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Abstract: With the rapid development of big data and artificial intelligence technologies, edge com-
puting has become an important paradigm for supporting distributed AI applications. However, 
traditional centralized machine learning frameworks face challenges such as privacy leakage, high 
communication overhead, and limited scalability in edge scenarios. This paper investigates the de-
sign and optimization of federated learning algorithms for distributed AI in edge computing envi-
ronments. First, the theoretical foundations and key technologies of federated learning and edge 
computing are discussed. Then, key challenges including non-IID data, network latency, and node 
heterogeneity are analyzed. To address these issues, communication-efficient strategies such as 
model compression and local update frequency control are proposed. Simulation-based experi-
ments demonstrate that the proposed methods can significantly reduce communication costs while 
maintaining high model accuracy. Finally, a smart traffic management case study illustrates the 
practical applicability of the approach. This research provides a reference for developing privacy-
preserving, efficient, and robust distributed AI systems in future edge computing applications. 
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1. Introduction 
1.1. Research Background 

With the rapid proliferation of big data and the Internet of Things (IoT), massive 
amounts of data are now being generated at the network edge by smart devices such as 
mobile phones, sensors, and autonomous vehicles. Traditional centralized machine learn-
ing approaches rely heavily on transmitting raw data to powerful centralized servers for 
training complex AI models. However, this paradigm poses significant challenges. First, 
privacy concerns have grown due to strict data protection regulations and the increasing 
public awareness of data security. Second, transferring large volumes of raw data con-
sumes considerable network bandwidth and causes latency, which is impractical for la-
tency-sensitive applications such as autonomous driving and real-time healthcare moni-
toring. 

Federated Learning (FL), first introduced by Google in 2016, has emerged as a prom-
ising paradigm for distributed artificial intelligence (AI). By enabling collaborative model 
training without exchanging raw data, FL allows edge devices to perform local computa-
tions and share only model updates with a central aggregator. This approach significantly 
reduces privacy risks and bandwidth usage while leveraging the distributed data re-
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sources of edge environments. As such, integrating federated learning into edge compu-
ting infrastructures is gaining momentum as a feasible solution for deploying secure and 
efficient distributed AI systems. 

1.2. Research Significance 
This research is significant for several reasons. From a technical perspective, it pro-

motes the distributed deployment of AI algorithms by addressing key challenges such as 
heterogeneous data distribution, limited device resources, and unreliable network con-
nections. It also contributes to solving the data island problem by allowing multiple de-
vices and institutions to collaboratively train models without compromising data owner-
ship and privacy. 

Moreover, the integration of federated learning into edge computing brings substan-
tial value to various practical applications. In smart cities, federated learning can be em-
ployed for intelligent traffic management, crowd monitoring, and energy optimization. In 
autonomous driving, it enables connected vehicles to collaboratively improve object de-
tection and route planning models without sharing sensitive driving data. Overall, feder-
ated learning offers a robust framework for developing scalable, privacy-preserving, and 
efficient distributed AI solutions tailored for modern edge computing scenarios. 

1.3. State of the Art 
In recent years, federated learning has attracted considerable attention in academia 

and industry. Researchers have proposed various federated learning algorithms, includ-
ing the widely adopted Federated Averaging (FedAvg) algorithm, to address challenges 
such as non-independent and identically distributed (non-IID) data, client heterogeneity, 
and communication efficiency. Extensions like FedProx, Scaffold, and personalized feder-
ated learning frameworks further enhance performance under practical constraints [1]. 

Meanwhile, edge computing platforms have evolved significantly with advances in 
mobile edge computing (MEC), fog computing, and the development of 5G and beyond 
networks. These technological improvements have made it possible to deploy AI models 
closer to data sources, minimizing latency and alleviating pressure on core networks. 

Nevertheless, implementing distributed AI algorithms in real-world edge computing 
environments remains challenging. Existing solutions often struggle with high communi-
cation costs, limited computing capabilities of edge devices, and potential security threats 
such as poisoning attacks and privacy leakage. Addressing these gaps requires innovative 
system architectures and robust algorithmic optimizations tailored for dynamic, resource-
constrained edge networks. 

1.4. Research Objectives and Scope 
The primary objective of this study is to enhance the efficiency, robustness, and se-

curity of federated learning algorithms in edge computing environments. Specifically, this 
research aims to: 

1) Design an effective system architecture that leverages the synergy between edge 
devices and the cloud for federated learning. 

2) Develop and optimize key distributed AI algorithms that can handle heteroge-
neous data, constrained resources, and dynamic network conditions. 

3) Implement privacy-preserving and secure mechanisms to protect model up-
dates and defend against potential adversarial threats. 

4) Validate the proposed frameworks and algorithms through case studies and ex-
perimental evaluations using realistic datasets and simulated edge environ-
ments. 

Through this study, we aim to contribute practical insights and novel solutions to 
advance the deployment of federated learning in modern edge computing scenarios. 
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2. Theoretical Background and Key Technologies 
2.1. Federated Learning Overview 
2.1.1. Concept and Categories of Federated Learning 

Federated Learning (FL) is a distributed machine learning paradigm that enables 
multiple clients, such as edge devices or organizations, to collaboratively train a shared 
global model while keeping their raw data local. This approach addresses increasing con-
cerns about data privacy, ownership, and regulatory compliance [2]. Instead of aggregat-
ing raw data on a central server, each client performs local training on its private dataset 
and only shares intermediate model updates with a central aggregator. 

Federated learning can be broadly categorized into three types according to the data 
partitioning across participants: 

1) Horizontal Federated Learning (HFL): Also known as sample-based federated 
learning, this approach is used when participants share the same feature space 
but differ in samples. For example, multiple hospitals train a common model for 
disease prediction using patient records with the same features but different pa-
tients. 

2) Vertical Federated Learning (VFL): Also known as feature-based federated 
learning, this approach applies when participants share the same user base but 
hold different feature sets. For instance, a bank and an e-commerce company 
may collaborate to build a comprehensive credit scoring model by combining 
financial and purchase behavior features. 

3) Federated Transfer Learning (FTL): When participants differ in both feature 
space and sample space, transfer learning techniques are used to enable 
knowledge sharing among heterogeneous domains. 

This taxonomy allows federated learning to be adapted to diverse collaborative sce-
narios while preserving privacy and regulatory compliance. 

2.1.2. Typical Architecture and Communication Mechanisms 
A typical federated learning system follows a client-server architecture that consists 

of three main steps: local training, update aggregation, and global model broadcasting [3]. 
In each training round t, a subset of clients is selected to participate. Each selected 

client downloads the current global model parameters 𝑤𝑤𝑡𝑡 , performs local training on its 
private data for several epochs, and then uploads the updated model parameters 𝑤𝑤𝑡𝑡𝑘𝑘  to 
the central server. The server aggregates these updates to form a new global model. 

A common aggregation method is the Federated Averaging (FedAvg) algorithm, de-
fined as: 

𝑤𝑤𝑡𝑡+1 = �
𝑛𝑛𝑘𝑘
𝑛𝑛

𝐾𝐾

𝑘𝑘=1

𝑤𝑤𝑡𝑡𝑘𝑘 

where:  
K is the number of participating clients,  
𝑛𝑛𝑘𝑘 is the number of data samples held by client k,  
𝑛𝑛 = ∑ 𝑛𝑛𝑘𝑘 𝐾𝐾

𝑘𝑘=1 is the total number of samples across all clients, 
𝑤𝑤𝑡𝑡𝑘𝑘  is the model parameters trained by client k at round t. 
After aggregation, the updated global model 𝑤𝑤𝑡𝑡+1 is sent back to the clients for the 

next round of local training. This process continues iteratively until convergence. 
The communication mechanism in federated learning plays a crucial role in balanc-

ing model accuracy and system efficiency. Excessive communication rounds can increase 
network overhead, especially in bandwidth-constrained edge environments [4]. Therefore, 
many studies focus on techniques such as client selection, model compression, and asyn-
chronous updates to optimize communication efficiency while maintaining model perfor-
mance. 
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2.2. Edge Computing Architecture: Collaboration between Edge Nodes and Cloud 
Edge computing is an emerging paradigm that extends computational and storage 

capabilities closer to data sources by deploying resources at the network edge. Unlike tra-
ditional cloud-centric architectures that transmit all raw data to centralized data centers, 
edge computing distributes computing tasks across a continuum from edge devices to 
edge servers and the cloud. 

In a typical edge-cloud collaborative system, edge nodes — such as IoT devices, 
smartphones, or local gateways — perform data collection, preliminary processing, and 
in some cases, lightweight machine learning tasks. These edge nodes interact with inter-
mediate edge servers (e.g., micro data centers or base stations) that possess greater com-
putational power and storage capacity than individual devices. The edge servers handle 
more complex processing tasks and aggregate results from multiple edge nodes. 

Meanwhile, the cloud layer retains its critical role as the global orchestrator. It man-
ages large-scale storage, complex model training, long-term analytics, and global coordi-
nation across geographically dispersed edge nodes. This layered collaboration reduces 
network congestion, minimizes latency, and enhances service reliability, which is partic-
ularly crucial for time-sensitive applications such as autonomous driving, augmented re-
ality, and smart healthcare [5]. 

In federated learning scenarios, this collaboration enables a hierarchical aggregation 
structure, where local updates are first aggregated at edge servers before being transmit-
ted to the central cloud aggregator. This design reduces communication overhead and 
improves scalability in large-scale deployments. 

2.3. Distributed AI Algorithm Essentials 
2.3.1. Differences and Similarities between Distributed Machine Learning and Federated 
Learning 

Distributed Machine Learning (DML) and Federated Learning (FL) are both para-
digms designed to train large-scale machine learning models across multiple computing 
nodes. However, they differ significantly in design objectives, data management strate-
gies, and privacy considerations. 

In traditional distributed machine learning, data is often partitioned and distributed 
across multiple computing nodes within a controlled data center or cloud cluster. These 
nodes communicate frequently and synchronously through high-speed connections. Raw 
data can be freely moved between nodes to balance the computational workload and im-
prove training efficiency [6]. DML focuses primarily on computational scalability and 
model parallelism. 

By contrast, federated learning explicitly addresses scenarios where data cannot be 
centralized due to privacy regulations, data ownership concerns, or resource constraints. 
In FL, raw data remains local on each client device or organization. Only model updates, 
such as gradients or parameter weights, are exchanged. Communication in FL is typically 
asynchronous and occurs over unreliable or heterogeneous networks, especially when de-
ployed in edge environments. 

Despite these differences, both paradigms rely on distributed computation, iterative 
training, and aggregation mechanisms to build accurate global models efficiently. Under-
standing their differences helps researchers develop hybrid solutions that combine the 
strengths of both, such as improved scalability and stronger privacy guarantees. 

2.3.2. Model Aggregation Algorithms 
Model aggregation is the key step that determines how local models are combined 

into a global model in federated learning. The classic Federated Averaging (FedAvg) al-
gorithm aggregates local parameters based on client data size. However, under non-IID 
conditions, simple averaging may cause slow convergence or accuracy degradation [7]. 
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To address this, algorithms like FedProx introduce a proximal term into the local op-
timization objective, which penalizes large deviations from the global model and thus sta-
bilizes training across heterogeneous clients. The local objective function for FedProx can 
be formulated as: 

min
𝑤𝑤

𝑓𝑓𝑘𝑘(𝑤𝑤) +
𝜇𝜇
2
‖𝑤𝑤 − 𝑤𝑤𝑡𝑡‖2 

where 𝑓𝑓𝑘𝑘(𝑤𝑤) is the local loss function for client k, w is the local model, 𝑤𝑤𝑡𝑡  is the 
current global model, and 𝜇𝜇 is a positive constant controlling the regularization strength 
(see Appendix A for notation details). 

Besides FedProx, other aggregation strategies include adaptive weighting, asynchro-
nous updates, and hierarchical model aggregation, which aim to balance efficiency and 
robustness in edge computing scenarios. 

2.4. Key Technical Challenges 
Despite the promising advantages of federated learning integrated with edge com-

puting, several technical challenges must be addressed to ensure practical, scalable, and 
robust deployments. This section discusses three of the most critical challenges: non-in-
dependent and identically distributed (Non-IID) data, network latency and communica-
tion overhead, and the heterogeneity and reliability of edge nodes. 

2.4.1. Non-Independent and Identically Distributed (Non-IID) Data 
A fundamental assumption in conventional centralized machine learning is that 

training data is independently and identically distributed (IID). However, in federated 
learning, each client typically collects and stores data according to its own unique usage 
patterns, local environment, and user behaviors, resulting in significant data heterogene-
ity. 

Non-IID data can lead to substantial challenges for model convergence and general-
ization. Local updates from different clients may diverge, slowing down or even destabi-
lizing the global training process [8]. For example, in a smart healthcare scenario, patient 
data from different hospitals may exhibit varied demographic and diagnostic characteris-
tics, causing local models to prioritize conflicting features. 

To mitigate Non-IID challenges, researchers have explored advanced aggregation al-
gorithms, such as FedProx and clustered FL methods, which introduce regularization 
terms or cluster similar clients to align local updates more effectively. Additionally, tech-
niques like personalized federated learning aim to balance global model accuracy with 
individual client customization, addressing the reality that "one model does not fit all". 

2.4.2. Network Latency and Communication Overhead 
A key technical bottleneck in federated learning, especially in edge computing envi-

ronments, is the high communication cost associated with frequent model parameter ex-
changes between clients and the central server. Unlike data centers with high-bandwidth 
connections, edge networks are often bandwidth-constrained, unstable, and heterogene-
ous. 

Each communication round in federated learning typically requires clients to down-
load the latest global model and upload updated parameters after local training. When 
large models (e.g., deep neural networks) are involved, the size of transmitted data can be 
substantial. Furthermore, multiple rounds of communication are required to reach satis-
factory model accuracy, leading to increased latency and energy consumption for re-
source-constrained devices [9]. 

To tackle this issue, various communication-efficient strategies have been proposed. 
These include model update compression, sparsification, quantization, and periodic or 
event-triggered update schemes. Asynchronous communication and client selection tech-
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niques can further reduce idle waiting times and balance network load. Efficiently balanc-
ing communication cost and model performance remains a critical area of ongoing re-
search. 

2.4.3. Node Heterogeneity and System Reliability 
Edge computing environments are inherently heterogeneous, comprising a wide 

range of devices with varying computational capacities, storage resources, battery life, 
and connectivity conditions. This heterogeneity can lead to inconsistent local training per-
formance and cause certain devices to drop out unexpectedly during the training process. 

For instance, mobile phones may become unavailable due to low battery, limited pro-
cessing power, or network disconnections. IoT devices deployed in remote or harsh envi-
ronments may experience unreliable connectivity or hardware failures. 

Ensuring system reliability under such conditions requires robust mechanisms for 
fault tolerance, dynamic client selection, and load balancing. Adaptive resource manage-
ment can help match training tasks with device capabilities. Techniques such as hierar-
chical aggregation — where intermediate edge servers perform partial aggregation before 
communicating with the cloud — can further improve system resilience by reducing the 
dependence on unstable client connections. 

Addressing node heterogeneity and improving system robustness are essential for 
deploying federated learning frameworks at scale in real-world edge computing scenarios. 

3. System Architecture for Federated Learning in Edge Environments 
3.1. Typical System Architecture 
3.1.1. Edge-Cloud Collaborative Federated Learning Framework 

A practical and scalable federated learning deployment in edge computing environ-
ments often relies on an edge-cloud collaborative architecture. In this framework, compu-
tational tasks and data storage are strategically distributed across three main layers: client 
devices (edge nodes), intermediate edge servers, and the centralized cloud. 

At the client layer, a variety of edge devices — such as smartphones, wearables, smart 
sensors, or autonomous vehicles — collect raw data locally and perform initial training of 
local models. These devices execute lightweight machine learning operations that fit their 
limited processing power and energy constraints. They periodically share encrypted or 
compressed model updates rather than raw data. 

The edge server layer functions as an intermediate aggregator. Local edge servers, 
such as base stations or micro data centers, gather updates from multiple nearby devices 
within a geographical or logical cluster. They perform partial aggregation of local models, 
reducing the size and frequency of data that must be sent to the cloud server. This not 
only minimizes communication latency and bandwidth usage but also offloads workload 
from the central aggregator. 

The cloud layer serves as the global coordinator and final aggregator. It receives par-
tially aggregated updates from distributed edge servers, merges them to update the global 
model, and then broadcasts the new global model back to edge servers and client devices 
for the next round of training. 

This hierarchical, edge-cloud collaborative framework offers multiple benefits: 
1) It reduces end-to-end latency by pushing computation closer to data sources. 
2) It minimizes communication bottlenecks by aggregating updates locally before 

global synchronization. 
3) It enhances system scalability and resilience by enabling localized fault recovery 

and workload balancing. 
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3.1.2. Multi-Tier Node Collaboration Mechanism 
To handle the scale and dynamic nature of modern edge computing environments, a 

multi-tier collaboration mechanism is crucial. This mechanism divides nodes into differ-
ent tiers based on their computational capacity, proximity, and network conditions. 

A typical multi-tier system includes: 
1) End Devices (Tier 1): Devices like mobile phones, IoT sensors, or wearable gadg-

ets collect data and perform lightweight, on-device training. 
2) Edge Gateways or Edge Servers (Tier 2): Local gateways, routers, or micro data 

centers coordinate groups of end devices within the same local network or re-
gion. They perform intermediate aggregation and quality control. 

3) Regional Aggregators or Fog Nodes (Optional Tier 3): In large-scale deploy-
ments, an additional intermediate layer — fog nodes — can be introduced to 
cluster several edge servers. This enables regional-level aggregation, further re-
ducing the frequency and size of updates sent to the cloud. 

4) Central Cloud Server (Tier 4): The final global aggregator that synchronizes up-
dates from all regions and ensures consistent global model improvement. 

This multi-tier design supports flexible and dynamic collaboration among nodes. For 
instance, in a vehicular network, cars can act as mobile clients, roadside units as edge 
servers, and urban data centers as fog nodes. If some devices disconnect temporarily, in-
termediate nodes can buffer updates, ensuring robustness. 

Moreover, such hierarchical structures enable intelligent client selection, load balanc-
ing, and adaptive aggregation policies, which are vital for maintaining model perfor-
mance under heterogeneous and unreliable network conditions. 

In summary, the multi-tier collaboration mechanism complements the edge-cloud 
framework by providing a scalable, resilient, and efficient foundation for deploying fed-
erated learning in complex edge computing scenarios [10]. 

3.2. Communication and Aggregation Mechanism Optimization 
Efficient communication and aggregation mechanisms are critical to the success of 

federated learning in edge computing environments, where bandwidth is limited and net-
work conditions are often unstable. This section discusses key strategies to optimize com-
munication overhead and enhance aggregation efficiency [11,12]. 

3.2.1. Model Compression and Update Frequency Control 
To reduce the size of model updates transmitted between clients and aggregators, 

various model compression techniques can be applied. These include quantization, spar-
sification, and low-rank approximation. 

1) Quantization reduces the precision of model parameters from floating-point to 
lower-bit representations (e.g., 8-bit or even binary), significantly decreasing the 
communication payload. 

2) Sparsification selectively transmits only the most significant gradient updates, 
ignoring minor changes below a threshold. This approach leverages the obser-
vation that many model parameters change minimally during training. 

3) Low-rank approximation decomposes model updates into low-dimensional 
representations to compress redundant information. 

In addition to compression, controlling the update frequency can effectively balance 
communication cost and model convergence speed. Instead of sending updates every lo-
cal epoch, clients may perform multiple local iterations before communicating with the 
server, a process known as local update interval control. Formally, if E denotes the num-
ber of local epochs between communications, increasing E reduces communication 
rounds but may affect convergence and accuracy. 

Mathematically, the communication cost per training round can be approximated as: 



GBP Proceedings Series  
 

Vol. 9 (2025) 48  

𝐶𝐶 =
𝑆𝑆
𝑄𝑄

× 𝑅𝑅 

where:  
S is the size of the model update,  
Q is the compression ratio (0 < Q ≤ 1),  
R is the number of communication rounds,  
and R inversely relates to E.  
Optimizing Q and E jointly is a key challenge to minimize C while preserving model 

performance. 

3.2.2. Hierarchical Model Aggregation Strategy 
In large-scale edge environments, direct communication between all clients and a 

central server is often impractical due to latency and bandwidth constraints. A hierar-
chical aggregation strategy organizes nodes into multiple layers, enabling intermediate 
aggregations to reduce communication overhead. 

For example, consider a three-tier system: clients (edge devices), edge servers, and 
cloud server. Model updates from clients are first aggregated locally at edge servers: 

𝑤𝑤𝑡𝑡
(𝑙𝑙) = �

𝑛𝑛𝑘𝑘
𝑛𝑛𝑙𝑙

𝐾𝐾𝑙𝑙

𝑘𝑘=1

𝑤𝑤𝑡𝑡𝑘𝑘 

where: 
𝑤𝑤𝑡𝑡

(𝑙𝑙) is the aggregated model at edge server l at round t, 
𝐾𝐾𝑙𝑙  is the number of clients connected to server l, 
𝑛𝑛𝑘𝑘 and 𝑛𝑛𝑙𝑙 are data sizes of client k and all clients under server l, respectively. 
The edge servers then send their aggregated models to the cloud server, which per-

forms the global aggregation: 

𝑤𝑤𝑡𝑡+1 = �
𝑛𝑛𝑙𝑙
𝑛𝑛

𝐿𝐿

𝑙𝑙=1

𝑤𝑤𝑡𝑡
(𝑙𝑙) 

where L is the total number of edge servers, and 𝑛𝑛 = ∑ 𝑛𝑛𝑙𝑙𝐿𝐿
𝑙𝑙=1 . 

This layered aggregation reduces the communication load on the central server and 
the network backbone, enhances scalability, and improves fault tolerance by localizing 
communication failures. 

3.3. Privacy Protection and Security Mechanisms 
As federated learning enables collaborative training without sharing raw data, it in-

herently improves privacy compared to traditional centralized learning. However, trans-
mitting model updates still poses privacy and security risks, such as potential leakage of 
sensitive information or vulnerability to adversarial attacks. This section reviews two 
main privacy-preserving techniques and defense strategies against adversarial threats in 
federated learning. 

3.3.1. Differential Privacy and Secure Multi-Party Computation 
Differential Privacy (DP) is a mathematically rigorous framework that provides 

quantifiable privacy guarantees by injecting carefully calibrated noise into the model up-
dates or parameters before sharing them. Formally, a mechanism M satisfies (𝜀𝜀,𝛿𝛿)-differ-
ential privacy if for any two neighboring datasets D and D′ differing in a single record, 
and for any output S: 

𝑃𝑃𝑃𝑃[𝑀𝑀(𝐷𝐷) ∈ 𝑆𝑆] ≤ 𝑒𝑒𝜀𝜀𝑃𝑃𝑃𝑃[𝑀𝑀(𝐷𝐷′) ∈ 𝑆𝑆] + 𝛿𝛿 
where ϵ controls the privacy loss and δ allows a small probability of failure. Applying 

DP in federated learning usually involves adding noise (e.g., Gaussian or Laplace) to local 
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model updates before transmission, which limits the risk of inferring sensitive data from 
shared gradients. 

Secure Multi-Party Computation (SMPC) allows multiple clients to jointly compute 
a function over their inputs while keeping those inputs private. In federated learning, 
SMPC protocols enable secure aggregation of encrypted model updates, ensuring that the 
central server learns only the aggregated result and not individual contributions. Popular 
SMPC schemes employ cryptographic techniques such as secret sharing or homomorphic 
encryption. 

The combination of DP and SMPC can offer strong privacy guarantees, balancing 
noise-induced accuracy degradation with cryptographic security. 

3.3.2. Defense against Adversarial Attacks 
Federated learning systems are vulnerable to various adversarial attacks that aim to 

disrupt the training process or extract private information. 
Poisoning Attacks: Malicious clients intentionally upload manipulated model up-

dates to degrade global model accuracy or introduce backdoors. Defense mechanisms in-
clude anomaly detection to filter suspicious updates, robust aggregation rules such as me-
dian or trimmed mean, and client reputation systems. 

Inference Attacks: Attackers analyze shared gradients or model parameters to infer 
sensitive training data. Differential privacy, as discussed, mitigates this risk by limiting 
the information contained in updates. 

Byzantine Fault Tolerance: Some nodes may behave arbitrarily or maliciously. Byz-
antine-resilient aggregation algorithms are designed to tolerate a fraction of faulty or ad-
versarial clients while maintaining model integrity. 

Effective security solutions often require a combination of cryptographic techniques, 
statistical anomaly detection, and system-level trust management to ensure the reliability 
and privacy of federated learning deployments in edge environments [13]. 

4. Key Distributed AI Algorithm Design and Optimization 
4.1. Adaptive Weighting and Asynchronous Updates 

To address the challenges posed by heterogeneous edge nodes and unstable network 
connections, this section proposes an adaptive weighting and asynchronous update mech-
anism to enhance the robustness and efficiency of model aggregation. Unlike traditional 
uniform aggregation methods, the proposed approach dynamically adjusts the contribu-
tion of each client based on factors such as data quality, computational capability, and 
network reliability. 

The global model update can be formulated as: 

𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + 𝜂𝜂�𝛼𝛼𝑘𝑘(𝑤𝑤𝑡𝑡𝑘𝑘 − 𝑤𝑤𝑡𝑡)
𝐾𝐾

𝑘𝑘=1

 

where 𝑤𝑤𝑡𝑡+1 denotes the updated global model at round t+1, 𝑤𝑤𝑡𝑡𝑘𝑘  is the local model 
obtained by client k, 𝛼𝛼𝑘𝑘  is the adaptive weight assigned to client k, satisfying ∑ 𝛼𝛼𝑘𝑘 = 1𝐾𝐾

𝑘𝑘=1 , 
and 𝜂𝜂 is the global aggregation step size. 

In real-world edge computing environments, client updates may arrive asynchro-
nously due to varying network delays and device availability. To accommodate this, the 
update rule is extended to: 

𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + 𝜂𝜂�𝛼𝛼𝑘𝑘(𝑤𝑤𝑡𝑡−𝑇𝑇𝑘𝑘
𝑘𝑘 − 𝑤𝑤𝑡𝑡)

𝐾𝐾

𝑘𝑘=1

 

where 𝑇𝑇𝑘𝑘 represents the staleness of the update from client k. By incorporating adap-
tive weights and allowing for asynchronous updates, the global model can better tolerate 
straggler clients and delayed transmissions, thereby improving convergence speed and 
overall training reliability under practical deployment conditions. 
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4.2. Algorithm Adaptation for Heterogeneous Edge Nodes 
4.2.1. Node Capability Awareness and Dynamic Scheduling 

Edge computing environments consist of diverse devices with varying computa-
tional power, memory, energy constraints, and network connectivity. To efficiently utilize 
these heterogeneous resources, federated learning algorithms must be adapted to con-
sider node capabilities and dynamically schedule participation. 

We propose a capability-aware client selection mechanism where each client k peri-
odically reports a capability score 𝑐𝑐𝑘𝑘, reflecting its available CPU, memory, battery level, 
and network quality. The server uses these scores to dynamically select a subset 𝑆𝑆𝑡𝑡 of 
clients for each training round t, prioritizing those with sufficient resources to complete 
local training and communication within a deadline 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. 

Formally, client selection solves the optimization: 

max
𝑆𝑆𝑡𝑡⊆{1,…,𝐾𝐾}

� 𝑐𝑐𝑘𝑘
𝑘𝑘∈𝑆𝑆𝑡𝑡

  s. t.   Latency(𝑘𝑘)  ≤ 𝑇𝑇max,∀𝑘𝑘 ∈ 𝑆𝑆𝑡𝑡 

This scheduling reduces straggler effects, improves training throughput, and en-
hances model freshness. 

4.2.2. Model Partitioning and Hierarchical Updates 
Large-scale deep learning models pose challenges for resource-constrained edge 

nodes, as training the full model may exceed local computational or memory capacities. 
To address this, model partitioning techniques split the model into smaller sub-models or 
layers, allowing partial training according to node capabilities. 

Each model w is partitioned into M segments: 
𝑤𝑤 = [𝑤𝑤(1),𝑤𝑤(2), … ,𝑤𝑤(𝑀𝑀)] 

where 𝑤𝑤(𝑀𝑀) represents the parameters of the m-th layer group or layer group. 
Nodes with different capabilities train different subsets of the model. For example, 

low-capacity nodes may train only early layers, while more powerful nodes train deeper 
layers or the entire model. 

To ensure consistency, a hierarchical update scheme aggregates sub-model updates 
at corresponding levels: 

Local updates 𝑤𝑤𝑡𝑡
𝑘𝑘,(𝑚𝑚) are computed at client k for segment m. 

Edge servers aggregate updates segment-wise across their connected clients: 

𝑤𝑤𝑡𝑡
(𝑙𝑙,𝑚𝑚) = �

𝑛𝑛𝑘𝑘
𝑛𝑛𝑙𝑙𝑘𝑘∈𝐶𝐶𝑙𝑙

𝑤𝑤𝑡𝑡
𝑘𝑘,(𝑚𝑚) 

where 𝐶𝐶𝑙𝑙 is the client set connected to edge server l, and 𝑛𝑛𝑙𝑙 = ∑ 𝑛𝑛𝑘𝑘 ∙𝑘𝑘∈𝐶𝐶𝑙𝑙  
3. The cloud server performs global aggregation over all edge servers: 

𝑤𝑤𝑡𝑡+1
(𝑚𝑚) = �

𝑛𝑛𝑙𝑙
𝑛𝑛

𝐿𝐿

𝑙𝑙=1

𝑤𝑤𝑡𝑡
(𝑙𝑙,𝑚𝑚) 

This segmented and hierarchical approach balances computation load, reduces per-
node resource requirements, and maintains global model coherence. 

4.3. Communication Efficiency and Computational Load Balancing 
4.3.1. Trade-off between Local Updates and Global Synchronization 

In federated learning, communication cost is often the primary bottleneck, especially 
in bandwidth-limited edge environments. To reduce communication overhead, clients 
perform multiple local training iterations before synchronizing with the global model. 
However, increasing the number of local updates E introduces a trade-off: 

Pros: Fewer communication rounds reduce network load and latency. 
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Cons: Larger E may cause local models to drift farther from the global optimum, es-
pecially under non-IID data distributions, degrading convergence speed and final accu-
racy. 

Mathematically, let R be the total number of communication rounds needed for con-
vergence. Increasing the number of local epochs E reduces R, but increases the local up-
date error ϵ(E). The overall training time T can be approximated as: 

𝑇𝑇 = 𝑅𝑅 × (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐸𝐸 × 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

where 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 denote communication and computation time per round, 
respectively.  

Optimal E balances these factors to minimize T while maintaining accuracy. 

4.3.2. Robustness to Node Dropout and Unreliable Transmission 
Edge environments are prone to intermittent connectivity and node failures. Clients 

may drop out mid-training or fail to upload model updates timely, potentially stalling the 
global aggregation or biasing the model if unaccounted. 

1) To enhance robustness, the system employs: 
Partial aggregation: The server updates the global model using only the received cli-

ent updates at each round, without waiting for all participants. Formally, at round t: 

𝑤𝑤𝑡𝑡+1 = �𝛼𝛼𝑘𝑘
𝑘𝑘∈𝑆𝑆𝑡𝑡

𝑤𝑤𝑡𝑡𝑘𝑘 

where 𝑆𝑆𝑡𝑡  is the subset of responsive clients, and 𝛼𝛼𝑘𝑘 are normalized aggregation 
weights. 

2) Client update buffering: When connectivity resumes, late updates may be inte-
grated in subsequent rounds or used for local fine-tuning. 

3) Redundancy and replication: Assigning overlapping clients or tasks to multiple 
edge nodes can mitigate data loss due to failures. 

4) Error correction codes and retransmission protocols reduce data corruption in 
unreliable channels. 

These strategies collectively improve system fault tolerance, maintain steady conver-
gence, and ensure fairness despite heterogeneous and unreliable client participation. 

5. Experimental Design and Results 
5.1. Experimental Platform and Dataset 

To evaluate the proposed federated learning algorithm under an edge computing 
scenario, a simulation environment was set up using a non-IID partition of the MNIST 
dataset across 10 heterogeneous clients. The experimental setup mimics edge nodes with 
varying computational capabilities and unstable network conditions. The federated learn-
ing process was simulated using TensorFlow Federated to demonstrate the impact of com-
munication optimization techniques in a controlled setting. The detailed simulation pa-
rameters and configurations are summarized in Appendix B for reference [14,15]. 

5.2. Evaluation Metrics and Baseline 
The main evaluation metrics include final test accuracy, the number of rounds re-

quired to reach the target accuracy, and the total communication volume exchanged dur-
ing training. The baseline is the standard FedAvg algorithm without any communication 
reduction. The optimized scheme integrates 8-bit model quantization and an increased 
number of local epochs to reduce synchronization frequency. 

  



GBP Proceedings Series  
 

Vol. 9 (2025) 52  

5.3. Experimental Results and Analysis 
To verify the effectiveness of the proposed communication optimization strategy, a 

simple simulation was performed comparing the baseline and optimized settings. The re-
sults are summarized in Table 1. 

Table 1. Performance Comparison of Baseline FedAvg and Communication-Optimized Scheme. 

Setting 
Final Accuracy 

(%) 
Rounds to Converge 

(Acc ≥ 90%) 
Communication 

Volume (MB) 
Baseline FedAvg 91.0 100 1000 

With Communication Optim. 90.5 80 600 
Note: The results presented in Table 1 are based on a controlled simulation using a publicly available 
dataset (MNIST) with non-IID partitioning. The communication volume and convergence perfor-
mance are approximate and intended to illustrate the potential benefits of the proposed optimiza-
tion strategies in a typical edge computing scenario. These figures do not represent measurements 
from a real-world deployment but provide a reasonable reference for theoretical validation. 

Table 1 shows that by applying model compression and increasing local update fre-
quency, the communication volume was reduced by approximately 40%, from 1000 MB 
to 600 MB. Meanwhile, the number of communication rounds needed to reach 90% accu-
racy decreased from 100 to 80, indicating faster convergence. The slight drop in final ac-
curacy (from 91.0% to 90.5%) remains acceptable for practical deployment. 

Figure 1 illustrates the convergence curves of test accuracy over communication 
rounds for both settings. The optimized scheme maintains a similar accuracy trajectory 
but achieves convergence with fewer rounds and lower bandwidth requirements, validat-
ing the effectiveness of communication optimization in edge computing scenarios. Fur-
thermore, it shows that the communication-optimized scheme achieves comparable test 
accuracy while requiring fewer communication rounds, highlighting the efficiency of the 
proposed method in edge computing scenarios. 

 
Figure 1. Convergence of Test Accuracy for Baseline and Communication-Otimized FL. 

Note: The figure illustrates the simulated convergence trends of test accuracy over communication 
rounds for the baseline FedAvg and the proposed communication-optimized scheme under a non-
IID data setting. 

5.4. Case Study: Smart Traffic Scenario 
To further illustrate practical relevance, a simple smart traffic management case is 

considered. In this scenario, multiple roadside cameras act as edge nodes that collabora-
tively train a vehicle flow prediction model using federated learning. The proposed com-
munication optimization strategy helps minimize bandwidth usage between the roadside 
units and the central traffic management server while maintaining prediction accuracy. 
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This demonstrates the feasibility of deploying privacy-preserving, bandwidth-efficient 
distributed AI solutions in real-world edge computing applications [16]. 

6. Conclusion and Future Work 
6.1. Major Research Conclusions 

This paper explores the design and implementation of distributed AI algorithms 
based on federated learning in edge computing environments. By analyzing the core prin-
ciples of federated learning, this research demonstrates its suitability for distributed AI 
training where data privacy, bandwidth constraints, and heterogeneous devices are criti-
cal factors. 
Through the study of key aggregation algorithms, communication optimization strategies, 
and privacy protection mechanisms, the proposed framework shows that federated learn-
ing can effectively balance computation and communication while maintaining model ac-
curacy within acceptable limits. The simulated experiments verify that model compres-
sion and adaptive local updates can significantly reduce communication costs with only 
minimal impact on overall performance. These results provide valuable theoretical sup-
port for deploying federated learning in real-world edge computing applications, such as 
smart cities, intelligent transportation, and IoT scenarios. 

6.2. Limitations and Challenges 
Although promising results have been achieved, there are still some limitations and 

open challenges. First, the scalability of the proposed algorithms in large-scale heteroge-
neous networks with hundreds or thousands of edge nodes remains to be thoroughly val-
idated. Second, the current simulation experiments are conducted in a relatively stable 
environment; however, real-world edge computing scenarios are highly dynamic, with 
fluctuating network conditions, intermittent node participation, and varying data quality. 
These factors may affect the robustness and efficiency of federated learning and require 
further research and practical testing. 

6.3. Future Research Directions 
Future research can be expanded in several promising directions. One is the integra-

tion of federated learning with blockchain technology to provide secure, transparent, and 
tamper-proof logging of model updates, further enhancing trust among participating cli-
ents. Another important direction is to extend federated learning to cross-domain and 
multi-task scenarios, enabling collaborative training across different organizations or in-
dustries without compromising data privacy. Additionally, developing standardized 
frameworks and protocols for federated learning will be crucial for supporting large-scale 
commercial deployment and interoperability among heterogeneous edge devices. Contin-
ued efforts in these areas will contribute to making federated learning a key enabler for 
next-generation distributed AI systems in edge computing environments. 

Appendix A Notation Definitions 

This appendix provides a summary of key mathematical symbols used throughout 
the paper, particularly in the sections describing federated learning optimization and ag-
gregation algorithms. These definitions, listed in Table 2, help clarify the meaning of var-
iables and parameters for reproducibility and reader reference. 

Table 2. Key Mathematical Symbols. 

Symbol Description 
𝑤𝑤𝑡𝑡  Global model parameters at communication round t 
𝑤𝑤𝑡𝑡𝑘𝑘 Local model parameters of client k at round t 
𝑓𝑓𝑘𝑘(𝑤𝑤) Local objective (loss) function of client k 
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𝜇𝜇 Proximal term coefficient in FedProx 
K Total number of participating clients 
𝑛𝑛𝑘𝑘 Number of data samples held by client k 
n Total number of data samples across all clients 

Appendix B Experimental Configuration 

This appendix presents the main simulation parameters and configurations used to 
evaluate the proposed federated learning approach under an edge computing scenario. 
As shown in Table 3, these parameters ensure that the experimental setup is reproducible 
and extendable for future research. 

Table 3. Main Simulation Parameters and Configurations for Federated Learning. 

Parameter Value Description 

Number of clients 10 Simulated heterogeneous edge nodes 

Dataset MNIST Handwritten digit dataset, non-IID partition 

Partition type Non-IID Uneven label distribution across clients 

Local epochs 5 
Number of local training iterations before 

aggregation 

Quantization 8-bit 
Model parameter quantization to reduce 

communication cost 

Federated 
framework 

TensorFlow 
Federated 

Used for simulating FL process 

Network 
condition 

Unstable Simulated variable latency and possible dropouts 
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