はてなキーワード: カプースチンとは
位相的弦理論とラングランズプログラムは、ゲージ理論と双対性を介した関係性が存在する。
N=4 超対称ヤン・ミルズ (SYM) 理論とS-双対性がある。
カプースチンとウィッテンによって示されたように、この4次元ゲージ理論を特定の方法でツイストし、次元を落とすことで、2次元の理論として幾何学的ラングランズ対応が現れる。
1. N=4 SYM 理論: この理論は、最大の超対称性を持つゲージ理論であり、結合定数 g に対して、g ↦ 1/g という変換(S-双対性)の下で自己双対的であると考えられている。これは、強結合領域と弱結合領域を結びつける性質。
2. ツイストと次元削減: この理論をリーマン面 C と実2次元平面 R² の積空間 C × R² 上で考え、R² 方向の対称性を保つようにツイスト。これにより、C 上の2次元的な理論が得られる。
3. 幾何学的ラングランズ対応の出現: このツイストされた2次元理論を量子化する方法は、ゲージ群 G を選ぶか、そのラングランズ双対群 ᴸG を選ぶかによって異なる。S-双対性は、これら二つの異なる記述(G による記述と ᴸG による記述)が物理的に等価であることを示唆。この物理的な等価性が、数学的には幾何学的ラングランズ対応(リーマン面上の G-束のモジュライ空間におけるある種の層の圏と、ᴸG-局所系のモジュライ空間における別の層の圏の間の等価性)として現れる。
位相的弦理論は、この描像にミラー対称性という別の双対性をもたらす。位相的弦理論には、主に二つのモデルがある。
カプースチン-ウィッテンの描像では、N=4 SYM 理論から導かれる幾何学的ラングランズ対応は、B-モデルの特定の状況と強く結びついている。
一方、ミラー対称性は、このB-モデルの描像をA-モデルの描像に翻訳する。これにより、幾何学的ラングランズ対応を、A-モデルの言語、すなわちシンプレクティック幾何学や深谷圏の言葉で理解することができる。
エドワード・ウィッテンは、幾何学的なラングランズ・プログラムの一部とアイデアとの関係について「電気・磁気の二重性と幾何学的なラングランズ・プログラム」を執筆した。
ラングランズ プログラムに関する背景: 1967 年、ロバート ラングランズは、当時同研究所の教授だったアンドレ ヴェイユに17ページの手書きの手紙を書き、その中で大統一理論を提案した。それは、数論、代数幾何学、保型形式の理論における一見無関係な概念を関連付ける。読みやすくするためにヴェイユの要望で作成されたこの手紙のタイプされたコピーは、1960 年代後半から 1970 年代にかけて数学者の間で広く流通し、数学者たちは 40 年以上にわたり、ラングランズ プログラムとして総称されるその予想に取り組んできた。
弦理論やゲージ理論の双対性の背景を持つ物理学者は、カプースチンとの幾何学的ラングランズに関する論文を理解できるが、ほとんどの物理学者にとって、このトピックは詳細すぎて興味をそそるものではない。
一方で、数学者にとっては興味深いテーマだが、場の量子論や弦理論の背景には馴染みのない部分が多すぎるため、理解するのは困難(厳密に定式化するのは困難)。
短期的にどのような進歩があれば、数学者にとって幾何学的なラングランズのゲージ理論解釈が利用できるようになるのかを見極めるのは、実際には非常に難しい。
ゲージ理論とホバノフホモロジーが数学者によって認識され評価されるのを見られるだろうか。
弦理論の研究者として取り組んでいる物理理論が数論として興味深いものであることを示す多くのことがわかっている。
ここ数年、4 次元の超対称ゲージ理論とその親戚である 6 次元に取り組んでいる物理学者は、臨界レベルでの共形場理論の役割に関わるいくつかの発見を行っているため、この点を解決する時期が来たのかもしれない。
過去20年間、数学と物理学の相互作用は非常に豊かであり続けただけでなく、その多様性が発展したが、私は恥ずかしいことにほとんど理解できていない。
これは今後も続くだろう、それが続く理由は場の量子論と弦理論がどういうわけか豊かな数学的秘密を持っているからだ。
これらの秘密の一部が表面化すると、物理学者にとってはしばしば驚きとなることがよくある。
なぜなら、超弦理論を物理学として正しく理解していないから。つまり、その背後にある核となる考え方を理解していない。
数学者は場の量子論を完全に理解することができていないため、そこから得られる事柄は驚くべきものである。
したがって、生み出される物理学と数学のアイデアは長い間驚くべきものになるだろう。
1990 年代に、さまざまな弦理論が非摂動双対性によって統合されており、弦理論はある意味で本質的に量子力学的なものであることが明らかになり、より広い視野を得ることができた。