lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v48y2012icp304-314.html
   My bibliography  Save this article

U.S. household energy consumption and intensity trends: A decomposition approach

Author

Listed:
  • Hojjati, Behjat
  • Wade, Steven H.
Abstract
Concerns over impacts from U.S. energy use on the environment, the economy and the national security warrant an understanding of the key drivers of energy consumption. This paper focuses on decomposing U.S. household energy consumption changes into several factors that have affected its growth. The interval analyzed is based on household surveys conducted by the U.S. Energy Information Administration from 1980 through 2005. Drivers of total household energy consumption, total household electricity consumption and natural gas use for space heating are analyzed and contrasted. While not definitive, sub-period analyses split at 1990, show greater reductions in energy intensity in the later sub-period and provide prima fascia evidence of the efficacy of U.S. efforts to promote energy efficiency through various standards and programs.

Suggested Citation

  • Hojjati, Behjat & Wade, Steven H., 2012. "U.S. household energy consumption and intensity trends: A decomposition approach," Energy Policy, Elsevier, vol. 48(C), pages 304-314.
  • Handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:304-314
    DOI: 10.1016/j.enpol.2012.05.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512004363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.05.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    2. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    3. Gale A. Boyd and Joseph M. Roop, 2004. "A Note on the Fisher Ideal Index Decomposition for Structural Change in Energy Intensity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 87-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Boqiang & Moubarak, Mohamed, 2014. "Estimation of energy saving potential in China's paper industry," Energy, Elsevier, vol. 65(C), pages 182-189.
    2. Hongguang Nie & René Kemp & Véronique Vasseur, 2020. "Exploring the Changing Gap of Residential Energy Consumption per Capita in China and the Netherlands: A Comparative Analysis of Driving Forces," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    3. Laporte, Juan P. & Román-Collado, Rocío & Cansino, José M., 2024. "Key driving forces of energy consumption in a higher education institution using the LMDI approach: The case of the Universidad Autónoma de Chile," Applied Energy, Elsevier, vol. 372(C).
    4. Ana-María Martínez-Llorens & Paloma Taltavull de La Paz & Raul-Tomas Mora-Garcia, 2020. "Effect of The Physical Characteristics of a Dwelling on Energy Consumption and Emissions: The Case of Castellón And Valencia (Spain)," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    5. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk & Achard, Patrick, 2019. "Energy performance and economic analysis of a TIM-PCM wall under different climates," Energy, Elsevier, vol. 169(C), pages 1274-1291.
    6. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
    7. Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    8. Weiner, Csaba & Szép, Tekla, 2021. "Még egyszer a lakossági hatósági energiaárakról. Egy hungarikum átfogó hatáselemzése [Once again on regulated residential energy prices. A comprehensive impact assessment of a hungarian measure]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1276-1314.
    9. Ke Chen & Runze Li & Yang Wang, 2022. "Influence of Nature Reserves on the Energy Consumption Structure of Local Farmers," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    10. Mehdi Nasrabadi & Donal Finn, 2024. "Performance Assessment of an Integrated Low-Approach Low-Temperature Open Cooling Tower with Radiant Cooling and Displacement Ventilation for Space Conditioning in Temperate Climates," Energies, MDPI, vol. 17(15), pages 1-30, July.
    11. Sebestyénné Szép, Tekla, 2018. "A hatósági árcsökkentés lakossági energiafelhasználásra gyakorolt hatásának vizsgálata indexdekompozícióval [Analysing the effects of utility-cost reduction on household energy consumption, using i," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 185-205.
    12. Palma, Alessia & Paltrinieri, Andrea & Goodell, John W. & Oriani, Marco Ercole, 2024. "The black box of natural gas market: Past, present, and future," International Review of Financial Analysis, Elsevier, vol. 94(C).
    13. Xu, X.Y. & Ang, B.W., 2014. "Analysing residential energy consumption using index decomposition analysis," Applied Energy, Elsevier, vol. 113(C), pages 342-351.
    14. Paloma Taltavull de La Paz & V. Raul Perez-Sanchez & Raul-Tomas Mora-Garcia & Juan-Carlos Perez-Sanchez, 2019. "Green Premium Evidence from Climatic Areas: A Case in Southern Europe, Alicante (Spain)," Sustainability, MDPI, vol. 11(3), pages 1-29, January.
    15. Lan-Cui Liu & Gang Wu & Yue-Jun Zhang, 2015. "Investigating the residential energy consumption behaviors in Beijing: a survey study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 243-263, January.
    16. Chaturvedi, Vaibhav & Kim, Sonny & Smith, Steven J. & Clarke, Leon & Yuyu, Zhou & Kyle, Page & Patel, Pralit, 2013. "Model evaluation and hindcasting: An experiment with an integrated assessment model," Energy, Elsevier, vol. 61(C), pages 479-490.
    17. Jain, Princy & Goswami, Binoy, 2021. "Energy efficiency in South Asia: Trends and determinants," Energy, Elsevier, vol. 221(C).
    18. Xu, X.Y. & Ang, B.W., 2014. "Multilevel index decomposition analysis: Approaches and application," Energy Economics, Elsevier, vol. 44(C), pages 375-382.
    19. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    20. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    21. Yamaguchi, Yohei, 2019. "A practice-theory-based analysis of historical changes in household practices and energy demand: A case study from Japan," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 207-218.
    22. Korsavi, Sepideh Sadat & Azari, Rahman & Iulo, Lisa D. & Mahdavi, Mehrdad, 2025. "Determinants of U.S. residential energy consumption at national and state levels: Policy implications," Energy Policy, Elsevier, vol. 202(C).
    23. Arik Levinson, 2014. "How Much Energy Do Building Energy Codes Really Save? Evidence from California," NBER Working Papers 20797, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    2. Ang, B.W. & Liu, F.L. & Chung, Hyun-Sik, 2004. "A generalized Fisher index approach to energy decomposition analysis," Energy Economics, Elsevier, vol. 26(5), pages 757-763, September.
    3. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    4. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
    5. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    6. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    7. Michael Schymura & Andreas Löschel, 2012. "Trade and the Environment: An Application of the WIOD Database," EcoMod2012 3948, EcoMod.
    8. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    9. Kaltenegger, Oliver, 2019. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," CAWM Discussion Papers 110, University of Münster, Münster Center for Economic Policy (MEP).
    10. Schymura, Michael & Voigt, Sebastian, 2014. "What drives changes in carbon emissions? An index decomposition approach for 40 countries," ZEW Discussion Papers 14-038, ZEW - Leibniz Centre for European Economic Research.
    11. Li, DuoQi & Wang, DuanYi, 2016. "Decomposition analysis of energy consumption for an freeway during its operation period: A case study for Guangdong, China," Energy, Elsevier, vol. 97(C), pages 296-305.
    12. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
    13. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    14. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    15. Choi, Ki-Hong & Ang, B.W., 2012. "Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis," Energy Economics, Elsevier, vol. 34(1), pages 171-176.
    16. Kaltenegger, Oliver, 2020. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," Applied Energy, Elsevier, vol. 261(C).
    17. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
    18. Akbar Ullah & Karim Khan & Munazza Akhtar, 2014. "Energy Intensity: A Decomposition Exercise for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 53(4), pages 531-549.
    19. Lin, Yuancheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2023. "The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis," Energy, Elsevier, vol. 263(PE).
    20. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:304-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг