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This paper introduces a new class of continuous probability distributions that are flexible enough to represent
a wide range of uncertainties such as those that commonly arise in business, technology, and science. In

many such cases, the nature of the uncertainty is more naturally characterized by quantiles than by parame-
ters of familiar continuous probability distributions. In the practice of decision analysis, it is common to fit a
hand-drawn curve to quantile outputs from probability elicitations on a continuous uncertain quantity and to
then discretize the curve. The resulting discrete probability distribution is an approximation that cuts off the
distribution’s tails and eliminates intermediate values. Quantile-parameterized distributions address this prob-
lem by using quantiles themselves to parameterize a continuous probability distribution. We define quantile-
parameterized distributions, illustrate their flexibility and range of applicability, and conclude with practical
considerations when parameterizing distributions using inconsistent quantile assessments.
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1. Motivation
There exists a gap in the professional practice of
decision analysis: probability distributions capable of
representing a broad range of continuous uncertain
quantities, especially those that are not well charac-
terized by a simple underlying process. Probability
distributions that describe underlying physical pro-
cesses are unequipped to effectively represent such
uncertainties precisely because these distributions are
limited by their process interpretations. In contrast,
we introduce a more flexible class of probability dis-
tributions that take quantiles as their parameters, are
continuously differentiable, and are computationally
convenient to simulate.

As one application, when modeling a decision, a
decision analyst may elicit an expert’s knowledge on
a continuous uncertain quantity as a finite set of quan-
tiles over a prescribed set of probabilities (points on a
cumulative distribution function (CDF)). One can use
a quantile-parameterized distribution (QPD) to pro-
vide instant feedback on the shape of a distribution
consistent with these quantiles and facilitate rapid

convergence to a probabilistic representation that the
decision maker declares appropriate.

When many discrete points (e.g., as a result of a
probabilistic simulation or other data gathering) are
the best information a decision maker has for char-
acterizing a continuous probability distribution, he
can use QPDs to represent that discrete information
with a smooth probability distribution. In practice,
the use of QPDs facilitates probability assessments,
enables modeling of a decision maker’s probabilis-
tic information with greater fidelity, and provides an
improved method for communicating and visualizing
probabilistic information.

2. Probability Encoding
Methodologies

Howard (1988) specifies the basis of any decision by
the decision maker’s alternatives, information, and
preferences. This article focuses on the informational
component of decision making: what the decision
maker knows. In this matter, we take a Bayesian
approach. The Bayesian view of probability asserts
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that an individual’s knowledge about an uncertainty
can be quantified by a probability distribution. Once a
decision maker expresses his knowledge about a spe-
cific decision numerically (and identifies his alterna-
tives and preferences), a decision analyst can apply a
formal process to determine his best alternative.

As decision analysis practice matured, a practical
question arose: How can one best elicit an expert’s
probability distribution on a continuous uncertain
quantity? It was during that time period when Tver-
sky and Kahneman (1974) described various cognitive
biases that apply to decision making. From this con-
fluence of decision analysis and behavioral decision
theory, Spetzler and Staël von Holstein (1975) detailed
a process for translating an expert’s knowledge about
an uncertainty into a CDF by way of a series of gam-
bles. A probability encoder asks these questions in
a sequence designed specifically to guide the expert
away from cognitive biases. To reduce motivational
biases, Matheson and Winkler (1976) and José and
Winkler (2009) introduced scoring rules for continu-
ous distributions that incent the expert to truthfully
respond to the questions. The output of the Spet-
zler and Staël von Holstein (1975) method is a finite
sequence of quantiles and their associated cumulative
probabilities. They note that their probability encod-
ing procedure can result in quantile/probability pairs
that are inconsistent. In such a case the probability
encoder can ask further questions of the expert until
his answers are consistent; alternatively, given a set of
inconsistent quantile/probability pairs, one can con-
struct a continuous distribution that is consistent with
the given information. For example, Abbas (2005)
details a method for maximizing entropy between
upper and lower bounds of CDFs.

Decision analysis, as a formal discipline, is more
than 40 years old (Howard 1966). In that time, compu-
tational power has increased dramatically. The earliest
decision analysis software computed certain equiv-
alents of uncertain deals by solving discrete deci-
sion trees. This is one possible reason why many
methods exist for the discretization of continuous
CDFs.1 Various approaches exist for transforming

1 We note that discrete approximations remain useful for many
applications, including the assessment of conditional probability
distributions and dynamic programming.

such sets of assessed coordinates into a usable prob-
ability distribution. One common approach is first
to apply a hand-drawn smooth curve through the
assessed points. The next step is to use an algorithm
that chooses discrete points on the value axis based
on the smooth curve. Abt et al. (1979) propose the
bracket-mean method, a practice used by the deci-
sion analysis group at SRI International as far back
as the early 1970s.2 The bracket-mean method dis-
cretizes the cumulative probability axis into n brack-
ets. Within each bracket, one chooses a value so
that the area to the left of the value and below the
CDF equals the area to the right of the value and
above the CDF. This method determines conditional
means over the support of each bracketed conditional
probability. Smith (1993) also mentions the bracket-
median method, which is similar in concept except
that one discretizes the distribution using the con-
ditional median within each bracket rather than the
conditional mean. Keefer and Bodily (1983) intro-
duce the extended Pearson Tukey (eP-T) method. This
approach builds on the work of Pearson and Tukey
(1965) to estimate the first and second moments of a
continuous probability distribution with a probability
density function (PDF) having three points of support.
It uses the 0005/0050/0095 quantiles and applies prob-
abilities of 00185/00630/00185. Although this method
is ad hoc, Reilly (2002) shows it to be empirically
robust at approximating the first five moments of
some familiar probability distributions.

A second approach is one of maximum entropy
distributions. This approach is attractive from a
normative sense in that it strives to add little or no
information beyond that which the data give. The
maximum entropy distribution for a set of quan-
tile/probability data has a piecewise linear CDF
and a stair-step PDF. Abbas (2003) calls this type
of distribution the fractile maximum entropy distri-
bution (FMED). This distribution adds no informa-
tion beyond the quantile/probability data themselves.
Abbas introduces another maximum entropy distribu-
tion that he names as the midpoint maximum entropy
distribution. This distribution makes the assumption
that the PDF will cross each interval of an FMED at

2 E-mail correspondence with Jim Matheson, former director of the
Decision Analysis group at SRI International (June 2010).
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its midpoint. The advantage of adding the heuristic
midpoint element is that the resulting PDF is con-
tinuous (piecewise linear). The class of probability
distributions that we propose in this paper takes a
further heuristic step in that the distributions are not
constructed by maximizing entropy. They retain the
advantage of passing through each quantile, having
an arbitrary support, and having a smooth PDF.

There are two other methods of note that use nei-
ther hand-drawn smooth curves nor entropy maxi-
mization. Miller and Rice (1983) introduce a method
that strives to approximate the moments of the
assessed points by twice applying a Gaussian quadra-
ture procedure. The result is a discrete probability
distribution with an arbitrary number of points of
support. The other approach is to fit a set of piecewise
functions to the quantile data. Many and varied fields
apply such piecewise fits, including Boneva et al.
(1971) in the field of statistics, Hilger and Ney (2001)
in signal processing, and Korn et al. (1999) in data
mining. In a direct application for decision analysis,
Runde (1997) fits a C2 Hermite tension spline through
the assessed quantiles. This smooth, piecewise curve
is a probability distribution; therefore, one can dis-
cretize it via one of the aforementioned methods or
one can sample from it (as from any piecewise func-
tional fit that satisfies the axioms of probability) via
probabilistic simulation. The approach detailed in this
paper most closely resembles the last method except
that instead of a piecewise function, we introduce a
method for constructing a single (nonpiecewise) prob-
ability distribution.

3. Introduction to
Quantile-Parameterized
Distributions

We sought a probability distribution whose CDF
would accurately represent a continuous probability
distribution based only on an arbitrary number of
quantile/probability pairs 84xi1yi5 � i ∈ 12n9. The idea
for QPDs was driven by this desire and was originally
developed from a simple thought: start with some-
thing good and make it better. This thought succeeds
in many contexts; for example, Ye et al. (2000) describe
a method for genetically engineering rice with the
goal of producing golden rice, a grain designed to

help the nutritional needs of populations whose diets
are deficient of vitamin A. The researchers began with
a staple food (rice), and engineered its genes to pro-
duce a critical nutrient (beta carotene). In the case of
probability distributions, consider the normal distri-
bution. A univariate normal distribution is a func-
tion described by two parameters, � and � , that
can be thought of as analogs to the genes of a liv-
ing organism, in the sense that modifying either of
these parameters modifies the function itself. Ordinar-
ily, � and � are parametric constants, but one might
also choose to vary them systematically. For exam-
ple, would smoothly increasing � over the domain
of the PDF yield a right-skewed distribution? Would
smoothly increasing � over the domain of the PDF
yield a distribution with a fatter midsection and thin-
ner tails? It turns out that the answer to both of these
questions is yes. By starting with something good (a
normal distribution), one can make it better for the
representation of a broad range of uncertainties by
allowing � and � to vary. More specifically, one can
impart right-skew to a normal distribution by vary-
ing the � parameter as an increasing function of its
cumulative probability. Likewise, one can decrease the
kurtosis of a normal distribution by varying the �
parameter as an increasing function of its cumula-
tive probability. Varying � and � as a function of the
cumulative probability of a distribution has the fea-
ture of increasing the number of parameters of the
distribution while remaining scale invariant.

4. A Simple Quantile-Parameterized
Distribution

We illustrate QPDs with an example that we hence-
forth call the simple Q-normal. To construct such a
distribution, we take an approach similar to Kirk-
wood (1976) by changing the parameters of a famil-
iar function. We begin with a normal distribution
with random variable X ∼ N4x3�1�5 and redefine its
parameters � and � as linear functions3 of the normal
distribution’s cumulative probability, y = F 4x5.

�4y5= a1 + a4y1 (1)

3 This approach is analogous to the generalization of constant abso-
lute risk aversion into hyperbolic absolute risk aversion, where
one recasts the decision maker’s risk tolerance parameter �4x5 =

−4u′′4x5/u′4x55−1 as a linear function of wealth, x.
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�4y5= a2 + a3y0 (2)

The resulting random variable X ∼ N4x3�4y51�4y5) is
distributed according to a simple Q-normal distribu-
tion. Its CDF is an implicit function, and ê represents
the standard normal CDF:

F 4x5=ê

(

x− 4a1 + a4y5

a2 + a3y

)

for x ∈ 4−�1�50 (3)

To derive its PDF, start with the chain rule dF /dx =

4dê/dz54dz/dx5, where z = 4x− 4a1 + a4y55/4a2 + a3y5,
and substitute the standard normal PDF �4z5 =

dê/dz,

dF

dx
= �4z5 ·

(

1
�4y5

dx

dx
−

1
�4y5

d�4y5

dx
−

x−�4y5

�4y52

d�4y5

dx

)

=
�4z5

�4y5

(

1 − a4
dF

dx
− za3

dF

dx

)

0

Then gather the differential terms and substitute (2)
to yield the PDF

f 4x5=
�4z5

a2 + a3y+�4z5 · 4a3z+ a45
(4)

given a2 + a3y+�4z5 · 4a3z+ a45 > 01

for all z ∈ 4−�1�50

Like the CDF, this simple Q-normal PDF in (4) is an
implicit function. However, given only the cumulative
probability y = F 4x5, one can determine the remain-
ing variables z and ê4z5 and hence determine f 4x5.
Note that one can create a three parameter Q-normal
distribution by setting any one of the parameters a1,
a2, a3, or a4 equal to zero. Also note that the distri-
bution of (3) reverts to the normal distribution when
a3 = a4 = 0.

One can readily determine the constants 8ai � i ∈ 1249
from a set of four quantile/probability pairs by solv-
ing a set of four linear equations. Begin with the
equation

z=
x− 4a1 + a4y5

a2 + a3y
0

We solve for x to yield

x = a1 + a2z+ a3yz+ a4y0

Figure 1 Some Skewed Simple Q-Normal Distributions
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Choosing a cumulative probability y determines the
standardized variable z=ê−14y5. Inputting its associ-
ated quantile x then leaves only the four scaling con-
stants 8ai � i ∈ 1249 as unknown. One can express these
relationships with the system of linear equations
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We denote this matrix4 as Y , which represents a linear
map R4

→ R4 of the quantiles x to the constants a. In
effect, the simple Q-normal is fully parameterized by
a set of four quantiles. To determine the constants a,
rewrite (5) as a= Y −1x. As long as Y is invertible, this
method delivers a unique function for any given set
of four quantile/probability pairs.

The preceding formulation reveals some key fea-
tures of this simple Q-normal distribution. To begin
with, it results in a wide range of probability distribu-
tions that are consistent with a diversity of quantiles,
shown briefly in Figures 1 and 2.

The simple Q-normal is supported over the real
number line and allows for adjustment of its shape
and moments through the modulation of its quantile
input parameters. This simple Q-normal can be also
be fully described by its inverse CDF, which is an
explicit function of y:

F −14y5 = a1 + a2ê
−14y5+ a3yê

−14y5+ a4y1

for y ∈ 401150 (6)

4 We use Y to denote this matrix because it depends only on
y11 0 0 0 1 yn and not on x11 0 0 0 1 xn.
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Figure 2 Some Symmetric Simple Q-Normal Distributions
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This makes it well suited to probabilistic simulation—
a feature that we soon shall see is true of QPDs in gen-
eral. Generating a simple Q-normal random variate
via the inverse transformation method is as straight-
forward as computing a uniform40115 random variate
and substituting it for the variable y in (6).

We now offer a general definition of a QPD. Note
that the parameter substitution method we used to
derive the simple Q-normal is neither an attribute nor
a requirement of this general definition.

5. Definition: Quantile-Parameterized
Distribution

Let 8gi4y5 � i ∈ 12n1 y ∈ 401159 be a set of continuously
differentiable and linearly independent functions of
the cumulative probability y. We henceforth call these
basis functions. Further, let 8ai � i ∈ 12n9 be a set of real
constants.

Definition 1. A continuous probability distribu-
tion is a QPD if and only if its inverse CDF can be
written as follows:

F −14y5=



















L0 y = 01
n
∑

i=1

aigi4y5 0 <y < 11

L1 y = 11

(7)

where the constants L0 and L1 are the right-handed
limit

L0 = lim
y→0+

F −14y5 (8)

and the left-handed limit

L1 = lim
y→1−

F −14y50 (9)

By Definition 1 the simple Q-normal is a QPD
because its inverse CDF is of the form of (7), where

g14y5 = 11

g24y5 = ê−14y51

g34y5 = yê−14y51

g44y5 = y0

Some familiar probability distributions are also QPDs,
including the normal, the exponential, the logistic,
and the uniform.5

We include L0 and L1 in the construction of (7) so
as not to restrict the set of allowable basis functions
to those with ranges over finite intervals. For exam-
ple, the basis function g24y5 = ê−14y5 of the simple
Q-normal has limits L0 = −� and L1 = +�. This con-
struction removes any restriction on the support of
a QPD. That is, a QPD can be supported over any
connected subset of the real numbers depending only
on its basis functions and constants a ∈ Rn. We now
explore several properties of a QPD that are implied
by its definition.

Proposition 1. The probability density function of a
QPD is given by

f 4x5=

( n
∑

i=1

ai
dgi4y5

dy

)−1

1 (10)

where x = F −14y50

Proof. Differentiate (7) with respect to y:

dF −14y5

dy
=

d

dy

n
∑

i=1

aigi4y50

Because x = F −14y5 by definition, and the differential
operator is linear,

dx

dy
=

n
∑

i=1

ai
dgi4y5

dy
0 (11)

Taking the reciprocal of (11) yields PDF (10). �

5 The QPD definition introduced in this paper is similar to the
parametric family of distributions that Karvanen (2006) introduces
for the purpose of estimating a probability distribution using
L-moment statistics. In contrast, our QPD definition removes the
restriction that the basis functions be quantile functions (i.e., nonde-
creasing) and adds the restriction that they be linearly independent
and continuously differentiable.
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Proposition 1 is a general equation for deriving the
PDF of a specific QPD. As an example, one can derive
the PDF of the simple Q-normal given in (4) by apply-
ing the Q-normal’s basis functions 8g14y5= 13 g24y5=

ê−14y53 g34y5= yê−14y53 g44y5= y9 to (10).

Proposition 2. The mth moment of a QPD is

E6xm7=
∫ 1

y=0

( n
∑

i=1

aigi4y5

)m

dy0 (12)

Proof. The definition of the mth moment of a prob-
ability distribution f 4x5 is

E6xm7=
∫ +�

x=−�

xmf 4x5dx0 (13)

Because y = F 4x5 and f 4x5 = dF /dx, dy = f 4x5dx.
By substituting, dy = f 4x5dx, and x = F −14y5, (13)
becomes

E6xm7=
∫ 1

y=0
4F −14y55m dy0 (14)

Substituting (7) into (14) gives (12). �
Proposition 2 is particularly useful when comput-

ing moments of a QPD whose PDF is not an explicit
function of x, a circumstance that is often the case
with QPDs. In such an instance, the integral (13) is
not of an explicit form. In contrast, the integral (14) is
an explicit function of y.

Proposition 3. A function of the form (7) character-
izes a continuous probability distribution (and therefore a
QPD) if and only if

n
∑

i=1

ai
dgi4y5

dy
> 01 for all y ∈ 401150 (15)

Proof. The CDF of a continuous probability distri-
bution is increasing over its support if and only if its
inverse CDF is strictly increasing in y over the inter-
val 40115. Equation (15) is the latter condition. �

Proposition 3 is important because it gives a
method to verify whether a function of the form of (7)
characterizes a probability distribution. For example,
one can derive the parametric constraint of the sim-
ple Q-normal given in (4) by applying the Q-normal’s
basis functions 8g14y5 = 13 g24y5 = ê−14y53 g34y5 =

yê−14y53 g44y5= y9 to (15). The condition in (15) also
serves as a feasibility constraint for any optimization
formulation relating to a QPD. Henceforth, any refer-
ence to feasibility in relation to a QPD indicates the set

of constants and/or input quantiles that make (7) an
inverse CDF—one that is consistent with the axioms
of probability.

Proposition 4. A QPD’s set of feasible constants Sa =

8a ∈ Rn �
∑n

i=1 ai4dgi4y5/dy5 > 0, all y ∈ 401159 is convex.

Proof. The set Sa can be equivalently expressed as
an infinite intersection of sets

⋂

y∈40115 Sy , where Sy is
the halfspace 8a ∈ Rn � bT a > 09 and the vector b =

4dg14y5/dy1 0 0 0 1 dgn4y5/dy5. Because all halfspaces are
convex sets and because any intersection of convex
sets yields a convex set, Sa is a convex set. �

Proposition 4 is useful when one wishes to quickly
determine whether a function of the form (7) yields
a QPD. We will explore the feasibility of input quan-
tiles in more detail when we later test the parametric
limits of the simple Q-normal. Finally, because convex
optimization problems require convex feasible sets,
Proposition 4 directly applies to optimization prob-
lems involving QPDs.

The following theorem shows that points on the
CDF can uniquely determine the constants ai. In such
cases, points on the CDF are the parameters of a QPD.

Theorem 1 (Quantile Parameters Theorem). A set
of n distinct points 84xi1yi5 � i ∈ 12n9 uniquely determines
the constants 8ai � i ∈ 12n9 of a QPD by the matrix equation

a= Y −1x1 (16)

where a1x ∈ Rn, and

Y =













g14y15 0 0 0 gn4y15

000
0 0 0

000

g14yn5 0 0 0 gn4yn5













(17)

if and only if
I. the matrix Y is invertible, and
II.

∑n
i=1 ai4dgi4y5/dy5 > 0, for all y ∈ 40115.

Proof. We begin by showing that condition I is
true if and only if Equation (16) holds and that the
resulting function (7) is unique to the quantile inputs
x ∈ Rn. Set up a system of n equations according to (7).
This yields the matrix equation x = Ya, using the def-
inition of Y from (17). Equation (16) holds if and only
if Y is invertible. Because Y is square, it defines a
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one-to-one mapping of the quantiles x ∈ Rn to the con-
stants a ∈ Rn.

However, the function (7) resulting from a set of
input quantiles x ∈ Rn may not characterize a proba-
bility distribution. We need to show a set of constants
a ∈ Rn characterize a QPD if and only if condition II
holds. This is true by Proposition 3. �

The power of the Quantile Parameters Theorem is
that constants a ∈ Rn need not be assessed. Instead,
points on the CDF uniquely determine these constants
according to (16). One can either assess these points
directly using probability elicitation methods or take
them from other sources of data like scientific mea-
surements, stock movements, or the results of a prob-
abilistic simulation. In the latter case, one can replace
the histogram display of a probabilistic simulation
with a smooth QPD representation as appropriate.

Regarding condition I, because the basis functions
are linearly independent, the invertibility of Y is guar-
anteed except in pathological cases. If such a case
were to occur, a small perturbation would solve the
problem. In practical applications, we have never
encountered a case where Y is singular.

In contrast, it is very possible to choose a set of
basis functions and points 84xi1yi5 � i ∈ 12n9 such that
condition II is not satisfied. The art of constructing
a QPD lies in (a) choosing a set of basis functions
that is capable of representing a decision maker’s
uncertainty and (b) specifying the points to determine
that representation. For our simple Q-normal, we will
specifically derive a wide range of feasibility condi-
tions that satisfy condition II. For QPDs with other
basis functions, one can derive similar conditions.

We offer no axiomatic basis for choosing the basis
functions. Their suitability is solely determined by
a decision maker’s declaration that his uncertainty
is appropriately represented. In practice, using QPDs
such as the Q-normal, we have found that this is
generally the case. Nonetheless, we can offer sev-
eral practical guidelines for choosing the basis func-
tions, based on our professional experience. These
guidelines derive from the observation that a QPD’s
inverse CDF is a linear combination of its basis func-
tions. Using the simple Q-normal as an example, the
constant a1 is a location parameter. The constant a2

multiplies an inverse CDF of the standard normal
distribution and thus allows the QPD to be supported

over the real numbers. The constant a3, which mul-
tiplies the product of uniform and normal inverse
CDFs, adds skewness. Positive and negative values
for a3 result, respectively, in right-skewed and left-
skewed PDFs, as shown in Figure 1. For symmetric
distributions, a3 = 0. The constant a4 multiplies a uni-
form distribution. Adding this function to the first
two terms reduces or increases kurtosis, as shown
in Figure 2, depending on whether a4 is positive or
negative.

If the support of a decision maker’s probability dis-
tribution is a bounded interval, then one can substi-
tute a bounded distribution’s inverse CDF (such as
the beta) for the inverse CDF of the standard nor-
mal. If one desires the support of a distribution to be
bounded below and unbounded above, then one can
use the inverse CDF of a lognormal distribution. One
can tune the tails of a QPD both by the choice of the
basis functions and by the quantile probability pairs.
For example, if a distribution is supported over the
real numbers, and one desires that F −14009995 take a
particular value x0, then a simple Q-normal parame-
terized by (x0100999) may suffice. The space of proba-
bility distributions governed by QPDs may hold great
possibilities for future research.

Indeed, the use of QPDs is not even limited to n
quantile/probability pairs, where n is the number of
basis functions. Later in this paper we will briefly
explore a QPD constructed with n basis functions and
m quantile/probability pairs when m>n. This makes
the matrix Y ∈ Rm×n.

We now return to exploring the properties of the
simple Q-normal, as one example of a useful QPD.
We begin by computing its first two central moments.

6. Moments of the Simple Q-Normal
Because the PDF for the simple Q-normal is implicit,
we use (14) to determine its central moments. Substi-
tuting (6) we write the formula for the mean of the
simple Q-normal

E6xm7=
∫ 1

y=0
4a1 + a2ê

−14y5+ a3yê
−14y5+ a4y5dy0

Some further simplification yields the equation

E6xm7 = a1 +
a4

2
+ a2

∫ 1

y=0
ê−14y5dy

+ a3

∫ 1

y=0
yê−14y5dy0 (18)
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According to (14), the first of the two remaining
integrals in (18) is the mean of the standard normal
distribution, which equals zero. For the second inte-
gral, we change the variable of integration from y to z

and integrate by parts to yield

[

−ê4z5�4z5+

√

1
16�

erf4z5
]�

z=−�

1

where erf4z5 represents the error function. This quan-
tity equals

√

1/4�, so the mean of our simple
Q-normal equals

a1 +
a3

√
4�

+
a4

2
0 (19)

Using the same method, the variance of the simple
Q-normal is approximately

a2
2
+ a2a3 + a3

2

(

1
3

+
1

2�
√

3
−

1
4�

)

+
a2a4
√
�

+ 00282a3a4 +
a4

2

12
1 (20)

where the constant 00282 approximates the integral
∫ 1
y=0 y

2ê−14y5dy. These first two central moments
reveal some items of note. First, we see that the mean
of the simple Q-normal is not a function of a2, the
constant term of (2), just as the mean of a normal dis-
tribution is not a function of its variance. Similarly,
the variance of the simple Q-normal is not a function
of a1, the constant term of (1), just as the variance of
a normal distribution is not a function of its mean.
Recall that the simple Q-normal reduces to the normal
distribution when a3 = a4 = 0. In this case, the mean
must equal a1 and the variance must equal a2

2, a fur-
ther demonstration that (19) and (20) are consistent
with (1) and (2).

7. Parameterizing the Q-Normal
Using Quantiles from Familiar
Probability Distributions

Suppose an expert asserts 1st, 10th, 50th, and 90th
quantiles6 consistent with an underlying familiar,

6 We choose these quantiles to remain consistent with the preceding
demonstrations. However, the simple Q-normal is not limited to
the 1st, 10th, 50th, and 90th quantiles—one could choose any four
unique quantiles to use in this example.

Table 1 Deviation Between of the Simple Q-Normal and Various
Named Distributions

Named distribution 1% 10% 50% 90% K-S distance

Beta(214) 0033 0011 0031 0058 0.010
Logistic(3011) 25 28 30 32 0.009
Student’s t485 −209 −104 0 104 0.010
Lognormal(01005) 0031 0053 1 109 0.017
Weibull(1015) 302 400 408 504 0.014
Normal(301708) 12 20 30 40 0

henceforth named distribution (beta, logistic, stu-
dent’s t, etc.). One could use these quantiles to
parameterize the simple Q-normal distribution. But
how close an approximation might it be? Would the
Q-normal provide a representation sufficiently accu-
rate for practical use? To explore these questions, we
take these four quantiles from some named proba-
bility distributions and use them to parameterize the
simple Q-normal. We use a selection of named distri-
butions with a diversity of distributional shapes. Next
we compute the 1st, 10th, 50th, and 90th quantiles
of each of these distributions and use these quantiles
as parameters for a simple Q-normal distribution. We
use the Kolmogorov–Smirnoff (K-S) distance (maxi-
mum y-deviation) as a measure of accuracy. We show
these data in Table 1. Figure 3 gives plots of the PDF
and CDF of each of the named distributions overlaid
by the simple Q-normal parameterized by the quan-
tiles. Note that for the CDF plots, it is impossible to
discriminate between the named distribution and the
simple Q-normal parameterized by its 1st, 10th, 50th,
and 90th quantiles.

8. Range of Flexibility of the Simple
Q-Normal Distribution

One can interpret the parametric limits associated
with (4) in terms of two ratios: r1 and r2. The first
gives an indication of distributional symmetry

r1 =
x50 − x10

x90 − x10
1

where xi is the ith quantile. To give intuition, all sym-
metric distributions yield a value r1 = 005, whereas the
right-skewed exponential distribution has an r1 equal
to 00365 regardless of the value of its rate parameter.
The second ratio r2 gives a sense of tail width

r2 =
x10 − x1

x90 − x10
0
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Figure 3 The Simple Q-Normal as Parameterized by Some Named Probability Distributions
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Note. Both the named distribution and its associated QPD pass through each of the four quantile input points.

We project the quantile vector x ∈ R4 onto the r1 − r2

plane to better visualize the limits of the simple
Q-normal. Paradoxically, graphing these limits (Fig-
ure 4) clearly demonstrates the flexibility that this
simple parameterization of a QPD offers. The limits
are an ovoid shape. Inside the ovoid are coordinates
of r1 and r2 that this simple Q-normal distribution can
express; outside are coordinates it cannot.

Figure 5 shows how the limits of some named
distributions such as the normal and exponential
reveal themselves as points in the r1 − r2 plane, where
the limits of other distributional forms such as the
Weibull, lognormal, triangular, and student’s t are
curves.

A beta distribution is a very flexible functional
form able to represent a wide range of distributional

shapes. Indeed its feasible region maps to an area in
the r1 − r2 plane. Yet Figure 5 indicates that despite
its flexibility, the beta distribution adds little to the
Q-normal’s territory beyond some bimodal forms.
A QPD of modest functional form like the simple
Q-normal demonstrates a flexibility to match quan-
tiles that is not approached by a battery of named
probability distributions. From a different perspec-
tive, the simple Q-normal has the flexibility to replace
a wide range of named probability distributions in
representing uncertainty.

Proposition 5. The set of feasible quantile ratios r =

4r11 r25 for the simple Q-normal is convex.

Proof. Let

�2 4x11x101x501x905→

(

x50 − x10

x90 − x10
1
x10 − x1

x90 − x10

)
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Figure 4 Simple Q-Normal Parametric Limits in the r1 − r2 Plane
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be the function whose image is the vector r =

4r11 r25. Let Sr be the set of feasible ratio vectors
Sr = 8r ∈ R2 � r = �4x51 x ∈ Sx9, where Sx = 8x ∈ R4 � x =

Ya1 a ∈ Sa9 is the set of quantile vectors that yields a
Q-normal probability distribution and Sa = 8a ∈ R4 �
∑n

i=1 ai4dgi4y5/dy5 > 01y ∈ 401159 is the set of feasible

Figure 5 Simple Q-Normal Parametric Limits and the Limits of Some Named Distributions
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constants. From Proposition 4, we know that Sa is
convex. And because any linear transformation of a
convex set is convex, it follows that Sx is also con-
vex. Because � is a linear fractional function, and
linear fractional functions preserve convexity, Sr is
convex. �
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The convexity of the simple Q-normal’s ovoid
serves the practical function of facilitating quality con-
trol. Imagine a computer program that asks a user
for the 1st, 10th, 50th, and 90th quantiles x ∈ R4 for a
given uncertain variable. The program contains a sub-
routine that parameterizes the simple Q-normal with
these quantiles. Will the subroutine output a vector
of constants a ∈ R4 that result in a probability distri-
bution? One might answer this quality control ques-
tion by exhaustively computing the condition given
in (15) using the input quantiles x over a grid of y ∈

40115 to a desired accuracy. Alternatively, one could
compute and store a table of upper and lower limits
of the ratio r2 over a grid of r1 to a desired accu-
racy. By the convexity of the ovoid, any input quan-
tile vector x whose ratio vector r = �4x5 lies within
a polygon formed by connecting any subset of these
precomputed feasible boundary points must yield a
Q-normal probability distribution. Conveniently, the
convexity of the ovoid also allows the use of a bisec-
tion algorithm for solving the quasiconvex optimiza-
tion problems of computing these upper and lower
limits. See Boyd and Vandenberghe (2009) for a dis-
cussion on using bisection to solve quasiconvex opti-
mization problems.

9. Parameterizing QPDs Using
Overdetermined Systems of
Equations

Many authors, including Wallsten and Budescu (1983)
and Lindley et al. (1979), cite evidence that probability
assessment data can be incoherent—a term that they
use to mean that the data are inconsistent with the
axioms of probability. Spetzler and Staël von Holstein
(1975) acknowledge that probability encoding proce-
dures can lead to what they term as inconsistencies
in data. If one makes enough assessments such that
the number of quantile/probability pairs exceeds the
number of constants ai, then a wealth of tools is avail-
able for finding a QPD that reasonably represents the
incoherent data.

In other cases of overdetermined systems, as in the
discrete CDF that results from probabilistic simula-
tion, the number of data points may be far greater
than the number of constants ai. In such cases, one
may use a QPD to provide a smooth representation
of the data as an alternative to a histogram.

Table 2 A Set of Inconsistent Quantile/Probability Data

Probability 0005 0015 0020 0050 0065 0080 0085 0085

Quantile 000 205 105 400 500 700 600 800

We illustrate various methods for dealing with such
overdetermined systems using the set of quantile/
probability data in Table 2. It is clear that the quantile
data are not monotone in probability and therefore
are incoherent. Nonetheless, we can use the simple
Q-normal distribution as a reasonable representation.
See Figure 6 for four such examples.

Each approach computes a QPD’s a vector using
a variant of least squares. A total of m quantile/
probability pairs and QPD with n parameters gives
a matrix Y ∈ Rm×n. Applying the simple Q-normal to
the data in Table 2 gives the following matrix:

Y =











































1 ê−1400055 0005ê−1400055 0005

1 ê−1400155 0015ê−1400155 0015

1 ê−1400205 0020ê−1400205 0020

1 ê−1400505 0050ê−1400505 0050

1 ê−1400655 0065ê−1400655 0065

1 ê−1400805 0080ê−1400805 0080

1 ê−1400855 0085ê−1400855 0085

1 ê−1400855 0085ê−1400855 0085











































0

Choosing a vector of constants a ∈ Rn that mini-
mizes the Euclidean norm of the vector of residuals
�x−Ya�2 yields the well-known closed-form equation
for the least-squares approximation (providing Y is
full rank):

a= 4Y TY 5−1Y T x1

where x is the vector of quantiles from Table 2, and
a ∈ R4 is the vector of constants that specifies the
inverse CDF of the simple Q-normal distribution. The
simple Q-normal generated by least-squares approxi-
mation gives the very reasonable result shown in the
plots on the first row of Figure 6.

The second and third rows of plots in Figure 6 show
how one can quickly adjust the simple Q-normal from
one extreme of the quantile/probability pairs to the
next by applying a weighting vector to the squared
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Figure 6 Various Q-Normal Approximations Derived from Incoherent Data
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residuals. In the second row of plots, we apply a
weighting vector to shift the curve toward points 3
and 7. In the third row, we change the weights toward
points 2 and 6. The QPD vector a ∈ Rn computed from
the weighted least-squares approximation is given by

a= 4Y TWY5−14WY 5T x1

where W ∈ Rm is a diagonal matrix whose diagonal
elements are given by the weighting vector. Table 3
shows the weights we used in the plots of rows two
and three of Figure 6.

The fourth and final row of plots in Figure 6 is
a weighted least-squares approximation (using the
weighting vector from the third row) constrained so
that the Q-normal passes through the median (41005),

which is point 4 of Figure 6. We solve for the vector
a ∈ Rn with the equation

[

a

�

]

=

[

2Y TWY c

cT 0

]−1 [
2Y TWx

4

]

1

where � is the Lagrange multiplier associated with
the constraint on the median and c = 41101010055,
the vector resulting from evaluating the coefficients 1,
F −14y5, yF −14y5, and y of Equation (6) at y = 005. These
four methods show how readily one can parameter-
ize the simple Q-normal to blend incoherent quantile/

Table 3 Two Weighting Vectors

Point 1 2 3 4 5 6 7 8

Weighting vector of row 2 0.05 0 004 0005 0005 0 004 0005
Weighting vector of row 3 0.05 004 0 0005 0005 004 0 0005



Keelin and Powley: Quantile-Parameterized Distributions
218 Decision Analysis 8(3), pp. 206–219, © 2011 INFORMS

probability data. Figure 6 shows how the methods
lead to very different CDFs and PDFs. The ability to
make such adjustments has use in giving feedback in
the probability encoding process as well as facilitating
probabilistic sensitivity analysis in a decision analysis.
For example, one can answer the question of whether
the best alternative will change when one changes a
QPD from one extreme of quantile/probability pairs
to the next.

Parameterizing QPDs using overdetermined sys-
tems of equations is not limited to the quadratic
penalty functions of least-squares approaches. For
example, one might instead choose to minimize the
sum of the absolute values of the residuals. Regard-
less of approach, the probability distribution result-
ing from any probability encoding method should
pass the ultimate test of whether the decision maker
declares that it reflects his beliefs.

10. Conclusion
This paper introduces a new class of probability dis-
tributions that take points on the CDF as parameters.
Using the example of a simple Q-normal distribution,
we demonstrate that QPDs can flexibly represent non-
physical-process based uncertainties as typically arise
in business, technology, and science. For such applica-
tions, points on the CDF are the natural and intuitive
parameters.

Beyond the simple Q-normal, this paper provides a
theoretical foundation that enables research on other
QPD formulations. In addition, we show that QPDs
are well suited to probabilistic simulation because
of their inverse CDF formulation, that they provide
a new alternative for smooth continuous representa-
tions of histograms, and that one can use them to
reasonably represent incoherent quantile/probability
data.

Over the last two years, QPDs have proven their
value in our decision analysis consulting practice, in
which we model dozens uncertain variables on each
client engagement. We now routinely use QPDs to
represent continuous uncertainties instead of using
the traditional three-branch, discrete-approximation
methods. We have found that use of QPDs facil-
itates probability assessments, enables modeling of
decision makers’ probabilistic information (including
tails) with greater fidelity, and provides an improved

method for communicating and visualizing proba-
bilistic information.
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