lynx   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v66y2008i2-3p436-446.html
   My bibliography  Save this article

Why are ecological, low-input, multi-resistant wheat cultivars slow to develop commercially? A Belgian agricultural 'lock-in' case study

Author

Listed:
  • Vanloqueren, Gaëtan
  • Baret, Philippe V.
Abstract
The use of multi-resistant cultivars allows a significant reduction in fungicide use in low-input cropping systems. However, many major wheat cultivars used in Europe remain sensitive to frequent diseases and require fungicide protection. This paper aims at understanding the factors explaining the low level of adoption of multi-resistant wheat cultivars in Wallonia (Belgium). Cultivar adoption has been an important topic of research, but few analyses have been done in Europe in the past decades. We used a systems approach combining a survey among stakeholders in the food chain and a systematic analysis of the publications of extension services. We identified twelve factors impeding wider adoption of multi-resistant cultivars. These factors explain why current wheat-cropping systems are maintained in a 'pesticide lock-in' situation, an economic concept that could be used more frequently to study agricultural innovations. Considering these intangible 'barriers' to current and forthcoming innovations is a first step towards a more comprehensive policy to promote sustainable agriculture. Similarities between Wallonia and France are discussed and methods of promoting wide use of resistant cultivars are proposed.

Suggested Citation

  • Vanloqueren, Gaëtan & Baret, Philippe V., 2008. "Why are ecological, low-input, multi-resistant wheat cultivars slow to develop commercially? A Belgian agricultural 'lock-in' case study," Ecological Economics, Elsevier, vol. 66(2-3), pages 436-446, June.
  • Handle: RePEc:eee:ecolec:v:66:y:2008:i:2-3:p:436-446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(07)00508-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    2. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    3. Ison, R. L. & Maiteny, P. T. & Carr, S., 1997. "Systems methodologies for sustainable natural resources research and development," Agricultural Systems, Elsevier, vol. 55(2), pages 257-272, October.
    4. David, Paul A, 1985. "Clio and the Economics of QWERTY," American Economic Review, American Economic Association, vol. 75(2), pages 332-337, May.
    5. Hennessy, David A. & Roosen, Jutta & Jensen, Helen H., 2003. "Systemic failure in the provision of safe food," Food Policy, Elsevier, vol. 28(1), pages 77-96, February.
    6. Tisdell, Clem, 2003. "Socioeconomic causes of loss of animal genetic diversity: analysis and assessment," Ecological Economics, Elsevier, vol. 45(3), pages 365-376, July.
    7. Wilson, Clevo & Tisdell, Clem, 2001. "Why farmers continue to use pesticides despite environmental, health and sustainability costs," Ecological Economics, Elsevier, vol. 39(3), pages 449-462, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rebekah Brown & Richard Ashley & Megan Farrelly, 2011. "Political and Professional Agency Entrapment: An Agenda for Urban Water Research," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(15), pages 4037-4050, December.
    2. Kevin Maréchal & Hélène Aubaret-Joachain & Jean-Paul Ledant, 2008. "The influence of Economics on agricultural systems: an evolutionary and ecological perspective," Working Papers CEB 08-028.RS, ULB -- Universite Libre de Bruxelles.
    3. Magrini, Marie-Benoit & Anton, Marc & Cholez, Célia & Corre-Hellou, Guenaelle & Duc, Gérard & Jeuffroy, Marie-Hélène & Meynard, Jean-Marc & Pelzer, Elise & Voisin, Anne-Sophie & Walrand, Stéphane, 2016. "Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system," Ecological Economics, Elsevier, vol. 126(C), pages 152-162.
    4. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    5. Albert Faber & Koen Frenken, 2008. "Models in evolutionary economics and environmental policy: Towards an evolutionary environmental economics," Innovation Studies Utrecht (ISU) working paper series 08-15, Utrecht University, Department of Innovation Studies, revised Apr 2008.
    6. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    7. Greaker Mads & Heggedal Tom-Reiel, 2010. "Lock-In and the Transition to Hydrogen Cars: Should Governments Intervene?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-30, May.
    8. Konnola, Totti & Unruh, Gregory C. & Carrillo-Hermosilla, Javier, 2006. "Prospective voluntary agreements for escaping techno-institutional lock-in," Ecological Economics, Elsevier, vol. 57(2), pages 239-252, May.
    9. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    10. Vanessa Oltra, 2008. "Environmental innovation and industrial dynamics: the contributions of evolutionary economics," Post-Print hal-00391493, HAL.
    11. Jukka Luhas & Mirja Mikkilä & Ville Uusitalo & Lassi Linnanen, 2019. "Product Diversification in Sustainability Transition: The Forest-Based Bioeconomy in Finland," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    12. Damien Bazin & Nouri Chtourou & Amna Omri, 2019. "Risk management and policy implications for concentrating solar power technology investments in Tunisia," Post-Print hal-02061788, HAL.
    13. Hoppmann, Joern & Peters, Michael & Schneider, Malte & Hoffmann, Volker H., 2013. "The two faces of market support—How deployment policies affect technological exploration and exploitation in the solar photovoltaic industry," Research Policy, Elsevier, vol. 42(4), pages 989-1003.
    14. Vanloqueren, Gaëtan & Baret, Philippe V., 2009. "How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations," Research Policy, Elsevier, vol. 38(6), pages 971-983, July.
    15. Zohal Hessami, 2016. "How Do Voters React to Complex Choices in a Direct Democracy? Evidence from Switzerland," Kyklos, Wiley Blackwell, vol. 69(2), pages 263-293, May.
    16. Bento, Nuno, 2010. "Is carbon lock-in blocking investments in the hydrogen economy? A survey of actors' strategies," Energy Policy, Elsevier, vol. 38(11), pages 7189-7199, November.
    17. Schmidt, Tobias S. & Battke, Benedikt & Grosspietsch, David & Hoffmann, Volker H., 2016. "Do deployment policies pick technologies by (not) picking applications?—A simulation of investment decisions in technologies with multiple applications," Research Policy, Elsevier, vol. 45(10), pages 1965-1983.
    18. Leo Wangler, 2010. "Renewables and Innovation - Empirical Assessment and Theoretical Considerations," Jena Economics Research Papers 2010-002, Friedrich-Schiller-University Jena.
    19. Kelly Levin & Benjamin Cashore & Steven Bernstein & Graeme Auld, 2012. "Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 123-152, June.
    20. Befort, N., 2021. "The promises of drop-in vs. functional innovations: The case of bioplastics," Ecological Economics, Elsevier, vol. 181(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:66:y:2008:i:2-3:p:436-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
    Лучший частный хостинг