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MODEL S OF LCF

1. | ntroduction

The | ogic of conputable functions proposed by Dana Scott in 1969,
in an unpublished note, has since been the subject of an interactive
proof - checki ng program designed as a first step in formally based machine-
assi sted reasoning about conputer prograns. This inplementation is
fully docunented in [1], and its subsequent applications are reported in
| ater papers [2,3,4, and 5]. However the nodel theory of the logic,
whi ch scott originally supplied, is not discussed in those papers, and
the purpose of this Mnmorandum is to present that theory. Nothing is
added here to Scott's work. The concept of a continuous function, which
is central to the theory, has since been devel oped by him to provide
nodels for the X-calculus and to yield his nathenatical theory of
continuous lattices; the interested reader can follow these topics in
Scott [6]. However, since LCF is only a version of the typed X-calculus,
these devel opments are not necessary for the present purpose, and the

present paper contains all that is needed to understand LCF.
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2. Conti nuous Function Donains

In this section we define a particular sort of partially ordered
domain, called a conplete partial order (cpo), and the concept of
continuous function. W prove sone propositions for later use; in
particular, that if D and E are cpo's, then the set of continuous

functions from D to E is itself a cpo.

Definition 2.1 A partial order (po) is a pair (D,=) where D is any

set (domain) and = is a transitive, reflexive , antisymretric relation

over D.

Definition 2.2 For a po (D,&), a set X <D is a chainif X =

. bl
{XillZO; and  xExExE. ..

Definition 2.3 A po (D,=) is a conplete partial order (cpo) if

(1) I't has a minimm el enent, which we denote by
LD , or just ] if there is no confusion.
(2) Every chain X c D has a |east upper bound (I ub)

in D, which we denote by LX.

Definition 2.4 If D and E are cpo's, then a function f D —E

is continuous if every chain X c D satisfies

U{ f(x) : xex} = £(UX).

Thus a continuous function is one which preserves the |ubs of
chai ns. Note that the set on the lefthand side of the above equation
is a chain, since if X =

{xo,xl, 3 and XOL‘_ x. =2 ...

then we also have f(xO)r_:_f(xl)E. oo . To see this, we only need to
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observe that any continuous function is nonotonic - that is,
xgy = f(x)efiy), and this is true because if Y is the chain {xey}
then LY =y, so we have f(x)gU{f(x),f(y)} = £(UY) = f(y).

W should also note that there is an alternative (nore restrictive)

definition of a cpo which uses the concept of directed set (X is directed

iff x,yeX = 3 z€X.x,y ©z) instead of chain, This, in turn, leads to an

alternative (more restrictive) definition of continuous function. W have

chosen the less restrictive alternative, but we remark that the theory can

be done equally well (as far as we are here concerned) with either definition.
Notice that we use the sane symbolc for the relation in every po

under discussion. This should give no difficulty. W also use names

like D and E both for po's and for their domains.

Definition -.5 W denote the set of continuous functions from D to

E, where these are cpo's, by [D — E].

Proposition 2.1 If D and E are cpo's then F = [D - E| is a cpo

under the relation

freg iff ¥x. f(x)eg(x)

Pr oof First, F is is a po under this relation (check
reflexivity, transitivity and antisymetry). Second, the mininum el enment

L_ of F is easily seen to be jx.L Finally, we need that any chain

F E'

Z c F has a lub [zZer. Define Lz = ax-U{f(x): fez}. This is a well-
defined function since for each x in D, { f(x) : fez} is easily seen
to be a chain in E Next, it bounds above every f€Z, since for each

x€D, f{x)el{f(x) : fez} = (Uz)(x). Further, it is a lub, since if h is

any other upper bound for 7z then for each x€D and f€Z, we have

f(x)eh(x); it follows that (UzZ)(x)zh(x), and hence UZc<h.
But we nust aiso show that UZ€F, i.e., LZ is continuous.
3



Let X ¢ D be a chain. W require
(uz) (LX) =U{Uz) (x) : xex},

But (Uz) (UX) = U{f(LX): fez} by the definition of LzZ.

uf £(x) : fez,xex}

{ (Lz) (x) : xex}.

This conpletes the proof. X
Proposition 2.2 For any cpo D, every f€[D — D] has a mininmm
fixed-point YfeD - i.e. we have f(Yf) = Yf and for all xeD,

f(x) = x inmplies YfLCx.

Remar k This proposition ensures the existence of the |east
fixed-point operator Y : [D - DO - D The next proposition shows that
Y is continuous, i.e. YeE[[D - DO - D.

Proof_ The set S = {fi(J_D) : 0<1ij is a chain by the
nonotonicity of f. Define Yf = US. By the continuity of f, we have
f(Yf) = Lile(JD): 0<i) =Y, so ¥Yfis a fixed-point of f. Let x
be any other fixed-point. Now by the nonotonicity of f we have

f(Q £ f(x) =x, and by induction on i we can show fi(Jb)_r:.x for

all  i>0, so Yf :u{fl(JD): 0<i)ex, and thus Yf is the

m ni mum fi xed-point of f. X
Propos<i2ion 3 Y is continuous, so YE[[D — D - D]

Pr oof Let Z be any chain < [D — D]. W nust show that
Y(Uz) = U{Yf : fez}. In one direction (=) proof is easy since for each

fez, Uz £, so Y(UZ) 3 Yf by the monotonicity of Y which in turn
follows directly fromthe definition of Yf. In the other direction we

only need to show that (fYf : fez} is a fixed-point of Uz, since then



it dominates the least such, which is Y({Z).

Uz (U{YEf : fez}) = U{g(U{YEf : fez}) : gez}

U{g(Yf) : gez,fez} by continuity of g.

u{ £(Y£) : fez}, since

g(Yf) = h(Yh) where h = max(g,f).

Uyt . fez}

which is the required fixed-point property. This conpletes

this proof.

X
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5. Pure LCF . Terns

In this section we give the termsyntax of Pure LCF, and then
after defining a standard interpretation as a function from identifiers
into the union of a famly of cpo's, we show how such an interpretation
is extended uniquely to a function fromall terms into the same range.

The terms of Pure LCF are just those of a typed X-cal cul us.

Types (1) ind and tr are (basic) types.
(2) If Bl, g2 are types then (Bl —» 82) is a type.
(3) These are all the types.
W use g, Bl, 82,... to denote types, and frequently omt parentheses,

assum ng that '-' associates to the right, so that 81 — 82 —B3

abbrevi ates (Bl — (R2 —B3)).

Ternms_ Each term has a well defined type. W use s,t,u

to denote terns, and wite s : B to nean that s has type g.

(1) Any identifier is an (atomic) term W do not need to describe them
except to say that there are infinitely many at each type, that the type

of each is deternmined in some way (perhaps by explicit subscripting), and
that they include TT : tr, FF : tr and the famlies (indexed by type)

uuy These identifiers are special

X Dtr_)B_)B_)B andY(

B—>8) 8
only in that each standard interpretation will assign a particular elenment
to each of them W use x,y to denote arbitrary identifiers.

(2) If s : gl -p2andt : B8l are ternms then s(t) : B2 is a term

If x : gl is an identifier and s : B2 is aterm then [ix-s] @ Bl — g2

is aterm

(3) These are all the terns.
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Remar k In the machine inplenentation of LCF, and often for
intelligibility, we have witten terms of the form x(s)(t)(u) and

Y([Ax-s]) respectively as (s - t,u) and [ax.s], and have dispensed

with o and Y. It is clear that every term of inplemented LCF is then

a transcription of a termof Pure LCF, and it therefore suffices to

di scuss the semantics of the latter.

Semanti cs A standard nmodel (of LCF) is a famly {DB} of cpo's,

is an arbitrary cpo, Dtr is the

cpo {tt,ff,_Ltr 3 under the partial order given by the diagram

one for each type B, where Dind

tt ff
\ /
Lty

and DBl S = [DBP D82] . Note that Diriconpl etely determines a

st andard nodel .

Let o be the set of identifiers of Pure LCF. A standard

interpretation (of LCF) is a standard nodel (DB] together with a

standard assignnent, which is a function

a @ g- U[D
which satisfies the further conditions

(U*mIX:B]JEDB

(2) The value of g for the special identifiers is given by

the follow ng:

* . . .
We wite the (syntactic) arguments of «# in decorated brackets as an
aid to the eye.
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it yields a continuous function over the appropriate domains.

W define @ by induction on the structure of terms, as follows:
als(t)l =alsl@lcl)
al [wxs]D . g -dg/xl[s]] .

That 7 respects types is obvious. That ¢ [ s] ep. for all g and

B
S: B is a corollary of the follow ng
Proposi t5.1n For each assignment # and for each x : Bl
S : B2, )ME€D_. - .
Pr oof First, suppose s is an atonic term i.e. an

identifier. Either s = x, in which case Bl = g2 and)\g-ge/[[su
S/ X
is the identity function over D81’ or s % x in whichcaseit is a
constant function from DBl to Dy, . In either case it is a continuous
function, hence e[DBl - DBQJ ,
Next suppose s is t(u), t: B3 - B2 and u : B%. Assune the
proposition for 't and u. W have to show that for any chain X ¢ Dr%l’
t( : = . i
U{dg/x[ (u) I : gex} UX/XU: t(u) J; that is, that
Ui &, t : =
{ g/X!I ](dg/xlf ul) gex} dUX/x[[ t](dr_]X/x[ ul).
Now if we denote . t and . u by f and g, the
M-, el 2. & Lou D by g

inductive assunption tells us that fe[p N [DB_9 D_ 1] and ge[D_.— D__],

Bl 3 B2 Bl B3
and the required equation merely states that for such f and g,
A\E.f(E)(g(g)) is continuous. The proof of this we leave to the reader;
it is hardly more than proving that for a chain x, {f(g)(g(&)) : Eex)}
and {£(g)(g(n)) : €,nex} are cofinal chains.

Finally, suppose s is [)y.t], Yy : B3,t : B4 and B2 =B3 — Bk

W need to show that



M€Dgs Ty L Diy-t] T €[y [Dgom by 1]

that is, that for any chain X ;DBl,

L {XﬂeDB5'<d§/x>,ﬂ/y[ t ]] : §€X} =
Mg~ (x5 L € T

Now in the case x = y, we have (dg/x)n/y _ <dl_JX/x>n/y _ aﬂ/v

— and the equation reduces to a tautol ogy. If x {: y , then

W@/X>ﬂ/y=
(d‘ﬂ/y)g/x’ and the inductive hypothesis (that the proposition is true for

-

t) tells us that . t ] is continuous - hence nonotonic -
) )8 (an/y>§/xl[ 1
SO . t is a chain in D, , for each M. Mreover, the
i nductive hypothesis also tells us that for each
e gy L e
isin [DBz - DBLF]’ and by the previous remark the set of these functions -

as € ranges over X - is achainin[D - D Thus by the definition

357 Dgi )
of U for function spaces (Proposition 2.1) we can replace the lefthand

side of the desired equation by

— —

neD .
MePgs + U L@y y)e Lol gex)
- €D
[ . Aye€Dgs . (aUX/x)ﬂ/yu: t ] since x ¥y
- and we are done. W have therefore proved the proposition by induction
on the structure of terms. X
L Corollary 3.2
For every assignment 7, type 8, and terms : 8, A sJ € DB.
|
. Pr oof For atomic terns the corollary is assured by the definition of
an assignnent. For X-terms, the proposition gives the corollary directly,

For an application terms(t) : g, the proposition tells us that

l 10



xgeDBl.dg/X[ s(t) Je[D,, - D_], so by application to

gl B g L xJ we get

a Cs(e) I = aﬂﬂ:X]/X[S(t)] € DB

as required.

!
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alTrl=tt,g[ FF] = ff,

dl[UUBB=LB,

1

P00 spopapl -

XgeDE-meDB.xxeDB-(g - M,x), and

RSN e TR

where (€ — 7,x) - the conditional - takes the values |, 7, x according

as £ = ltr'

Y on the right to indicate that it belongs to [[DBﬁDB} %DB]' Not e
that the Y on the left is an identifier, and the Yy on the right a
function. It is easy to check that @ [ 7 is a continuous function,
and Proposition 2.3 has assured us that ¢ [ Y] is also continuous.

If @ satisfies condition (1) above, but not necessarily condition

(2), we call it just an assignment, yielding an interpretation (not

necessarily standard). W also confuse the ternms assignnent and
interpretation, since we have no occasion to discuss here different
standard nodel s.

W wite dg/x to indicate the assignnent differing from 7 only

inthat its value at x is g; clearly we have that

I
Dyjy PEX =Y

Gy |
<aﬂ/y)§/x otherwise.

W& now show how to extend the domain of an assignnent ¢ to all

terns, preserving the condition that

d[s:ﬁ]eDB

which states not only that ¢ respects types, but also that (for conposite types)

tt, ff, and where we have subscripted the fixed-point operator



4. Pure LCF : Formulae,Sentences, Rules and Validity

In this section we define the remainder of the syntax of Pure LCF,
extending the domain of assignnents 7 still further, and after defining
the concept of validity of a sentence we give the rules of inference and

show that they preserve validity.

Atonmic well-formed fornulae (awffs)

[

If s,t : pare ternms, then s ct is an awff. Let us add the
truth values T,F (not to be confused with TT, FF) to the range of
an assignnent, and extend any ¢ to awffs by

dlfsct] ={T if glsJcaltld

F ot herw se

Wl l-formed formulae (wfs)

A wf is a set of awffs. W use P,Q,P1,Ql,...... to denote
arbitrary wifs. Extend ¢ to wifs by
aLP] =4Tif AeP=g[[A] =T
L: ot herw se.

W use s-t to abbreviate {sct, t cs}.

Sent ences
If P,Qare wifs, then P+ Qis a sentence (if P = g, we just

wite = Q. Extend & to sentences by

alPrQl = {Fif@ [Pl =T, g[Ql=F

T otherw se.
W say that PrQ is false in g, true in 7 respectively. W say that
a sentence is valid iff it is true in all standard interpretations.

W now introduce the rules of inference of Pure LCF, acconpanying

each by a proof - often very trivial - that it is valid (a rule is valid
12
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i f whenever its hypotheses are valid its conclusion is valid). The
proofs will rely on two facts about assignments which are fairly easy
to prove (we omt their proofs). First, if A s any syntactic entity
in the donmin of an assignment ¢, and x is not free in A then
a LA is independent of # [[xJ; nore precisely, ”g/x[A] - 7[A].
Second, in specifying the inference rules we use A{t/x} to nean:
Substitute t for x in A wth suitable changes of bound vari abl es
so that no identifier free in t pecones bound after the substitution,

and we need the fact that # LA {t/x}] = a, [t]/xﬂ:A].

Rul es of Inference

W wite the hypotheses of each rule above a solid line. | tpere
are none, we omt the solid line. W use the same names for rules as in
[1].
| NCL PkQ (Q ¢ P)

Clearly P true. in ¢ inplies Q true in g.

CONJ P Q1 PHQ2
P Q1 U Q2
Clearly valid
cur Pl P2 P2 HP3
Pl + P3
Clearly valid.
APPL tcu F s() < s(u)

1f gltldesLCull, then 7 [s(I =@ LsT(~LtT)
c g Lsl@ 1) =a [s(u)d, using

the nonotonicity of @ [[s 7.

13
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REFL  sCs

Cearly valid, by reflexivity of
TRANS sct, tcu t- scu

Clearly valid by transitivity of &
MIN1 F uucs

Cearly valid, py the minimality of Ly

M N2 F UU(s) © W

Cearly valid, by the definition _
y lsl L T AE€BL. LBE

Note that in the last two rules we have onmitted the type subscripts from

U0, intending that they be supplied in such a way as to yield a proper

amff -i.e. that the terns on either side should have the same type. W
could have witten UU . - . :
3l - go (S .Bl)cUUBE. Simlarly we will onit

subscripts from - and V.

conDT - 5 (1T) (s)(t) = s
CONDU F o (vu)(s)(t) = uyu
CONDF - > @)(s)(t) =t

These rules are justified by the standard interpretation of .

ABSTR Pt- sct
P F [ax.s] © [)x .t]

X not free in P.

Let 7 be such that ¢ L PJ] = T. Since x is not free in P

3

we have al so dg/xﬂ: P11 = T for any €. So the hypotheses of the rule

assures us that for each g€in p \n : =
g» where x : B,dg/xﬂ'_s]__ﬂg/xﬂ:t]}.

xg.dg/x[[ sl e )\g.dg/x[ tJ, which is to say that
a [ [xx.s] ©[axx.t]] =T, as required.

CONV  [ax.s] (t) = s{t/x}

14

Hence



We have that @ [[ [ax.s ](t)J = ()\g-ﬂg/xﬂ: s¥)@ltd)

- dd[t]/x[s]] , which is equal to @ [[s{ t/x} J by

the second of the facts about assignments which we have assuned.

ETACONV Iax.y(x)] =y, y distinct fromx
- 2L 0wy (1T =084, Ly()T = i %, Ly (g, [ <T)
= .2 LyD(E) (since x is distinct from y, so does not
|
-
occur free in y), =ad[Ly1].
L
CASES P, s=TTi-Q P, s =UU}Q P, s = FFI-Q
L PFQ
Let @ be such that ¢JL PJ = T. Since s : tr, ¢ [[s3 nust
L take one of the values { tt, _|_tr , ff}, so that one of d[s=7171,
@ Ls=vull,a [[s=FF] takes the value T  The validity of the
~ appropriate hypothesis ensures @[ Q] =T.
. Fl XP. F oY(x) = x(Y(x))
i Cearly valid by the standard interpretation of v.
| NDUCT. P Qf UU/x) P UQFQfs (x)/x}
PHQiy(s)/x}

x not free in P or s
For sinplicity, we consider just the case that Q s an awf.
Moreover we can assume that it is of the form t(x) < u(x) where x is
not free in t or u, since for any termt', @[ t'J = aL Ia-t'{y/xi1(x)7,
y distinct fromx, and then x is not free in w.t'{y/x}]. Let @
be a standard assignment, @ [[ PJ) = T, and assume that ¢ [s] = £

altd =g, aLuvl =h. W first show by induction on i that for

15



each i > 0, g(fi(_LB))E_:_ h(fi(ls)), where x @ 8. For i = O,

— the first hypothesis gives that LQel = 1,that s ¢ Lt (L)@ [ vl(L)
‘I‘B/x B B
(since x is not freein t,u), so g(L) E h(iB)- Now assume the
inequality for i. That is, we assume Z& wy/ L@l =T. Since x is
X
B

r

not free in P, we also have Tei ( )/X[[ PJ =T, and we deduce from the

second hypothesis that dfi(l-s )/xU:Q {s(x)/x} T = T. Now dfi(lB)/x[ s(x) J =

f(fl(ls)), since x is not freeins, = fi+l(_LB>, so fromthe

second fact which we assunmed for assignments we deduce that . -7
fl+l(-L )/XE Q ]]— )

i+l(.LB))5 h(fiH(_Lg). So the induction is conplete.

that is g(f

Nowg CQ{Y(s)/x} I = dY<f)/X[Q:]], which we require to take the

— — o

value T. That is, we require g(Y(£))ch(Y(£f)). But g(Y(f)) =
U{g(f (_LB)) : i 20} (by the continuity of g), £ U {h(fl(_LB)) C 0> 0)
L (by what we have proved), £ h(Y(f)) by the nonotonicity of h, and the

justification is conplete.

[ This conpletes also our justification of the validity of the

Rul es of LCF.
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