます。参考文献に書かれた「乗数を operator としてみる」は、最近の教科書にも「×10」といった形で取り入れられています。
読み手の評価は「こんな教え方ではよくない」「児童の特性に配慮した指導事例だ」に分かれているように思います。「学習支援教室」は「特別支援教育」ではない点にも注意が必要です。
1つの調査問題(4つの式にそれぞれ○か×を付ける)に、「たし算の順序」と「かけ算の順序」が入っています。
平成20年告示の学習指導要領に基づく内容ですが、小学校2年のかけ算の単元で、何を重視しているか、教科書ではどのように出題して学びを促すかについては、現行(平成29年告示)の学習指導要領や、令和2年度・令和6年度使用の教科書においても、大きな変化は見られませんので、現在においても参考にしてよいものと考え、取り上げました。
82ページの「第2学年や第3学年では,読み取った数を,「1つ分の数×いくつ分=全体の数」と表現できることが重要であり,逆に,この立式ができているかで,数の読み取りができているかを判断できる。」が真髄と言っていいでしょう。2011年の初版や、異なる著者による2018年の書籍にも、同じ趣旨の文が含まれています。
提言の中に「乗数や除数が整数から小数や分数になったとき、演算の意味が拡張し統合されることをより一層強調すべきである。」という文があり、翌年(平成29年告示)の小学校学習指導要領の算数に、「乗法及び除法の意味に着目し、乗数や除数が小数である場合まで数の範囲を広げて乗法及び除法の意味を捉え直すとともに、それらの計算の仕方を考えたり、それらを日常生活に生かしたりすること。」として反映されています。
学術会議で「かけ算には順序がない」を提言すれば、後の学習指導要領改訂の際にも反映される可能性がある、と考えることもできます。
高校までで学習する数の演算は、「環」や「体」で考えることもできますが、この文献では「Z-加群」を使用しています。担任教師とのやりとりに、Z-加群のほか、「私の子供は帰国子女だからごく自然に3×2と考えたのだと思う」が含まれています。
海外の乗法・除法研究(「かけ算の順序」に関する研究ではなく)を手早く知るのにおすすめです。
「かけ算の順序論争」における古典と言っていいでしょう。
2010年からのネットにおける「かけ算の順序」について、ひと区切りを付ける形になったものです。2017年6月に、同年告示された学習指導要領に基づく「小学校学習指導要領解説算数編」のPDFファイルが文部科学省サイトでダウンロードできるようになるまで、ネットの論争は下火となった(とはいえ、2015年には「足し算の順序論争」が発生したのですが)ように感じます。
「かけ算の順序史上最も重要な論文10選」にはしませんでした。査読付論文だけでなく、書籍やその一部、査読を経ていない文書からも選びました。
「かけ算の順序史上最も重要なエントリ10選」でリンクした「かけ算には順序があるのか」「日常生活の中で計算が活用できる子供の育成を目指した学習指導の一試み」、それと海外文献は、今回、対象外としています。
よく引用されていることや、入手が容易であることは、選定の際に考慮しましたが必須の要素ではありません。「かけ算の順序」について直接主張していない文献も、取り入れています。
536 デフォルトの名無しさん 2024/05/07(火) 09:55:37.07 ID:eRnvNXkn
数学では様々な構成において、ある関係をみたすA1, A2, A3, ... を集めてくると、新たな対象Aが一意的に定まる、という形式のものがある。
これは普遍性と呼ばれている。
たとえば、Rを環とし、R加群M, Nのテンソル積π: M x N → M⊗Nは、次の性質で特徴付けられる。
(☆) 任意のR加群Lと、双線形写像f: M x N → Lを与えるごとに、線形写像g: M⊗N → Lが存在して、g∘π = fをみたす。
アラビア語圏では、材料となるデータA1, A2, A3, ...のことを「マンコ」、新しい対象Aのことを「ハメル」という。
おれ、chatGPT使えるようになって真っ先に望月新一のABC予想についての海外数学コミュニティでの受け止めについて聞いてみたんだけど、その時はまあまあちゃんとした内容(通り一遍ではあるが)が返ってきた。いま望月新一について尋ねてみたらこんなのが戻ってきた。
望月新一(もちづきしんいち)は、日本の漫画家であり、推理小説家でもあります。彼は、特に『名探偵コナン』の作者として知られています。
望月新一は、1965年6月4日に青森県青森市で生まれました。彼は若い頃から漫画や小説を書くことに情熱を持っており、高校生の頃から漫画家としてのキャリアをスタートさせました。
1994年に、望月新一は『名探偵コナン』を連載し始めました。この漫画は、高校生探偵の江戸川コナンが、毒を飲まされて小さくなってしまった身体を利用して、事件を解決するストーリーです。この作品は、世界中で大きな成功を収め、アニメ化や映画化など、さまざまなメディアで展開されました。
望月新一は、漫画だけでなく、小説でも才能を発揮しています。『名探偵コナン』の小説版をはじめ、数多くの推理小説を執筆しています。
また、望月新一は、漫画や小説以外にも、音楽にも興味を持っており、自ら作曲した楽曲を使用したアニメーション作品もあります。
いや数学者だろ、とツッコミを入れたら以下。もっともらしいがデタラメ多い、というか、望月拓郎とごた混ぜになっている。
望月新一(あきら・もちづき)は、日本の数学者であり、代数幾何学を専門としています。主に、モチヅキ理論やモチヅキ加群、モチヅキ因子などの研究で知られています。
代数幾何学は、代数学と幾何学の融合であり、代数方程式の幾何学的な対象である代数多様体を研究する数学の分野です。望月新一は、代数多様体の幾何学的性質を研究する際に、代数的手法を用いて新しい理論を発展させました。
具体的には、望月新一は、代数多様体上の「D加群」と呼ばれる特殊な加群を研究し、それを用いて、代数多様体の幾何学的性質を解明しました。また、望月新一は、代数多様体上の「モチヅキ因子」と呼ばれるものを定義し、これを用いて、代数多様体の双有理幾何学に関する新しい理論を構築しました。
Amazonのレビューなどに書くと過去のレビューから身バレする可能性があるのと、わざわざ別アカウントを作ってまで批評するほどのものではないと思ったので、こちらに書きます。
初めに断っておきますが、本稿は別に加藤文元先生の人格や業績などを否定しているわけではありません。また、IUT理論やその研究者に対する批判でもありません。「IUT理論が間違っている」とか「望月論文の査読体制に問題がある」などと言う話と本稿は全く無関係です。単純にこの本に対する感想でしかありません。
----
加藤文元先生の「宇宙と宇宙をつなぐ数学 - IUT理論の衝撃」を読みました。結論から言って、読む価値の無い本でした。その理由は、
「ほとんど内容がない」
本書は、RIMS(京都大学数理解析研究所)の望月新一教授が発表した数学の理論である、IUT理論(宇宙際タイヒミューラー理論)の一般向けの解説書です。
1~3章では、数学の研究活動一般の説明や、著者と望月教授の交流の話をし、それを踏まえて、IUT理論が画期的であること、またそれ故に多くの数学者には容易には受け入れられないことなどを説明しています。
4~7章では、IUT理論の基本理念(だと著者が考えているアイデア)を説明しています。技術的な詳細には立ち入らず、アイデアを象徴する用語やフレーズを多用し、それに対する概念的な説明や喩えを与えています。
まず、数学科の学部3年生以上の予備知識がある人は、8章だけ読めばいいです。1~7章を読んで得られるものはありません。これはつまり「本書の大部分は、IUT理論と本質的に関係ない」ということです。これについては後述します。
1~3章は、論文が受理されるまでの流れなどの一般向けに興味深そうな内容もありましたが、本質的には「言い訳」をしているだけです。
などの言い訳が繰り返し述べられているだけであり、前述の論文発表の流れなどもその補足のために書かれているに過ぎません。こういうことは、数学者コミュニティの中でIUT理論に懐疑的な人達に説明すればいい話であって、一般人に長々と説明するような内容ではないと思います。もっとも、著者が一般大衆も含めほとんどの人がIUT理論に懐疑的であると認識して本書を書いたのなら話は別ですが。
4~7章は、「足し算と掛け算の『正則構造』を分離する」とか「複数の『舞台』の間で対称性通信を行う」などの抽象的なフレーズが繰り返し出てくるだけで、それ自体の内容は実質的に説明されていません。
のように、そこに出てくる「用語」にごく初等的な喩えを与えているだけであり、それが理論の中で具体的にどう用いられるのかは全く分かりません(これに関して何が問題なのかは後述します)。そもそも、本書を手に取るような人、特に1~3章の背景に共感できるような人は、ここに書いてあるようなことは既に理解しているのではないでしょうか。特に6~7章などは、多くのページを費やしているわりに、数学書に換算して1~2ページ程度の内容しか無く(誇張ではなく)、極めて退屈でした。
8章はIUT理論の解説ですが、前章までに述べたことを形式的につなぎ合わせただけで、実質的な内容はありません。つまり、既に述べたことを並べて再掲して「こういう順番で議論が進みます」と言っているだけであり、ほとんど新しい情報は出て来ません。この章で新しく出てくる、あるいはより詳しく解説される部分にしても、
複数の数学の舞台で対称性通信をすることで、「N logΘ ≦ log(q) + c」という不等式が示されます。Θやqの意味は分からなくてもいいです。
今まで述べたことは局所的な話です。局所的な結果を束ねて大域的な結果にする必要があります。しかし、これ以上は技術的になるので説明できません。
のような調子で話が進みます。いくら専門書ではないとはいえ、これが許されるなら何書いてもいいってことにならないでしょうか。力学の解説書で「F = maという式が成り立ちます。Fやmなどの意味は分からなくていいです」と言っているようなものだと思います。
本書の最大の問題点は、「本書の大部分がIUT理論と本質的に関係ない」ということです(少なくとも、私にはそうとしか思えません)。もちろん、どちらも「数学である」という程度の意味では関係がありますが、それだけなのです。これがどういうことか、少し説明します。
たとえば、日本には「類体論」の一般向けの解説書がたくさんあります。そして、そのほとんどの本には、たとえば
奇素数pに対して、√pは三角関数の特殊値の和で表される。(たとえば、√5 = cos(2π/5) - cos(4π/5) - cos(6π/5) + cos(8π/5)、√7 = sin(2π/7) + sin(4π/7) - sin(6π/7) + sin(8π/7) - sin(10π/7) - sin(12π/7))
4で割って1あまる素数pは、p = x^2 + y^2の形に表される。(たとえば、5 = 1^2 + 2^2、13 = 2^2 + 3^2)
のような例が載っていると思います。なぜこういう例を載せるかと言えば、それが類体論の典型的で重要な例だからです。もちろん、これらはごく特殊な例に過ぎず、類体論の一般論を説明し尽くしているわけではありません。また、類体論の一般的な定理の証明に伴う困難は、これらの例とはほとんど関係ありません。そういう意味では、これらの例は類体論の理論的な本質を示しているわけではありません。しかし、これらの例を通じて「類体論が論ずる典型的な現象」は説明できるわけです。
もう一つ、より初等的な例を出しましょう。理系なら誰でも知っている微分積分です。何回でも微分可能な実関数fをとります。そして、fが仮に以下のような無限級数に展開できたとします。
f(x) = a_0 + a_1 x + a_2 x^2 + ... (a_n ∈ ℝ)
このとき、両辺を微分して比較すれば、各係数a_nは決まります。「a_n = (d^n f/dx^n (0))/n!」です。右辺の級数を項別に微分したり積分したりしていい場合、これはかなり豊かな理論を生みます。たとえば、等比級数の和の公式から
1/(1 + x^2) = 1 - x^2 + x^4 - x^6 + ... (|x| < 1)
arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
π/4 = 1 -1/3 + 1/5 - 1/7 + ...
のような非自明な等式を得ることができます。これは実際に正しい式です。また、たとえば
dy/dx - Ay = B (A, B ∈ ℝ、A≠0)
のような微分方程式も「y(x) = a_0 + a_1 x + a_2 x^2 + ...」のように展開できて項別に微分していいとすれば、
よって、
a_0 = -B/A + C (Cは任意の定数)とおけば、
- a_n = C A^n/n! (n ≧ 1)
「e^x = Σx^n/n!」なので、これを満たすのは「y = -B/A + Ce^(Ax)」と分かります。
上の計算を正当化する過程で最も困難な箇所は、このような級数が収束するかどうか、または項別に微分や積分ができるかどうかを論ずるところです。当然、これを数学科向けに説明するならば、そこが最も本質的な箇所になります。しかし、そのような厳密な議論とは独立に「微分積分が論ずる典型的な現象」を説明することはできるわけです。
一般向けの数学の本に期待されることは、この「典型的な現象」を示すことだと思います。ところが、本書では「IUT理論が論ずる典型的な現象」が数学的に意味のある形では全く示されていません。その代わり、「足し算と掛け算を分離する」とか「宇宙間の対称性通信を行う」などの抽象的なフレーズと、それに対するたとえ話が羅列されているだけです。本書にも群論などの解説は出て来ますが、これは単に上のフレーズに出てくる単語の注釈でしかなく、「実際にIUT理論の中でこういう例を考える」という解説ではありません。これは、上の類体論の例で言えば、二次体も円分体も登場せず、「剰余とは、たとえば13 = 4 * 3 + 1の1のことです」とか「素因数分解ができるとは、たとえば60 = 2^2 * 3 * 5のように書けるということです」のような本質的に関係のない解説しかないようなものです。
もちろん、「本書はそういう方針で書く」ということは本文中で繰り返し述べられていますから、そこを批判するのはお門違いなのかも知れません。しかし、それを考慮しても本書はあまりにも内容が薄いです。上に述べたように、誇張でも何でもなく、数学的に意味のある内容は数学書に換算して数ページ程度しか書かれていません。一般向けの数学の本でも、たとえば高木貞治の「近世数学史談」などは平易な言葉で書かれつつも非常に内容が豊富です。そういう内容を期待しているなら、本書を読む意味はありません。
繰り返し述べるように本書には数学的に意味のある内容はほとんどありません。だから、極端なことを言えば「1 + 1 = 2」や「1 + 2 = 3」のような自明な式を「宇宙と宇宙をつなぐ」「正則構造を変形する」みたいに言い換えたとしても、本書と形式的に同じものが書けてしまうでしょう。いやもっと言えば、そのような言い換えの裏にあるものが数学的に正しい命題・意味のある命題である必要すらありません。本書は少なくとも著者以外にはそういうものと区別が付きません。
ここまでネガティブなことを書いておいて、何食わぬ顔でTwitterで加藤先生のツイートを拝見したり、東工大や京大に出向いたりするのは、人としての信義に反する気がするので、前向きなことも書いておきます。
まず、私は加藤先生のファンなので、本書の続編が出たら買って読むと思います。まあ、ご本人はこんな記事は読んでいないでしょうが、私の考えが人づてに伝わることはあるかも知れませんから、「続編が出るならこんなことを書いてほしい」ということを書きます。
まず、上にも書いたような「IUT理論が論ずる典型的な現象」を数学的に意味のある形で書いていただきたいです。類体論で言う、二次体や円分体における素イデアル分解などに相当するものです。
そして、IUT理論と既存の数学との繋がりを明確にしていただきたいです。これは論理的な側面と直感的な側面の両方を意味します。
論理的な側面は単純です。つまり、IUT理論に用いられる既存の重要な定理、およびIUT理論から導かれる重要な定理を、正式なステートメントで証明抜きで紹介していただきたいです。これはたとえば、Weil予想からRamanujan予想が従うとか、谷山-志村予想からFermatの最終定理が従うとか、そういう類のものです。
直感的な側面は、既存の数学からのアナロジーの部分をより専門的に解説していただきたいです。たとえば、楕円曲線のTate加群が1次のホモロジー群のl進類似であるとか、Galois理論が位相空間における被覆空間の理論の類似になっているとか、そういう類のものです。
以上です。
加藤文元先生、望月新一先生、およびIUT理論の研究・普及に努めていらっしゃるすべての方々の益々のご健勝とご活躍を心からお祈り申し上げます。
一方は正しい数学の文章である。もしかしたら間違っているかも知れないが、少なくとも数学的に正しいか間違っているかが判定できる。
もう一方は完全に出鱈目な文章である。数学的に何の意味もない支離滅裂なものである。
本稿を通して、kは代数閉体とする。
i: [x: y] → [x^2: xy: y^2]
を考える。iの像は、ℙ^2の閉部分スキーム
Proj(k[X, Y, Z]/(Y^2 - XZ))
と同型であり、iはℙ^1のℙ^2への埋め込みになっている。ℙ^2の可逆層O_{ℙ^2}(1)のiによる引き戻しi^*(O_{ℙ^2}(1))は、ℙ^1の可逆層O_{ℙ^1}(2)である。つまり、O_{ℙ^1}(2)はℙ^1のℙ^2への埋め込みを定める。
与えられたスキームが射影空間に埋め込めるかどうかは、代数幾何学において重要な問題である。以下、可逆層と射影空間への射の関係について述べる。
定義:
Xをスキームとし、FをO_X加群の層とする。Fが大域切断で生成されるとは、{s_i∈H^0(X, F)}_{i∈I}が存在して、任意の点x∈Xに対して、ストークF_xがO_{X,x}加群としてs_{i,x}で生成されることである。
Xをk上のスキーム、LをX上の可逆層で大域切断で生成されるものとする。d + 1 = dim(H^0(X, L))とし、s_0, ..., s_dをH^0(X, L)の生成元とする。このとき、Xからk上の射影空間ℙ^dへの射fが
f: x → [s_0(x): ...: s_d(x)]
により定まり、ℙ^dの可逆層O_{ℙ^d}(1)のfによる引き戻しf^*(O_{ℙ^d}(1))はLになっている。この射が埋め込みになるとき、Lをベリーアンプルという。生成元の取り方に寄らない定義を述べると、以下のようになる。
定義:
Xをk上のスキーム、LをX上の可逆層とする。Lがベリーアンプルであるとは、k上の射影空間ℙ^dと埋め込みi: X → ℙ^dが存在して、L~i^*(O_{ℙ^d}(1))となることである。
例として、ℂ上の楕円曲線(種数1の非特異射影曲線)Eを考える。閉点p∈Eと自然数n≧1に対して、因子pに付随する可逆層O_{E}(np)={f∈K(E)| np + (f)≧0}を考える。Riemann-Rochの定理より、
dim(O_{E}(np)) - dim(O_{E}(K - np)) = deg(np) + 1 - g = n
∴ dim(O_{E}(np)) = n + dim(O_{E}(K - np))
であり、楕円曲線上の正則微分形式は零点も極も持たないから、すべてのnに対してdeg(K - np)<0であり、よってdim(O_{E}(K - np))=0。
∴ dim(O_{E}(np)) = n
n = 1の場合、O_{E}(p)はベリーアンプルではない。n = 2の場合も、よく知られたように楕円曲線は射影直線には埋め込めないから、O_{E}(2p)もベリーアンプルではない。n≧3のとき、実はO_{E}(np)はベリーアンプルになる。
この例のように、Lはベリーアンプルではないが、自身との積を取って大域切断を増やしてやるとベリーアンプルになることがある。その場合、次元の高い射影空間に埋め込める。
定義:
Xをk上のスキーム、LをX上の可逆層とする。十分大きなnに対して、L^⊗nがベリーアンプルとなるとき、Lをアンプルであるという。
与えられた可逆層がアンプルであるか判定するのは、一般的に難しい問題である。アンプルかどうかの判定法としては、Cartan-Serre-Grothendieckによるコホモロジーを用いるものと、Nakai-Moishezonによる交点数を用いるものが有名である。
定理(Cartan-Serre-Grothendieck):
XをNoether環上固有なスキーム、LをX上の可逆層とする。Lがアンプルであるためには、X上の任意の連接層Fに対して、自然数n(F)が存在して、
i≧1、n≧n(F)ならば、H^i(X, F⊗L^⊗n) = 0
定理(Nakai-Moishezon):
Xをk上固有なスキーム、DをX上のCartier因子とする。可逆層O_{X}(D)がアンプルであるためには、Xの任意の1次元以上の既約部分多様体Yに対して、
D^dim(Y).Y>0
kを体とし、Xをk上の代数多様体とする。Xに対して、環E(X)が以下のように定まる。E(X)は
E(X) = E_0⊕E_1⊕E_2⊕...
と分解し、各E_dはXのd次元部分多様体のホモトピー同値類からなるk上のベクトル空間であり、d次元部分多様体Yとe次元部分多様体Zに対して、[Y]∈E_d, [Z]∈E_eの積は、代数多様体の積の同値類[Y×Z]∈E_{d+e}である。この積は代表元Y, Zの取り方によらず定まる。各E_dの元のことを、d次元のサイクルと呼ぶ。
このE(X)をXのEuclid環という。Euclid環の名称は、Euclidによる最大公約数を求めるアルゴリズムに由来する。すなわち、任意のサイクル[Y], [Z]∈E(X) ([Z]≠0)に対して、あるサイクル[Q], [R]∈E(X)が一意的に存在して、
・[Y] = [Q×Z] + [R]
・dim(R)<dim(Z)
が成り立つためである。ここで、[R] = 0となるとき、[Z]は[Y]の因子であるという。
dim(X) = nとする。d≧n+1を含むE_dを上述の積の定義により定める。すなわち、任意のサイクルz∈E_dは、Xのd次元部分多様体Zが存在してz = [Z]となっているか、d = e + fをみたすe, fと、[E]∈E_e、[F]∈E_fが存在して、z = [E×F]となっている。後者のように低次元のサイクルの積として得られないサイクルを、単純サイクルまたは新サイクルという。
このとき、k上の代数多様体X_∞で、任意の[Z]∈E(X)に対して、[X_∞×Z] = [X_∞]、[X_∞∩Z] = [Z]∈E(X)となるものが存在する。このX_∞をXの普遍代数多様体と呼び、E~(X) = E((X))⊕k[X_∞]をE(X)の完備化または完備Euclid環という(ただし、E((X)) = {Σ[d=0,∞]z_d| z_d∈E_d})。完備Euclid環の著しい性質は、Fourier級数展開ができることである。
定理:
各dに対して、単純サイクルからなる基底{b_{d, 1}, ..., b_{d, n(d)}}⊂E_dが存在して、任意のf∈E~(X)は
f = Σ[d=0,∞]Σ[k=1,n(d)]a_{d, k}b_{d, k}
と表される。ただし、a_{d, k}はHilbert-Poincaré内積(f = [Z], b_{d, k})=∫_{b}ω^d_{X_∞}∧[Z]で与えられるkの元である。
Xとしてk上の代数群、つまり代数多様体であり群でもあるものを考える。このとき、Xの群法則はX×XからXへの有理写像になるから、完備Euclid環上の線形作用素を誘導する。この作用素に関しては、次の定理が重要である。
定理(Hilbert):
Xがコンパクトな代数群であれば、完備Euclid環に誘導された線形作用素は有界作用素である。
以下の定理は、スペクトル分解により単純サイクルによる基底が得られることを主要している。
定理(Hilbert):
環Rに対して以下の3条件は同値。
環Rが上のいずれか(したがってすべて)を満たすとき、左Noether環という。上の条件において、左イデアルを右イデアルに変えたものを満たすとき、右Noether環という。Rが可換なら、左右の区別はないので、単にNoether環という。
RがNoether環ならば、R[X]もNoether環である。(Hilbert)
RをNoether環、r∈Rを零因子でも単元でもない元とする。