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Abstract

When voters have different information quality, voting rules with richer ballot spaces

can help voters better aggregate information by endogenously allocating more decision

power to better-informed members. Using laboratory experiments, we compare two

polar examples of voting rules in terms of ballot richness: majority voting (MV) and

continuous voting (CV). Our results show that CV outperforms MV on average, al-

though the difference is smaller than predicted, and that CV has more support than

MV in treatments where it is expected to perform better. We also find that voters

with intermediate information overestimate the importance of their votes under CV.
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1 Introduction

Voting is a widespread practice across our society: citizens vote to elect their representatives,

shareholders to decide on managerial proposals, or countries to determine the international

organizations’ resolutions. In many of these institutions, voters are bound to either cast their

vote to fully support one of the available options or abstain entirely. The dichotomous nature

of the vote constrains the comprehensive expression of voter preferences and knowledge,

leading to associated welfare costs. In the context of preference aggregation, it can lead to

the so-called tyranny of the majority (i.e., a majority of voters impose a choice they care little

about on a minority who cares intensely), while in the realm of information transmission, it

results in information loss, and hence suboptimal decisions.

These issues have prompted the exploration of innovative voting systems designed to

expand the range of choices available on the ballot. These include methods such as ap-

proval voting (Brams and Fishburn, 1978), storable votes (Casella, 2005), qualitative voting

(Hortala-Vallve, 2012), and quadratic voting (Lalley and Weyl, 2018), among others. This

literature has established that, in theory, broadening the options within the ballot space can

effectively address certain inefficiencies associated with dichotomous voting.1

In this paper, we empirically examine the impact of ballot richness on collective decision-

making, with a particular focus on information aggregation. In this context, traditional rules

utilizing dichotomous votes, such as majority rule systems, exhibit two primary limitations:

(i) they assign equal weight to all participating members, regardless of the quality of their

information and (ii) entirely disregard the information of those who abstain.2 On the oppo-

site end of the spectrum in terms of ballot richness, is the system we call continuous voting

(CV hereafter), where voters have the flexibility to endogenously allocate weights to their

votes. Under such a mechanism, voters can adjust the weight they assign to their votes based

on the quality of their information, placing more weight on better information. In equilib-

rium, voters have incentives to select optimal weights that implement efficient decisions for

any given information structure.3,4 The question is whether the desirable properties of this

additional flexibility might be overturned by the additional complexity of the rule and the

1This body of literature has primarily focused on preference aggregation. Exceptions can be found in
Ahn and Oliveros (2016) and Bouton et al. (2017).

2Abstention can arise in equilibrium as shown in Feddersen and Pesendorfer (1996). Such behaviour has
been observed in the laboratory (see, e.g., Battaglini et al. (2010) and Herrera et al. (2019a)).

3Nitzan and Paroush (1982) characterizes the optimal weights that voters should assign to their votes
in order to fully aggregate information. Chakraborty and Ghosh (2003) and Bouton et al. (2024) show that
such weights emerge in equilibrium when subjects can endogenously decide.

4Núñez and Laslier (2014) show that allocating a discrete amount of votes does not change the equilibrium
outcomes in the case of private values. This implies that allowing voters to endogenously choose the weights
assigned to their votes might lead to a Pareto improvement.
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coordination issues due to the great multiplicity of efficient equilibria.

We present the findings of a laboratory experiment in which groups decide with CV or

with simple majority. First, we assess whether, as predicted by the theoretical model, CV

yields superior welfare compared to majority rule. Second, we examine the voting behaviour

under CV. A distinctive theoretical feature of this voting method lies in its robustness to

variations in the number of voters, the introduction of new participant types, or changes in in-

formation technology. We designed experimental treatments to test for this robustness in the

data. Third, we explore the impact of communication on behaviour and welfare. According

to theoretical predictions, communication can mitigate welfare differences between systems.

To test this prediction, we have treatments where subjects can communicate before voting.

Finally, we investigate participants’ preferences over these voting methods. In the absence

of communication, they should prefer CV, and should be indifferent when communication is

allowed.

Our key findings are as follows. First, in the absence of communication, CV leads to

higher welfare than simple majority although the difference is not always significant and the

magnitude of the difference is smaller than predicted. When communication is introduced,

we do not observe significant differences in outcomes between the two voting rules. Second,

under CV, subjects frequently use partial abstention–assigning higher weights to their vote

when they possess better information. As predicted by the theory, voting behaviour is quite

similar across treatments varying the number of voters, the introduction of new participant

types, and changes in information technology. A notable deviation from our predictions

is that participants with intermediate information assign disproportionately high weights

compared to the most informed subjects. Third, in treatments without communication,

subjects generally favor CV, with the extent of the support correlating with the difference

in payoffs between the two mechanisms experienced in prior parts of the experiment. When

communication is introduced, the preference overwhelmingly shifts toward simple majority.

Our paper contributes to the literature on information aggregation in binary elections.5

Our main contribution with respect to this literature is to allow for divisible votes. By

extending the ballot richness, we allow for the mechanism to fully aggregate information,

even in small electorates. Within this broader literature, our study is particularly related to

research on strategic abstention. A well-established finding in this area is that less informed

voters abstain from voting in equilibrium (Feddersen and Pesendorfer, 1996; McMurray,

2013; Herrera et al., 2019b). Such behaviour has also been observed in the experimental

5See, e.g., Austen-Smith and Banks (1996); Feddersen and Pesendorfer (1997, 1998); Myerson (1998);
Bhattacharya (2013); Bouton et al. (2018); Barelli et al. (2019). Various predictions of these theories have
been tested using laboratory experiments (see, for example, Ladha et al. (1996); Guarnaschelli et al. (2000);
Bhattacharya et al. (2014); Bouton et al. (2017)).
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data (Battaglini et al., 2010; Morton and Tyran, 2011; Mengel and Rivas, 2017; Herrera

et al., 2019a). Our experiment shows that when voters have access to a richer ballot space,

full abstention declines significantly. Instead, voters express their views while making use of

partial abstention, allowing them to assign greater voting power to better-informed partici-

pants without completely silencing the less informed ones.6

Our experiment also contributes to the growing literature on how groups select elec-

toral rules to make decisions. Engelmann and Grüner (2017) examine the choice of voting

thresholds for adopting reforms at the interim stage, where individual preferences are al-

ready realized. Their findings highlight that preferences are shaped by both self-interest and

efficiency concerns.7 Weber (2020) and Hoffmann and Renes (2022) analyse rule selection

at both the ex-ante and interim stages, documenting significant divergences in preferences

between these stages. Our study complements this literature in two ways. First, we focus on

information aggregation in a common-value setting, where individual interests and efficiency

objectives are aligned. This eliminates the tension between self-interest and group welfare,

which in turn reduces the potential divergence in rule preferences across the ex-ante and

interim stages. Second, we investigate individual preferences for voting mechanisms with

differing levels of ballot richness, providing new insights into the implications of expanding

voters’ decision-making flexibility.

2 Theory

The primary goal of our theoretical analysis is to characterize the equilibria under Con-

tinuous Voting and compare their properties to those under Majority Voting. We adapt

the framework from our companion paper Bouton et al. (2024) to reflect the experimental

constraints, such as finite and symmetric signals. Proofs can be found in Appendix A.

2.1 Setup

A finite number of n > 2 voters must decide between two alternatives, A or B. Voters have

common values and have uncertainty about which is the superior alternative. In particular,

there are two possible states of the world, denoted by ω ∈ {α, β}. We denote the probability

6Campbell et al. (2022) analyse an alternative mechanism where voters can delegate their votes to others,
thereby concentrating voting power with those who possess greater expertise. However, this comes at the cost
of the delegating voters forfeiting their ability to convey their own information. In contrast, the mechanism
we propose allows voters to empower experts while still retaining the ability to express their own information.

7Engelmann et al. (2023) extend this analysis by investigating rule choices made under the veil of
ignorance, where individual preferences are not yet known. See also Blais et al. (2015) and Bol et al.
(2023) for related findings.
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of state α by Pr (α). Voters’ preferences are such that

u (A |α) = u (B |β ) = 1 (1)

u (B |α) = u (A |β ) = 0

where u (x |ω ) denotes the utility if alternative x is chosen in state ω.

Information Structure. The state of the world cannot be observed directly, but each voter

i receives an informative signal si. These signals are of heterogeneous quality, reflecting the

fact that citizens differ in their expertise on the issue at hand. Specifically, each citizen is

endowed with information quality pi ∈ P , where P is a non-singleton finite set in (1
2
, 1).

Precisions are drawn independently across players according to a common probability dis-

tribution F . We denote the set of signals by S = {spω | ω ∈ {α, β}, p ∈ P}. Conditional on

the draw of pi, the citizen draws her signal, either spiα or spiβ , according to the following:

Pr(si = spiω | pi, ω) = pi, P r(si = spi−ω | pi, ω) = 1− pi.

That is, each citizen knows her signal precision pi, and receives a correct signal on the state

with probability pi. We denote by tpω = Pr(spω |α)
Pr(spω |β)

= ( p
1−p)(1(ω=α)−1(ω=β)) the type associated

with signal spω. The type space is T = { p
1−p | p ∈ P} ∪ {

1−p
p
| p ∈ P} and we denote by ti

the type of voter i.

In order to make the problem interesting, we assume that the information structure is

such that it is not always optimal to follow the prior. In other words, we assume that the

maximum precision is high enough that there are realizations for which it is optimal for the

group to go against the prior.8

The voting rules. We consider two voting rules. Under Majority Voting (MV, hereafter),

agents must choose a vote vi ∈ V MV = {−1, 0, 1}, where vi = 1 indicates a vote for A,

vi = −1 a vote for B, and vi = 0 indicates abstention. Under Continuous Voting (CV,

hereafter), each voter must choose a number vi ∈ V CV = [−1, 1]. Under both rules, A (B)

is implemented if
∑

i vi > 0 (< 0), with ties broken randomly.

Profiles and equilibrium. A (symmetric) strategy profile is characterized by a mapping

σ : T → ∆(V ), associating a (possibly random) vote from the ballot space V to each possible

8Formally, we assume that
(
1−maxP
maxP

)n ≤ Pr(α)
1−Pr(α) ≤

(
maxP

1−maxP

)n
.
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type. Slightly abusing terminology, we say that a profile σ is efficient if

Pr(α | t1, . . . , tn) > 1
2
⇒

n∑
i=1

σ(ti) > 0

Pr(α | t1, . . . , tn) < 1
2
⇒

n∑
i=1

σ(ti) < 0.

When the prior is even, it is often relevant to focus on double-symmetric profiles, i.e. such

that σ(t) = −σ(1/t) for all t. Throughout, we focus on the notion of Bayes-Nash equilibrium

(henceforth equilibrium). We say that an equilibrium σ is non-trivial if Prσ(A) ∈ (0, 1).

2.2 Equilibrium Analysis and Welfare

We start by a result underlining the efficiency of CV.

Proposition 1. Under CV, when the prior is even, there are double-symmetric, efficient

equilibria σ, such that:

σ(t) = κ log(t) with κ ∈
(

0,
(
log
(

max P
1−max P

))−1
]

Under the equilibrium described in Proposition 1, voters pick optimal weights for infor-

mation aggregation given their signal precisions, as described in the seminal result of Nitzan

and Paroush (1982). As this strategy profile is efficient in a common value game, it is an

equilibrium by the standard argument of McLennan (1998).9

Unlike typical findings in the literature on strategic participation, the equilibria described

in Proposition 1 do not feature full abstention. All voters partially abstain unless they have

maximum precision, and weights increase with signal precision. Notably, this equilibrium

is robust to changes in the information structure: equilibrium strategies are independent of

the precision distribution, the number of voters and the addition of new precisions to the

initial set P .10

Proposition 1 highlights that there is a great multiplicity of efficient equilibria under CV.

There is actually a continuum of such equilibria, for all the different values of κ. The efficiency

of CV thus relies on the ability of voters to coordinate on the same efficient equilibrium

strategy. As discussed in the Introduction, there is evidence that such coordination often

proves quite challenging in practice.

9The proof of Proposition 1 is analogous to Proposition 2 in Bouton et al. (2024), and is therefore
omitted.

10Provided that maxP does not change.
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There might also exist other efficient equilibria beyond those outlined in Proposition 1.

For a small electorate, minor deviations from the described strategies can still constitute an

equilibrium (for a fixed perturbation size ε, this happens if for any set of signal realizations,

the posterior is sufficiently far from 1/2). Yet, there are at least two cases in which every

efficient equilibria must belong to the set characterised in Proposition 1: when the electoral

size n becomes large or when (in an extended model) F has full support on (1
2
,maxP ].

Finally, note that Proposition 1 only deals with the case of an even prior. Yet, the

result extends to the case of an uneven prior: CV remains efficient, and the following

symmetric strategy profiles constitute efficient equilibria: σ(t) = κ (c+ log(t)), where c =
1
n

log
(

Pr(α)
1−Pr(α)

)
and κ ∈

(
0,
(
log
(

max P
1−max P

)
+ |c|

)−1
]
.

We now turn our attention to equilibria under MV. We say that a strategy σi : T →
∆({−1, 0, 1}) is a monotone cutoff strategy if the support of σi(ti) is a (weakly) increasing

correspondence of ti and if σi(ti) is a pure action in {−1, 0, 1} for all but at most two types

(i.e. the cutoffs).

Proposition 2. Under MV, a non-trivial equilibrium always exists. In any such equilibrium,

each player employs a monotone cutoff strategy.

Proposition 2 indicates that (non-trivial) equilibrium strategies under MV can be de-

scribed by two cutoffs. Each voter votes for B (i.e. −1) when her type falls below the lowest

cutoff, and for A (i.e. 1) if it falls above the highest cutoff, while she abstains if it falls in

between the two cutoffs. Mixing is possible if a voter’s type coincides with one of the two

cutoffs.

We now focus on the comparisons of CV and MV under their best equilibria. We say

that a strategy profile σ (strictly) dominates another one τ if the ex-ante probability of

implementing the correct outcome (A in α and B in β) is (strictly) higher in σ than in τ .11

Proposition 3. The best equilibrium under CV dominates the one under MV. When the

prior is even, for any non-singleton finite set of signal precisions P ⊂ (1/2, 1), there exists

n(P ) such that if n is even or if n ≥ n(P ), then the dominance is strict.

The intuition for Proposition 3 is that extending the strategy space of players in a com-

mon value game can only allow voters to reach a better equilibrium.12 More precisely, we

know that (i) there are efficient equilibria under CV that are not feasible under MV since

they involve partial abstention, and that (ii) these efficient equilibria dominate any feasible

11Note that this dominance relation is consistent with our efficiency notion since any efficient profile
dominates any non-efficient one.

12This result is reminiscent of the finding of Ahn and Oliveros (2016) that Approval Voting dominates
other voting rules in multi-candidate elections because of its richer ballot space.
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strategy profile under MV, i.e., any profile for which each voter either votes “fully” in favor

of one alternative, or abstains. The precise condition for (ii) to hold strictly is that the

number of voters n is even, or higher than a constant n(P ), which is typically quite low. For

instance, the condition always holds strictly in committees of at least 5 voters if the highest

and lowest precisions differ by at least 0.1. The dominance of CV over MV is thus strict for

all our experimental parameters, as described in Section 3 below.13

There are three caveats to this result. First, by expanding the strategy space (going

from MV to CV), it could be that CV also produces worse equilibria than MV. However,

in Bouton et al. (2024) we show that the worst equilibrium under CV is no worse than

under MV. Second, the result remains silent on the relative complexity of reaching the most

efficient equilibrium under any of the two rules. On the one hand, the efficient equilibrium

of CV requires (at least approximately) fine-tuning one’s weight as a function on the signal

precision, while the most efficient equilibrium under MV simply consists of abstaining below

a certain level of precision . On the other hand, when the environment (parameters of the

game) varies, equilibrium strategies remain the same under CV, while the abstention cutoffs

may be complex to determine under MV. Finally, there is a great multiplicity of efficient

equilibria under CV, and voters need to coordinate on one of them in order for CV to feature

its desirable properties. By contrast, coordination issues seem less prevalent under MV. For

example, for the experimental parameters, there is a unique pure-strategy double-symmetric

payoff dominant equilibrium under MV. Testing the two rules in the lab allows us to study

how players address these challenges.

Finally, we consider an extended game where the voting stage is preceded by a communi-

cation stage. This communication stage is assumed to be a simultaneous, cheap talk game.

For simplicity, we assume that the set of messages that each player can send coincides with

the set of signals.

Proposition 4. Under communication, there are efficient equilibria under both voting rules.

The intuition for Proposition 4 stems from the simple logic described in Gerardi and

Yariv (2007): under common values, there is an equilibrium of the communication game

where all voters truthfully report their signal and then they all vote for the alternative most

likely to be correct given the set of signal realizations. Note that there exists a multiplicity

of efficient equilibria and that individual votes are not pinned down by the requirement to

play an efficient equilibrium.

13The strict dominance result in Proposition 3 is stated for an even prior. Yet, as we show in Appendix A,
CV also strictly dominates MV for our Asymmetric Prior treatment.
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3 The Experiment

3.1 Experimental Design

We designed various treatments to test the theoretical predictions from Section 2. In the

beginning of the experiment, subjects were randomly divided into groups of 5 or 9, and

these groups were fixed for the rest of the experiment. Except for the voting rule, the set

of parameters was fixed throughout the session. The experiment consisted of three parts. In

the first two parts, groups had to vote for 20 rounds using either MV or CV, with different

rules in the two parts.14 At the beginning of part three, each group had to decide which rule

to use. Each subject chose one of the rules, and one of the decisions was randomly picked

and implemented (i.e. we implemented random dictatorship) for 10 additional periods (with

the same parameters as in parts 1 and 2).

At the beginning of each round, the color of a triangle was chosen randomly to be either

blue or red with probabilities Pr(α) and 1− Pr(α) respectively. Subjects were not told the

color of the triangle, but were told that their goal would be to work together as a group

to guess the color of the triangle. Independently, each subject would observe one ball (a

signal) drawn randomly from an urn with 100 blue and red balls. The exact composition

would depend on their precision. The precision of each voter was private information and

randomly drawn in each round from a commonly known distribution. After observing their

signals, each subject had to vote. The group decision was the color that received more votes,

with ties broken randomly. Subjects’ payoffs was 100 points if the color chosen by the group

was the same as the color of the triangle and 0 points otherwise.

We had different configurations of parameters, i.e., environments, summarized in table 1.

In the environment called Baseline (B), n = 5, Pr(α) = 0.5, the set of different precisions was

{55%, 60%, 95%}, and the likelihood of each precision was 0.15, 0.7 and 0.15 respectively. All

other environments are variations of this one. Under Distribution (D), we change the likeli-

hood of the precisions to 0.25, 0.5 and 0.25 respectively. Under Size (S), we change n = 9.

Under More Types (MT), we increase the set of different precisions to {55%, 60%, 75%, 95%},
and the likelihood of each precision was 0.15, 0.5, 0,2 and 0.15 respectively. Under Asym-

metric Priors (A), we change the prior to Pr(α) = 0.3. Under Communication (C), we allow

subjects to freely communicate before they vote. Table 1 also includes the strategy in the

payoff dominant equilibrium under simple majority.15

14We balanced the two sequences: half of the groups use MV in part 1 and CV in part 2, while the
remaining half followed the opposite order.

15There is multiplicity of equilibria under majority. Table D1 in the appendix summarizes all the equilibria
under majority in symmetric treatments.

9



Prob. of each Precision

Parameters n Prior 55% 60% 75% 95% Chat EπMV EπCV Eq MV vote

Baseline 5 0.5 0.15 0.7 - 0.15 - 76 83 All

Distrib (D) 5 0.5 0.25 0.5 - 0.25 - 85 89 iff pi ≥ 95

Size (S) 9 0.5 0.15 0.7 - 0.15 - 85 91 iff pi ≥ 95

More Types (MT) 5 0.5 0.15 0.5 0.2 0.15 - 82 87 iff pi ≥ 75

Asym Prior (A) 5 0.3 0.15 0.7 - 0.15 - 79 86 A iff pi ≥ 95

B iff pi ≥ 60

Comm. (C) 5 0.5 0.15 0.7 - 0.15 Yes 83 83

Table 1: Summary of all the parameter constellations and equilibrium predictions for Majority Rule.
Underlined parameters indicate differences with the basline set of parameters.

3.2 Experimental Procedures

Experiments were conducted at the Experimental Economics Laboratory at the University

of Valencia (LINEEX) between December 2017 and February 2018. We had 12 independent

groups for each treatment, making a total of 408 participants. Students interacted through

computer terminals, and the experiment was programmed and conducted with the software

z-Tree (Fischbacher (2007)). All experimental sessions were organized along the same proce-

dure: subjects received detailed written instructions (see Appendix F), which an instructor

read aloud. Before starting the experiment, students were asked to answer a questionnaire

to check their full understanding of the experimental design. At the end of the experiment,

the computer randomly selected 2 rounds from part 1, two from part two and one form

part 3, and participants earned the total of the amount earned in these rounds. Points were

converted to euros at the rate of 0.025eper point. In total, subjects earned an average of

14.54e, including a show-up fee of 5e. Each experimental session lasted approximately an

hour.

3.3 Hypotheses

We draw a number of theoretical hypotheses from the equilibrium analysis in section 2 that

we outline below. The first two hypotheses focus on voter behavior in symmetric treatments

without communication. They are direct corollaries of Proposition 1 and Table 1. The

third hypothesis focuses on the Asymmetric treatment. It follows from an extension of

Proposition 1 to asymmetric priors and from Table 1. Finally, the last hypothesis focuses

on welfare comparison across systems, which follow from Proposition 3 and Proposition 4.

Hypothesis 1. Welfare is strictly higher under CV than MV without communication, but

no welfare differences exist under communication.

10



Hypothesis 2. In symmetric treatments without communication, weights increase with sig-

nal precision (strictly under CV).

Hypothesis 3. In symmetric treatments without communication, behaviour under CV is

independent of the environment.

Hypothesis 4. In the Asymmetric Prior environment, voters using CV assign higher weights

to the outcome that is more likely based on the prior.

4 Experimental Results

Our analysis focuses on data from the first two parts of the experiment to avoid selection

issues. In regression analyses, we account for correlation within matching groups. Wel-

fare regressions use the group as the unit of observation, while analyses of behaviour and

mechanism choice are conducted at the individual level. Unless stated otherwise, statistical

significance is assessed at the 10% level.

4.1 Welfare

We examine the welfare properties of CV and MV by analysing two metrics: the percentage

of optimal decisions and the average payoffs, summarized in Table 2.

Theoretically, CV should fully aggregate information, allowing voters to replicate the

decisions of a benevolent dictator with access to all the signals. In contrast, MV is only

optimal when communication is allowed. The upper part of Table 2 presents the frequency

of reaching the optimal decision under each mechanism and environment. The table shows

three clear patterns. First, the frequency of adopting the optimal decision is consistently

lower than the theoretical predictions. The deviation is substantial: under CV, the difference

from the theoretical prediction is 17.67%, while for majority, it is 9.93%. Second, consistent

with theoretical predictions, CV yields a higher frequency of optimal decisions than MV in

all treatments without communication, except for the Prior environment.16 When pooling

all treatments without communication, this difference is statistically significant (p < 0.10),

providing support for Hypothesis 1. However, when analysing treatments independently, the

difference is statistically significant only in the More environment. No significant differences

between mechanisms are observed in the presence of communication. Third, communication

16The probability of making the right choice aggregates mistakes of very different natures. Appendix E
disaggregates optimal decisions by group posterior and demonstrates that this pattern holds consistently
across different group posterior beliefs.
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CV MV
Data Eq. Data Eq. Diff. p-value

Percentage Base 80.42 100.00 77.08 91.25 3.33 0.278
Optimal Dist 82.92 100.00 77.92 85.21 5.00 0.292
Decisions Size 80.00 100.00 75.00 87.29 5.00 0.251

More 84.17 100.00 77.92 87.71 6.25 0.097
Prio 75.42 100.00 76.25 90.83 -0.83 0.883
Comm 92.92 100.00 92.92 92.50 0.00 1.000

Payoffs Base 76.25 83.33 72.92 76.25 3.33 0.444
Dist 75.42 88.33 73.33 83.13 2.08 0.705
Size 78.75 87.08 72.92 85.63 5.83 0.091
More 77.50 88.33 72.08 79.38 5.42 0.224
Prio 76.25 80.83 72.92 77.50 3.33 0.476
Comm 80.42 100.00 81.67 100.00 -1.25 0.669

Table 2: Welfare measures under both mechanisms for each environment. Eq displays the equilibrium prediction for the
realised values, Diff displays the difference between CV and MV and p-value displays the statistical significance of
the difference based on linear regressions.

significantly increases the probability of making the right choice under both voting mecha-

nisms (p < 0.01). While this is line with the prediction under MV, it is not with CV. The

magnitude of the effect of communication is also economically meaningful: it increases the

probability of making the right choice by more than 10%.

We reach similar conclusions when we use the complementary measure of welfare of voters’

average payoffs, summarised in the lower part of Table 2. This measure aggregates mistakes

weighted by their cost. Consistently with our previous findings, average payoffs are strictly

higher under CV than majority in all treatments without communication. When pooling

all treatments without communication, this difference is statistically significant (p < 0.05).

However, when examining individual treatments, the difference is statistically different than

zero only in the Size environment. The magnitude of the difference is close to the predicted

one: on average, the predicted difference in payoffs across mechanisms in environments

without communication is 5.21, while in the data this difference is 4.00.17

In order to investigate further the differences in payoffs across mechanisms and to over-

come the problem of having few observations and low statistical power, we simulated 1000

experimental sessions for each independent group based on observed behaviour for each

group.18 Figure 1 displays the cumulative distribution function of the average payoffs in

17Both welfare measures show an increasing trend over the periods played in the first two parts of the
experiment. Our results remain robust when controlling for a common linear time trend across periods.

18In total, we conducted 12,000 simulated sessions for each environment-mechanism combination. Each
session comprised 20 independent simulations to reflect the structure of an actual experimental session. For
each simulation, a state was randomly selected, signals were randomly assigned to participants, and voting
followed the distribution of votes observed in the corresponding group.
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Figure 1: Cumulative distributions of (average) payoffs from 1,000 simulated experimental sessions, each consisting of 20
independent simulations based on observed behaviour (see details in footnote 18). Vertical dashed lines indicate the
average payoffs for each environment and mechanism.

these sessions as well as the average payoff in these simulations. Except for the Distrib en-

vironment, the distribution of payoffs under CV first-order stochastically dominates the one

for MV (or is very close to it).19 As a result, the average payoffs under CV are strictly higher

than average payoffs under MV. However, the magnitude of the difference is not large. Fi-

nally, in line with the theoretical predictions, we find no significant payoff differences across

mechanisms in the presence of communication.

Two main factors explain the relatively small payoff differences across mechanisms when-

ever there is no communication. First, deviations from theoretical predictions in terms of

voting behaviour (see next Section) reduce the expected payoff difference. While in the sim-

ulations the theoretically predicted difference in payoffs is 5.45, the observed difference is

only 2.57—a 52.80% reduction. Second, the study focuses on symmetric signal distributions,

where MV performs relatively well. Allowing for highly skewed signal distributions could sig-

nificantly widen the payoff gap between the mechanisms. For example, using the parameters

from Bouton et al. (2017) would yield a predicted payoff difference of 17.9 (treatments V2

and M2), nearly three times greater than the maximum payoff difference in this experiment.

19The distribution of payoffs under CV first-order stochastically strictly dominates the one under majority
for environments Baseline, Prior and Size. The same happens for More Types except for the two lowest
payoffs out of 12000. For Distrib, this happens for payoffs higher than 70.
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4.2 Voting Behaviour

This section begins by examining voting behaviour in the symmetric treatments without

communication. We then turn to the treatments with an asymmetric prior and communica-

tion in subsections 4.2.1 and 4.2.2. For clarity, data from blue and red signals are pooled.20

For CV to strictly outperform MV, it is essential that voters make use of partial absten-

tion. In our experiment, subjects opt for partial abstention 73.94% of the time under CV.

Both full abstention and full vote are significantly lower than under MV: 4.49% vs 24.25%

and 21.56% vs 75.75% respectively.21 Figure 2 highlights how voting behavior varies with in-

formation quality. Under both systems, full abstention decreases significantly as information

quality improves, while the frequency of casting a full vote increases.22 Under CV, partial

abstention decreases with the quality of information.23

20Table D2 in the appendix displays the average weights under both voting systems for each environment,
signal precision, and signal realization. It also includes tests of differences across signal realizations, based
on linear regressions. We find no significant differences in 20 out of 26 comparisons.

21This pattern is consistent across environments and precisions. In the aggregate, the p-value< 0.01 for
all environments. When looking for each environment and precision separately, all p-values< 0.1 except for
the precision of 95% in the environment Distribution.

22See Table D3 in the Appendix, which reports linear regressions on the probability of “full abstention”
and “full vote” and shows that full abstention significantly decreases with the precision, while full vote
increases with it (under both mechanisms). This result is robust to the inclusion of covariates from the
questionnaire.

23The regression reported in Table D3 shows that the frequency of a partial vote significantly decreases
with the precision of the signal.
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Figure 3 gives a more detailed picture of voting behaviour under CV by showing the

cumulative distribution of weights for different signal precisions. The data reveals a clear

and consistent pattern: voters tend to assign higher weights to more precise signals. With

only a few exceptions in the negative domain, the weight distributions for high-precision

signals stochastically dominate those for lower precision signals.24 The average weights for

each signal and treatment displayed in Figure 4 further illustrate this pattern by showing

the average observed behaviour for each signal in each symmetric treatment. Overall, the

evidence supports Hypothesis 2: on average, under CV, participants place greater weight on

more precise signals.25

A striking prediction under CV is that behaviour should not vary across symmetric

environments. Figure 4 (and Figure C3 in the Appendix) shows that participants’ behaviour

is indeed remarkably similar across treatments. This consistency is particularly noteworthy

given the between-subject design of the experiment: no participant experienced more than

one treatment.26 These findings provide support for Hypothesis 3.

24Figure C3 in the Appendix confirms that this pattern is consistent across all symmetric treatments.
Similarly, Figure C4 shows that the pattern persists across both the first and second half of the block.

25All pairwise comparisons are significantly different (p < 0.01).
26We cannot reject the null hypothesis that weights are consistent across the four main treatments. How-

ever, when we include control variables from the questionnaire, we reject the null hypothesis of consistency
across treatments for signals with 55% precision, primarily due to treatment Distrib, where the average weight
is significantly higher than in the other treatments (4.95 vs 1.94, 2.2, and 1.74). When excluding treatment
Distrib, we find no significant difference in weights (p > 0.80). The results are robust to considering relative
rather than absolute weights. Detailed results are provided in Tables D4 and D5 in Appendix D.
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by signal precision. The efficient equilibrium that assigns the maximum weight on the most informative signal is
indicated by solid gray line.

While voting patterns appear largely consistent across treatments, we identify three clear

deviations from the theoretical predictions outlined in Section 2 in terms of voting behaviour

under CV. First, some participants vote for the colour opposite to their signal (see Figure 3).27

The probability with which they do it decreases with the precision of the signal: on average,

they vote against their signal with probabilities 22%, 11%, 9% and 8% for the precisions of

55%, 60%, 75% and 95% respectively. Second, we observe substantially greater variance than

predicted. If all participants followed equilibrium strategies, we would expect step functions

in the distribution of voting weights. Instead, Figure 3 reveals significant dispersion.28 As

a consequence, low-quality signals may carry disproportionately large weights, potentially

having more impact on the decision than high-quality signals. For instance, participants

with a precision of 60% choose the maximum weight of 20 for 12.44% of the cases, while

participants with a precision of 95% choose a lower weight 41.55% of the time. Third,

and perhaps most remarkably, as Figure 4 indicates, participants attach significantly higher

weights than predicted for signals with intermediate precisions.29

27Voting against the signal is frequently observed in majority voting experiments on information aggrega-
tion. See, for example, Guarnaschelli et al. (2000); Bouton et al. (2017); Mengel and Rivas (2017); Mattozzi
and Nakaguma (2023).

28This is not driven by different groups converging to different equilibria. While there is some hetero-
geneity among groups, the same qualitative finding is found across groups.

29A joint test of coefficients from a linear regression rejects that average weights are proportional to the
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The latter deviation indicates that signals of intermediate precision are overweighted in

group decisions, weakening the influence of more informative signals. One possible explana-

tion is that individuals misjudge the informativeness of different signals. This aligns with

recent findings by Agranov and Reshidi (2023), which show that participants often fail to

fully account for the non-linearities required for accurate Bayesian updating. Instead, they

tend to rely on an updating rule that only partially reflects these complexities, resulting in

behaviour that falls between Bayesian and linear updating. In our data, we reject a linear

relation of weights with respect to the precisions (p < 0.01). In fact, we find that weights are

concave with respect to the precision. Relatedly, Augenblick et al. (2021) finds that individ-

uals tend to overestimate the value of weak signals and underestimate the strength of more

reliable ones. However, a key departure from their findings in our data is that overinference

occurs primarily among subjects with intermediate-level signals (60% precision), whereas it

is absent among those with the least informative signals (55% precision).30

Under MV, there is a multiplicity of pure-strategy equilibria in all environments but

there is a unique double-symmetric payoff-dominant equilibrium for each environment (see

Table D1 in the Appendix). Comparing these payoff dominant equilibria across environ-

ments, we should observe stark differences in behaviour. In the baseline treatment, all voters

should cast their vote according to their signal, with no one abstaining. In the other main

treatments, however, only voters with a precision of 75% or higher should vote, while the rest

should abstain. Contrary to these predictions, the data reveal little variation in behaviour

across treatments (see Figure D6 in the Appendix). This discrepancy may be attributed

to the relatively small utility differences between equilibria. As shown in Table D1 in the

Appendix, the probability of selecting the correct alternative differs by no more than 0.045

between the Pareto-dominant and Pareto-inferior equilibria across treatments. Similarly to

what we observed under CV, and in line with Hypothesis 2, weights under MV tend to

increase with signal precision. All pairwise comparisons are statistically significant, except

between signals of 75% and 95% precision.31

4.2.1 Compensating for Asymmetries

When the prior is uneven, as in the Asymmetric Prior environment, voters need to compen-

sate for the differing likelihoods of the two states, requiring stronger evidence to select the

log-likelihood ratios (F3,47 = 41.64, p < 0.01). All pairwise comparisons are significant with p < 0.1. If we
add the covariates from the questionnaire, the general result holds but the pairwise comparisons of average
weights with precisions 60%, 75% and 95% are no longer significant.

30See Benjamin (2019) for a comprehensive survey on biases in belief updating.
31The equality of behaviour between precisions of 75% and 95% is consistent with the equilibrium pre-

dictions reported in Table D1, where both types vote in the same manner across all equilibria.

17



less likely state. In this section, we assess the extent to which voters were able to compen-

sate under both mechanisms. Table D2 in Appendix D displays the average weights for each

mechanism, environment, precision and signal colour.

Consistent with Hypothesis 4, we find evidence of compensation under both mechanisms.

Under CV, we find some evidence of over-compensation by voters in comparison to the

theoretical predictions. On average, voters should compensate by adjusting their weights

by 1.15 when voting for blue versus red. In the data, the average weight difference is

4.21. The difference in weights between blue and red signals for precisions of 55% and

60% in Asymmetric Prior are 3.43 and 4.17, respectively, which are larger than any other

differences observed. However, these differences are not consistently significant. For the 55%

precision, there is no significant difference in weight across colours in treatments without

communication, and while the difference in the Asymmetric Prior is significantly larger than

in the Baseline, it is not significantly different from other environments. With precision 60%,

all pairwise comparisons are highly significant (p < 0.01), and we reject the null hypothesis

that the differences are equal across treatments. At the highest precision, we observe no

significant differences compared to other environments.

Under MV, we should also observe compensation in favour of red.32 Figure C5 (in

Appendix C) shows that, similar to the main treatments, voters mix at the aggregate level

across all types. While the reaction is less pronounced than predicted, we observe differences

across signal colours. As shown in Table D2 in Appendix D, the average weight for red signals

is significantly higher with precisions 55% and 60% (but not for 95%). The magnitude of

this effect is also sizeable: while the differences across signals in other environments and

precisions do not exceed 2.72, the differences in this case are 5.03 and 5.62 for 55% and 60%

respectively.33

4.2.2 The Effect of Communication

In this section, we examine the effect of communication on voting behaviour. As discussed in

Section 2, there exist equilibria under both mechanisms in which voters share their private

information with the group and vote according to the group posterior. We begin by examin-

ing whether participants reveal relevant information during the communication treatments

32According to the theoretical predictions, voters with a blue signal should only vote for the color of their
signal if their precision is 95%, while those with a red signal should vote for red if their precision is 60% or
higher, and abstain otherwise.

33We reject the null hypothesis that weight differences across colours are consistent across majority treat-
ments without communication. For precisions of 55% and 60%, there are no significant differences between
the Asymmetric Prior and Baseline environments. However, significant differences emerge when compared
to other symmetric treatments without communication. At the highest precision, no significant differences
are observed between the Asymmetric Prior and other environments.
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and then assess the extent to which private information influences voting decisions after

accounting for the group posterior.

Do participants reveal relevant information before the vote in the communication treat-

ments? The answer is unequivocally yes. On average, groups exchange 10.40 messages per

round. In 47.71% of these messages, participants discuss both the precision and the colour

of their signals, while an additional 26.24% focus solely on the colour. Since CV has efficient

equilibria even without communication, one might expect weakly higher levels of commu-

nication under MV. However, we find no economically significant differences between the

mechanisms in terms of communication volume or types of messages.34

Next, we investigate whether the average voting weights reflect participants’ private infor-

mation or whether, conditional on the group posterior, these weights remain largely invariant

across signals. Figure 5 presents the average weights assigned to the colour supported by

the group posterior for all signals, separated by the strength of the posterior, under both

mechanisms.35 The most likely outcome is normalised to blue, indicating that blue signals

align with the group posterior, whereas red signals do not. The figure reveals a clear pattern:

conditional on a group posterior, there is little variation in average weights across different

signals. Even when a signal contradicts the group posterior, its corresponding average weight

is similar to that of a signal that aligns with the posterior.

To further quantify this relationship, we estimate the weight as a function of the log-

likelihood of the signal and the log-likelihood of the group posterior. The results show that

the coefficient for the log-likelihood of the signal is relatively small in magnitude and statis-

tically insignificant under both mechanisms. This suggests that, once the group posterior is

accounted for, private information has little to no influence on voting behaviour.

Our findings contrast with those in Guarnaschelli et al. (2000), who study communica-

tion through straw polls before voting in an information aggregation experiment with binary

states and signals. In their setting, despite more than 90% of participants truthfully reveal-

ing their signals, their private information still significantly influences the final vote, leading

to substantial differences in outcomes across mechanisms. In our experiment, however, pri-

vate information does not significantly affect voting behaviour under either mechanism after

controlling for the group posterior.36

34See Table D7 for a summary of message statistics across mechanisms.
35For comparability, weights under MV are normalised to {−20, 0, 20}.
36Relatedly, Goeree and Yariv (2011) and Le Quement and Marcin (2020) also examine the effect of com-

munication on voting behaviour and outcomes. In contrast to us, they focus in a setting with heterogeneous
preferences.
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Figure 5: Average weights for each signal by mechanism and posterior. The most likely outcome is normalized to blue,
meaning blue signals align with the group posterior, while red signals do not.

4.3 Choice of mechanisms

In part 3 of the experiment, subjects were asked to select a voting mechanism that would

be used for 10 additional rounds. In a frictionless setting—where mechanisms impose

no differences in cognitive effort or time, and preferences depend solely on expected pay-

offs—participants should unanimously opt for CV in the absence of communication. How-

ever, in sessions without communication, only 58.33% of subjects preferred CV over MV.

As Figure 6 shows, support for CV varied across treatments but consistently exceeded that

for MV in environments without communication. By contrast, under communication, where

there are no clear theoretical predictions, around 88% of participants opted for MV.

What drives these preferences? To explore this question, we conduct an exploratory

analysis using a linear probability model to predict the likelihood of selecting CV in part 3,

as summarised in Table 3. Our findings indicate that realised payoffs play a significant

role: higher realised payoffs under CV increase the likelihood of choosing it, while higher

realised payoffs under MV have the opposite effect, with a similar magnitude. The effect is

economically meaningful: a payoff difference of 10 (out of 100) corresponds to a 15 percentage

point increase in the probability of selecting CV.37

37We obtain similar results when using simulated payoffs instead of realised payoffs in treatments without
communication. This alternative measure mitigates the impact of random variation due to limited observa-
tions. However, it is not observed by subjects, and constructing simulated payoffs under communication is
not straightforward.
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Figure 6: Support for each mechanism in part 3 of the experiment.

By contrast, we find no robust or economically significant effects for other potential

determinants, including group decision time, cognitive complexity, and mechanism order.

While decisions under CV took 28% longer on average, this had no systematic impact on

preferences. Likewise, cognitive ability—proxied by control question completion time—shows

no clear effect, nor does the order in which participants experienced the mechanisms. The

only other strong predictor is communication: when participants can discuss before voting,

support for CV drops significantly.
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Dep. Var.: System Choice (1) (2) (3) (4) (5) (6)

Payoff CV 0.015*** 0.015*** 0.016*** 0.016*** 0.016*** 0.017***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Payoff MV -0.018*** -0.018*** -0.016*** -0.016*** -0.016*** -0.014***
(0.002) (0.002) (0.002) (0.002) (0.003) (0.002)

Time CV -0.004 -0.001 -0.002 0.000
(0.004) (0.008) (0.009) (0.007)

Time MV -0.014** -0.017* -0.016 0.006
(0.006) (0.010) (0.012) (0.010)

Time Control Quest. CV -0.084 -0.089 -0.121*
(0.070) (0.073) (0.068)

Time Control Quest. MV -0.018 -0.011 -0.039
(0.060) (0.062) (0.061)

Order (CV First) 0.021 0.107
(0.126) (0.106)

Communication -0.450***
(0.086)

Constant 0.662** 0.715* 0.695* 0.773* 0.767* 0.388
(0.274) (0.386) (0.391) (0.391) (0.390) (0.310)

Questionnare Controls X X X X X
Observations 408 408 408 408 408 408
Clusters 72 72 72 72 72 72
R-squared 0.234 0.247 0.270 0.275 0.275 0.324

Table 3: Linear regression of the probability of voting for CV in part 3. Standard errors are clustered at the matching group
level.
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5 Conclusions

In this paper, we present a laboratory experiment in which participants endogenously de-

termine the weight of their votes. Our findings reveal that welfare under CV is generally

higher than under MV, though the observed difference is smaller than theoretical predic-

tions suggest. When free communication is allowed, the performance gap between the two

mechanisms disappears. In terms of voting behaviour we find that, while the main compar-

ative statics of the model are broadly supported by the data, there are notable deviations.

The most significant is that voters with intermediately informative signals tend to assign

disproportionately high weights to their votes, diluting the influence of highly informative

signals.

This study opens several avenues for future research. One potential direction is to ex-

amine CV in asymmetric settings, where it is expected to outperform majority voting even

without differences in voter precision. Another promising area is testing the mechanisms

in more natural settings where participants may be uncertain about their own precision or

the information technology of others. In our controlled experiment, confidence and per-

formance were necessarily linked, but in more natural environments, confidence may not

accurately reflect actual performance. This discrepancy could have important implications

for the information-aggregating properties of both mechanisms (see, e.g., Kartal and Tyran

2022; Enke et al. 2023). Investigating how CV and MV perform under these conditions would

offer valuable insights into the robustness and real-world applicability of both systems.
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A Proofs

A.1 Proof of Proposition 2

We start by establishing the following key lemma, where we use the notation σ̂i(ti) to denote

a possible realization of the random variable σi(ti).

Lemma 1. For any profile σ, interim utilities associated to each action are such that:

• Ui(1 | ti)− Ui(0 | ti) is increasing in ti, and strictly so whenever

Pr(
∑

j 6=i σ̂j(tj) ∈ {−1, 0}) > 0.

• Ui(0 | ti)− Ui(−1 | ti) is increasing in ti, and strictly so whenever

Pr(
∑

j 6=i σ̂j(tj) ∈ {0, 1}) > 0.

Proof. We write the proof for the first bullet point (the remaining one follows a similar

argument). Noting ∆i(ti) := Ui(1 | ti) − Ui(0 | ti) for the difference of (expected) interim

utilities, we have:

∆i(ti) = Pr(
∑
j 6=i

σ̂j(tj) = 0 | ti)E

[
ui(A)− ui(B)

2
| ti,

∑
j 6=i

σ̂j(tj) = 0

]
+

Pr(
∑
j 6=i

σ̂j(tj) = −1 | ti)E

[
ui(A)− ui(B)

2
| ti,

∑
j 6=i

σ̂j(tj) = −1

]

=
0∑

k=−1

1

2

∑
t−i∈Tn−1

Pr(t−i | ti) Pr(
∑
j 6=i

σ̂j(tj) = k)(Pr(α | ti, t−i)− Pr(β | ti, t−i))

=
0∑

k=−1

1

2

∑
t−i∈Tn−1

Pr(
∑
j 6=i

σ̂j(tj) = k)
Pr(ti, t−i)

Pr(ti)

(
Pr(α, ti, t−i)

Pr(ti, t−i)
− Pr(β, ti, t−i)

Pr(ti, t−i)

)

=
0∑

k=−1

1

4

∑
t−i∈Tn−1

Pr(
∑
j 6=i

σ̂j(tj) = k)

(
Pr(ti, t−i | α)

Pr(ti)
− Pr(ti, t−i | β)

Pr(ti)

)

=
0∑

k=−1

1

4

∑
t−i∈Tn−1

Pr(
∑
j 6=i

σ̂j(tj) = k)

(
Pr(t−i | α)

Pr(ti | α)

Pr(ti)
− Pr(t−i | β)

Pr(ti | β)

Pr(ti)

)

=
0∑

k=−1

1

2

∑
t−i∈Tn−1

Pr(
∑
j 6=i

σ̂j(tj) = k)

(
Pr(t−i | α)

ti
1 + ti

− Pr(t−i | β)
1

1 + ti

)
.

This concludes the proof of the lemma.

To conclude the proof of Proposition 2, let σ be a non-trivial equilibrium. If i is a voter such

that σi(ti) is a singleton independent from ti, then she follows a monotone cutoff strategy.
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Consider now i such that there exists ti, t
′
i with Pr(σ̂i(ti) 6= σ̂i(t

′
i)) > 0, we say that i is a

switcher. As σ is a non-trivial equilibrium such that (i) votes are independent across voters,

and (ii) votes cannot differ by more than 2 for any given voter, we have two cases to consider:

• if Pr(
∑

j∈N σ̂j(tj) = 0) > 0, as i is a switcher, it must be the case that either

Pr(
∑

j 6=i σ̂j(tj) = 0) > 0 (this happens if i plays 0 with positive probability) or

Pr(
∑

j 6=i σ̂j(tj) = −1) Pr(
∑

j 6=i σ̂j(tj) = 1) > 0 (this happens if i only plays −1 and

1 with positive probability). In both cases, we have that Ui(1 | ti) − Ui(0 | ti) and

Ui(0 | ti)−Ui(−1 | ti) are strictly increasing in ti by Lemma 1. As σ is an equilibrium,

σi must be a monotone cutoff strategy.

• if Pr(
∑

j∈N σ̂j(tj) = 0) = 0, then Pr(
∑

j∈N σ̂j(tj) = −1) Pr(
∑

j∈N σ̂j(tj) = 1) > 0.

As i is a switcher, we have that either Pr(
∑

j 6=i σ̂j(tj) = −1) Pr(
∑

j 6=i σ̂j(tj) = 1) > 0

(this happens if i plays 0 with positive probability) or Pr(
∑

j 6=i σ̂j(tj) = 0) > 0 (this

happens if i only plays −1 and 1 with positive probability). As for the previous case,

it follows that σi must be a monotone cutoff strategy.

We have thus established that any non-trivial equilibrium must be in monotone cutoff strate-

gies.

To conclude, we show that a non-trivial equilibrium exists. Consider first the case with

n odd, that is n = 2q + 1. Consider the strategy profile σ where q voters always vote

1, q voters always vote −1 and the last voter i follows her signal, that is σi(t
p
α) = 1 and

σi(t
p
β) = −1 for all p ∈ P . This strategy profile is such that Ui(σ) > 1/2. By the argument

of McLennan (1998), the best strategy profile τ must be an equilibrium and it must be such

that Ui(τ) ≥ Ui(σ) > 1/2. Hence it must be that τ is a non-trivial equilibrium (otherwise

the expected utility would be 1/2, a contradiction). Finally, a similar argument can be made

when n is even. We conclude that a non-trivial equilibrium always exists.

A.2 Proof of Proposition 3

Proof. Consider first the case where n is even, that is n = 2q. Assume that an efficient

equilibrium σ exists. Let p, p′ ∈ P be such that p < p′. Let t−i be a type profile such

that q voters receive tpβ, while (q − 1) voters receive tpα. By efficiency of σ, we must have

Pr(σ̂i(t
p′
α ) +

∑
j σ̂j(tj) > 0) = 1, as A must be chosen if i receives a type tp

′
α , and Pr(σ̂i(t

p
β) +∑

j σ̂j(tj) < 0) = 1, as B must be chosen if i receives a signal tpβ. Hence, it must be that

σi(t
p′
α ) = 1 and σi(t

p
β) = −1. Consequently, for a signal profile s such that q voters receive spβ,

while q voters receive tp
′
α , we have

∑
i∈N σi(ti) = 0, while efficiency requires

∑
i∈N σi(ti) > 0.

We thus obtain a contradiction.
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Consider now the case where n is odd, that is n = 2q + 1. Assume that an efficient

equilibrium σ exists. Let p := minP and p′ := maxP > p. Consider a type profile t0 such

that q voters receive tp
′
α while (q + 1) voters receive tpβ. Observe that Pr(α | t0) > 1/2 if and

only if (
p′

1− p′

)q
>

(
p

1− p

)q+1

⇔ q >
ln( p

1−p)

ln(p
′(1−p)

(1−p′)p)
:= q(P ).

Let n(P ) := 2bq(P )c + 3 and assume n ≥ n(P ), so that q > q(P ). Consider a family of

type profiles tk for k ∈ {0, . . . , q} such that (q + 1) voters receive tpβ, k voters receive tpα and

(q− k) voters receive tp
′
α . The sequence Pr(α | tk) is strictly decreasing, and as n > n(P ), it

holds that Pr(α | t0) > 1/2 > Pr(α | tq).

There exists k ∈ {0, . . . , q − 1} such that Pr(α | tk) ≥ 1/2 ≥ Pr(α | tk+1) with at

least one strict inequality. Without loss of generality, we can assume that Pr(α | tk) >

1/2 ≥ Pr(α | tk+1) and we can further assume that Prσ(B | tk+1) > 0 (otherwise, if

Pr(α | tk) > 1/2 = Pr(α | tk+1) and Prσ(B | tk+1) = 0, we can apply the argument to tk+1

and tk+2, which are such that Pr(α | tk+1) = 1/2 > Pr(α | tk+2) and Prσ(A | tk+1) = 1 > 0).

As Prσ(B | tk+1) > 0, we must have Pr(
∑

i∈N σ̂i(t
k+1
i ) ≤ 0) > 0. As σ is efficient, we must

also have Pr(
∑

i∈N σ̂i(t
k
i ) > 0) = 1. Hence, for any voter i, it must hold that Pr(σ̂i(t

p′
α ) >

σ̂i(t
p
α)) > 0, so that Pr(σ̂i(t

p
α) ≤ 0) > 0.

Consider now the type profile t for which all voters receive the type tpα. We have Prσ(B |
t) > 0 and Pr(α | t) > 1/2, a contradiction with the assumption that σ is efficient.

To conclude, if n is even, or if n is odd with n ≥ n(P ), there is no efficient equilibrium.

To complement the proof, we first plot the value of n(P ) as a function of the minimal

and maximal precisions of P .
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Figure A1: Bound n(P ) as a function of minimal and maximal precisions.

We observe that n(P ) is typically quite low. When the prior is even, CV strictly domi-

nates MV for committees of at least 5 voters provided that the highest and lowest precisions

differ by at least 0.1.

Finally, for the Asymmetric Prior treatment (A), we observe that the same reasoning as

in the proof of Proposition 3 can be applied. This derives directly from the observation that

Pr(α | s0.55
α , s0.55

α , s0.55
α , s0.55

β , s0.55
β ) < 1/2 < Pr(α | s0.95

α , s0.55
α , s0.55

α , s0.55
β , s0.55

β ).
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B Questionnaire Data

In this section we describe the data collected in the questionnaire at the end of the experiment

(see Table B1) and show how these vary across treatments (see Table B2). Variables Party

and Religion were not included in the regressions in Appendix D.

Variable Description

Gender Female = 1; Male = 0

Age Age in years

Economics = 1 if the major is Economics. Originally, this was a categorical
variable with the options ”Law” (9.07%), ”Economics” (14.95%),
”Philology / Literature” (2.45%), ”Physics/Chemistry/Biology” (2.70%),
”Engineering” (17.40%), ”History” (1.23%), ”Politics” (1.72%),
”Mathematics” (1.23%), ”Others” (49.26%).

Year Years of studies.

Religiosity Degree of religiosity. Likert scale from 1 to 4.

Religion Categorical variable: Christian (53.19%), Hinduist (0),
Muslim (1.23), No religion (37.99), Other Religion (1.47), Prefer
not to answer (6.13). Not included in the regressions.

Politics Interest in Politics. Likert scale from 1 to 4.

Party Categorical variable: Podemos (16.67%), PP (14.71%),
PSOE (12.01%), EUPV-EV (2.94%), UPvD (1.23%),
Primavera (0.98%), Others (31.86%), Dk/Na (19.61%)
Not included in the regressions.

Risk Tendency to take risks. Likert scalefrom 1 to 5.

Trust Tendency to trust people. Likert scale from 1 to 5.

Experienced = 1 if the subject has participated in 4 or more experiments. Origi-
nally, this was a categorical variable about participation in previous
experiments: “Never”, “1-3”, “4-6”, and “More than 6”.

Siblings Number of siblings.

Table B1: Description of variables in the questionnaire data.
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Baseline Distrib Prior03 Size MoreTyp Comm. p-value

Gender 0.62 0.67 0.62 0.54 0.48 0.62 0.31
Age 20.90 20.58 21.07 20.80 19.93 20.78 0.01
Economics 0.13 0.17 0.18 0.13 0.18 0.12 0.83
Year 3.05 2.87 3.28 2.95 2.52 3.00 0.11
Religiosity 0.65 0.68 0.68 0.70 0.67 0.68 1.00
Politics 1.50 1.48 1.47 1.52 1.58 1.78 0.17
Left wing 0.37 0.37 0.33 0.31 0.27 0.40 0.67
Risk 2.67 2.57 2.63 2.65 2.72 2.48 0.66
Trust 2.40 2.52 2.28 2.57 2.38 2.43 0.58
Experience 0.50 0.28 0.38 0.41 0.37 0.33 0.22
Siblings 1.40 1.28 1.27 1.33 1.18 1.13 0.68

Table B2: Summary statistics by environment groups. The last column reports the p-value of an F-test of equality across
treatments.
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C Additional Figures
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Figure C1: Temporal evolution of average payoffs. ’MC’ denotes groups that used MV in Part 1 and CV in Part 2, while
’CM’ refers to groups that experienced the reverse order.
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Figure C2: Temporal evolution of percentage of adopting the right decision at the group level. ’MC’ denotes groups that used
MV in Part 1 and CV in Part 2, while ’CM’ refers to groups that experienced the reverse order.
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D Additional Tables

Min Prec Vote
55% 60% 75% 95%

Baseline 0.757 0.754 – 0.751
Distribution 0.802 No eq. – 0.848
Size 0.820 0.820 – 0.852
More Types 0.868 0.871 0.897 No eq.

Table D1: Pure-strategy double-symmetric equilibria in the symmetric treatments under majority rule, along with their ex-
pected payoffs. Min Prec Vote denotes the minimum precision level at which subjects vote, with those having
lower precision choosing to abstain. The equilibrium that is Pareto-efficient is highlighted in bold.

Av Weight CV Av Weight MV
Environment Prec. sb sr dif p-value sb sr dif p-value

Baseline 55 3.32 1.55 1.77 0.319 -0.27 2.45 2.72 0.341
60 9.87 9.31 0.56 0.246 11.52 13.26 1.74 0.220
95 16.53 15.82 0.72 0.503 18.20 19.18 0.97 0.485

Distrib 55 5.75 5.20 0.55 0.665 5.52 3.50 2.02 0.210
60 9.40 9.57 0.16 0.818 11.90 11.59 0.31 0.767
95 15.78 16.23 0.45 0.709 19.43 18.19 1.24 0.025

Size 55 2.66 3.69 1.03 0.524 1.66 0.94 0.72 0.668
60 9.39 8.94 0.45 0.554 11.24 11.74 0.50 0.384
95 14.12 16.04 1.92 0.054 13.82 15.89 2.07 0.043

MoreTypes 55 1.58 3.74 2.16 0.058 1.84 0.19 1.65 0.403
60 9.11 7.80 1.31 0.098 10.36 10.87 0.51 0.425
75 12.33 12.40 0.07 0.945 17.32 16.75 0.57 0.724
95 14.20 17.01 2.82 0.049 16.67 16.63 0.03 0.975

Prior 55 2.02 5.44 3.43 0.200 1.28 6.32 5.03 0.037
60 7.27 11.45 4.17 0.011 11.32 16.94 5.62 0.018
95 15.40 17.10 1.70 0.407 14.74 16.25 1.51 0.595

Comm. 55 3.60 2.78 0.81 0.784 4.76 4.05 0.71 0.769
60 5.95 6.89 0.94 0.536 6.46 7.55 1.09 0.670
95 16.69 17.40 0.72 0.563 19.04 17.18 1.86 0.185

Table D2: Average weight for each mechanism, environment, precision and signal color. dif displays the absolute difference
and p-value displays the statistical signifficant of the difference based on linear regressions.
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Without Covariates Including Covariates
All All but All All but

Precisions Environ. Distrib Environ. Distrib

55% 0.104 0.874 0.072 0.819
60% 0.716 0.923
95% 0.826 0.781

Table D4: Test of equality of average weights under CV in symmetric treatments without communication based on linear
regressions.

All Symm. CV Treats All Without Distrib

Without 60% 55% 60% 55%
Covariates 95% 0.909 0.108 95% 0.766 0.780

60% 0.029 60% 0.849

Joint test 0.047 Joint test 0.981

With 60% 55% 60% 55%
Covariates 95% 0.936 0.131 95% 0.812 0.771

60% 0.123 60% 0.786

Joint test 0.085 Joint test 0.985

Table D5: Test of equality of ratio of weights of signals of different precisions among symmetric treatments without commu-
nication. Based on linear regressions.
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Blue Signal Red Signal
Precision Signal Against Abstent. Signal Against Abstent.

Baseline 55% 51.45 26.59 21.97 43.71 23.95 32.34
60% 79.34 10.05 10.62 82.02 9.48 8.50
95% 94.48 5.52 0.00 95.81 4.19 0.00

Distrib 55% 60.42 11.66 27.92 58.66 18.24 23.10
60% 78.02 9.55 12.43 77.27 9.56 13.17
95% 93.82 5.82 0.36 95.00 4.38 0.63

Size 55% 49.12 23.10 27.78 48.48 23.03 28.48
60% 78.19 10.58 11.24 77.18 11.10 11.71
95% 86.65 12.46 0.89 89.72 9.35 0.93

MoreTypes 55% 48.74 23.62 27.64 48.95 20.53 30.53
60% 75.81 8.75 15.44 76.72 10.17 13.10
75% 90.18 8.48 1.34 91.15 7.69 1.15
95% 88.89 8.77 2.34 91.71 5.70 2.59

Prior 55% 51.59 29.94 18.47 59.02 21.86 19.13
60% 74.71 16.52 8.77 91.07 4.84 4.09
95% 90.18 8.93 0.89 91.81 5.60 2.59

Communication 55% 61.15 38.85 0.00 57.67 40.49 1.84
60% 65.60 33.60 0.80 68.44 30.64 0.92
95% 96.67 3.33 0.00 93.87 5.52 0.61

Table D6: Frequencies of voting the signal, voting against or abstaining under Majority for each signal precision and signal
realization in each treatment.

MV CV Overall

Average # of Messages per round 10.88 10.40 10.64
% Precision is mentioned 48.85 51.51 50.18
% Color is mentioned 70.90 73.94 72.42
% Both Precision and Color are mentioned 42.40 47.71 45.05

Table D7: Summary statistics of the chats in the communication treatments.
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E Optimal Decisions By Group Posterior

The probability of making the right choice reported in section 4.1 aggregates mistakes of

very different natures. Some mistakes are more costly than others: mistakes when there is

massive evidence in favour of one of the states is more costly than when the posterior is

very close to 0.5. Figure E1 disaggregates the probability of right decision by posteriors.

In order to circumvent the limitation of the small number of observations for some of the

posteriors, we provide simulations results based on observed behaviour for all treatments

without communication.38 We separate posteriors in five regions: [0, 0.1], (0.1, 0.4), [0.4, 0.6],

(0.6, 0.9), and [0.9, 1]. The figure shows two regularities. First, CV tends to perform better

across most posterior ranges. Second, under both mechanisms, the probability of a correct

decision increases when posteriors are more extreme.
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Figure E1: Probability of taking the optimal decision by posteriors. Posteriors (obtained with all the signals received in the
group) are separated into 5 categories: [0, 0.1], (0.1, 0.4), [0.4, 0.6], (0.6, 0.9), and [0.9, 1].

38In particular, we ran 10,000 simulations for each individual group and mechanism. For each independent
group and each mechanism, we run 10,000 simulations. In each of these simulations, a state is randomly
chosen, the signals are randomly assigned to each of the subjects, and then a vote is casted following the
distribution of votes observed in that group.
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F Experimental Instructions

Thank you for taking part in this experiment. Please read these instructions very carefully.
It is important that you do not talk to other participants during the entire experiment.
In case you do not understand some parts of the experiment, please read through these
instructions again. If you have further questions after reading and hearing the instructions,
please raise your hand out of your cubicle: we will then approach you in order to answer
your questions personally. Please do not ask anything aloud. The rules are the same for all
participants.

During the experiment all sums of money are listed in ECU (for Experimental Currency
Unit). How much you earn depends partly on your own decisions, partly on the decisions
of other participants, and partly on chance. Your earnings during the experiment will be
converted to euros at the end and paid to you in cash. The exchange rate is 40 ECU = 1€.
The earnings will be added to a participation payment of 5€. Your personal earnings will
be paid to you in cash as soon as the experiment is over.

After the experiment, we will ask you to complete a short questionnaire, which we need
for the statistical analysis of the experimental data. The data of the questionnaire, as well
as all your decisions during the experiments will be anonymous.

The experiment you are participating in is a group decision-making experiment. At the
beginning of this experiment, participants will be randomly and anonymously divided into
groups of 5 participants. These groups remain unaltered for the entire experiment, but you
will never be told with whom you were interacting in your group.

The experiment consists of three parts. Your earnings and decisions in each part do
not depend on earnings and decisions in other parts. The instructions for each part of the
experiment will be given at the beginning of that part. Now, we proceed to Part 1 of the
experiment.

INSTRUCTIONS PART 1 / 2

These are the instructions for part 1/2. This part is composed of 20 rounds. The
instructions are going to be the same for all rounds. [Only for part 2: The instructions for
this part will be the same as the instructions of part 1, except for the voting system.]

The Triangle Color

At the beginning of each round, the computer will choose the color of a triangle randomly.
Each time, the triangle will be blue N with 50% probability, and with 50% probability it
will be red N. You will not know the color of the triangle, but each member of your group
will receive a hint. Your objective as a group will be to guess the color of the triangle.

Hint

As a hint of the color of the triangle, each member of your group will observe the color
of one ball, drawn from an urn filled with 100 red and blue balls. The composition of blue
and red balls will depend on the color of the triangle and on your precision (which is
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either 55, 60, or 95). In particular, if your precision is X, the urn from which you will draw
a ball will contain a X number of balls of the color of the triangle, and 100 – X balls of the
opposite color. That is,

• If your precision is 55 and. . .

– the triangle is blue N, then the urn will contain 55 blue balls and 45 red balls.

– the triangle is red N, then the urn will contain 45 blue balls and 55 red balls.

• If your precision is 60 and. . .

– the triangle is blue N, then the urn will contain 60 blue balls and 40 red balls.

– the triangle is red N, then the urn will contain 40 blue balls and 60 red balls.

• If your precision is 95 and. . .

– the triangle is blue N, then the urn will contain 95 blue balls and 5 red balls.

– the triangle is red N, then the urn will contain 5 blue balls and 95 red balls.

You will observe the color of one ball, drawn randomly from this urn. A higher precision
means that it is more likely that the ball you receive has the same color as the triangle.

At the beginning of each round, you and each of your fellow group members will be
assigned a given level of precision. In particular, each member will be assigned
- a precision of 55 with a probability of 15%
- a precision of 60 with a probability of 70%
- a precision of 95 with a probability of 15%

Precisions will be assigned independently for each member of the group, so you and
the other members of your group might have different precisions. You will learn your own
precision, but will not know the precision of the other members of the group.

Together, the color of the triangle and your level of precision determine the number of
blue and red balls in your urn. The computer will then draw one of these balls at random,
and show it only to you. The computer follows the same procedure for each of the other four
members of your group. Each member has his or her own precision, and might observe the
same or another ball than the one you observe. But, in each round, the color of the triangle
is the same for all members of the group.

Your Voting Decision

[M treatments:] Your voting decision is one of three options: (1) vote Blue, (2) vote Red,
or (3) Abstain from voting. Each actual vote counts as one point for that color.

[CV treatments:] Your voting decision is one to (1) vote Blue, or (2) vote Red, and
indicate the number of points you allocate to the color you vote for. You can allocate any
number between 0 and 20 to the color you vote for, including decimals. You can insert
decimals using a point. You can abstain by allocating zero points.

The other members of your group will cast votes in the same fashion.

Voting Rule and Group Decision
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The group decision will be determined by majority / cumulative voting. In particular,
the group decision will be the color which receives the highest number of votes/points. That
is,

• If the number of votes/points for blue is higher than the number of votes for red, the
group decision is blue.

• If the number of votes/points for red is higher than the number of votes/points for
blue, the group decision is red.

Finally, if the number of votes/points for blue and red is the same, one of them is going
to be selected randomly. With 50% probability the group decision will blue, and with 50%
probability the group decision will be red.

Your Payoff

If your group decision is

• equal to the color of the triangle, each member of your group earns 100 ECUS.

• not equal to the color of the triangle, each member of your group earns 0 ECUS.

Information at the end of each Round

Once you and all the other participants have made your choices, the round will be over.
At the end of each round, you will receive the following information about the round: the
color of the triangle, the total numbers of votes/points for Blue and the total numbers of
votes/points for Red [[M:] and abstentions in your group].

[Only in Communication treatments:] Communication before Voting

After receiving your hint, and before voting, you will be able to communicate with the
members of your group through a chat window during 30 seconds. In this chat, it is important
that (i) you do not identify yourself or (ii) you do not use improper language towards other
members of the group. Besides that, you can communicate anything you wish. You can write
messages by typing a message in the blue bar in the inferior part of the screen and send it by
hitting enter. All messages will be seen by all members of the group and each member will
have an anonymous identifier (Player 1, Player 2, . . . ). If you want to leave the chat earlier,
please press the button “I’m done” in the bottom right corner. If all participants push this
button before the 30 seconds deadline, the communication stage will finish.

Final Earnings in this Part

After the 20 rounds are over, the computer will randomly select 2 of the 20 rounds and
you will receive the rewards that you had earned in each of those rounds. Each of the 20
rounds has the same chance of being selected.

Control Questions

Before starting, you will have to fill in some control questions in the computer terminal.
Click the button OK after you have answered a question to move to the next question. In
case you answer wrongly, an error message will pop out and you will have to answer it again.
Once you and all the other participants have filled all the questions the experiment will start.
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