Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems
Author
Suggested Citation
DOI: 10.1007/s10845-023-02244-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Farheen Naz & Rohit Agrawal & Anil Kumar & Angappa Gunasekaran & Abhijit Majumdar & Sunil Luthra, 2022. "Reviewing the applications of artificial intelligence in sustainable supply chains: Exploring research propositions for future directions," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2400-2423, July.
- Aitor Ardanza & Aitor Moreno & Álvaro Segura & Mikel de la Cruz & Daniel Aguinaga, 2019. "Sustainable and flexible industrial human machine interfaces to support adaptable applications in the Industry 4.0 paradigm," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 4045-4059, June.
- Chenxi Yuan & Guoyan Li & Sagar Kamarthi & Xiaoning Jin & Mohsen Moghaddam, 2022. "Trends in intelligent manufacturing research: a keyword co-occurrence network based review," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 425-439, February.
- Weiru Chen & Wu He & Jiayue Shen & Xin Tian & Xianping Wang, 2023. "Systematic analysis of artificial intelligence in the era of industry 4.0," Journal of Management Analytics, Taylor & Francis Journals, vol. 10(1), pages 89-108, January.
- Haibing Gao & Huazhong Zhao & Yinliang (Ricky) Tan & Ya (Lisa) Lin & Lai Wei, 2020. "Social Promotion: A Creative Promotional Framework on Consumers’ Social Network Value," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2661-2678, December.
- Dwivedi, Yogesh K. & Hughes, Laurie & Ismagilova, Elvira & Aarts, Gert & Coombs, Crispin & Crick, Tom & Duan, Yanqing & Dwivedi, Rohita & Edwards, John & Eirug, Aled & Galanos, Vassilis & Ilavarasan, , 2021. "Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy," International Journal of Information Management, Elsevier, vol. 57(C).
- Vincent Charles & Ali Emrouznejad & Tatiana Gherman, 2023. "A critical analysis of the integration of blockchain and artificial intelligence for supply chain," Annals of Operations Research, Springer, vol. 327(1), pages 7-47, August.
- Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
- Toorajipour, Reza & Sohrabpour, Vahid & Nazarpour, Ali & Oghazi, Pejvak & Fischl, Maria, 2021. "Artificial intelligence in supply chain management: A systematic literature review," Journal of Business Research, Elsevier, vol. 122(C), pages 502-517.
- Prodromos D. Chatzoglou & Vassiliki N. Michailidou, 2019. "A survey on the 3D printing technology readiness to use," International Journal of Production Research, Taylor & Francis Journals, vol. 57(8), pages 2585-2599, April.
- Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
- Yang Yu & Ray Qing Cao & Dara Schniederjans, 2017. "Cloud computing and its impact on service level: a multi-agent simulation model," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4341-4353, August.
- Hung-Yu Lee & Chase C. Murray, 2019. "Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 57(18), pages 5821-5841, September.
- Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
- Adrialdo Azanha & Mauro Vivaldini & Silvio R.I. Pires & João Batista de Camargo Junior, 2016. "Voice picking: analysis of critical factors through a case study in Brazil and the United States," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 65(5), pages 723-739, June.
- Maria Pia Ciano & Patrick Dallasega & Guido Orzes & Tommaso Rossi, 2021. "One-to-one relationships between Industry 4.0 technologies and Lean Production techniques: a multiple case study," International Journal of Production Research, Taylor & Francis Journals, vol. 59(5), pages 1386-1410, March.
- Farheen Naz & Anil Kumar & Abhijit Majumdar & Rohit Agrawal, 2022. "Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research," Operations Management Research, Springer, vol. 15(1), pages 378-398, June.
- Cozzio, Claudia & Viglia, Giampaolo & Lemarie, Linda & Cerutti, Stefania, 2023. "Toward an integration of blockchain technology in the food supply chain," Journal of Business Research, Elsevier, vol. 162(C).
- Joseph Geunes & Yiqiang Su, 2020. "Single-period assortment and stock-level decisions for dual sales channels with capacity limits and uncertain demand," International Journal of Production Research, Taylor & Francis Journals, vol. 58(18), pages 5579-5600, September.
- Ke Rong & Yong Lin & Jiang Yu & Yue Zhang, 2020. "Manufacturing strategies for the ecosystem-based manufacturing system in the context of 3D printing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(8), pages 2315-2334, April.
- Zhi Li & Ali Vatankhah Barenji & Jiazhi Jiang & Ray Y. Zhong & Gangyan Xu, 2020. "A mechanism for scheduling multi robot intelligent warehouse system face with dynamic demand," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 469-480, February.
- Flavián, Carlos & Ibáñez-Sánchez, Sergio & Orús, Carlos, 2019. "The impact of virtual, augmented and mixed reality technologies on the customer experience," Journal of Business Research, Elsevier, vol. 100(C), pages 547-560.
- Mohamed Ben-Daya & Elkafi Hassini & Zied Bahroun, 2019. "Internet of things and supply chain management: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 4719-4742, August.
- Elisabetta Raguseo & Claudio Vitari, 2018. "Investments in big data analytics and firm performance: an empirical investigation of direct and mediating effects," International Journal of Production Research, Taylor & Francis Journals, vol. 56(15), pages 5206-5221, August.
- Daqiang Guo & Ray Y. Zhong & Shiquan Ling & Yiming Rong & George Q. Huang, 2020. "A roadmap for Assembly 4.0: self-configuration of fixed-position assembly islands under Graduation Intelligent Manufacturing System," International Journal of Production Research, Taylor & Francis Journals, vol. 58(15), pages 4631-4646, July.
- Chung, Sai-Ho, 2021. "Applications of smart technologies in logistics and transport: A review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
- Paddeu, Daniela & Shergold, Ian & Parkhurst, Graham, 2020. "The social perspective on policy towards local shared autonomous vehicle services (LSAVS)," Transport Policy, Elsevier, vol. 98(C), pages 116-126.
- Khalil Tliba & Thierno M. L. Diallo & Olivia Penas & Romdhane Ben Khalifa & Noureddine Ben Yahia & Jean-Yves Choley, 2023. "Digital twin-driven dynamic scheduling of a hybrid flow shop," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2281-2306, June.
- Mojtaba Khorram Niaki & Fabio Nonino, 2017. "Additive manufacturing management: a review and future research agenda," International Journal of Production Research, Taylor & Francis Journals, vol. 55(5), pages 1419-1439, March.
- Manuel Woschank & Erwin Rauch & Helmut Zsifkovits, 2020. "A Review of Further Directions for Artificial Intelligence, Machine Learning, and Deep Learning in Smart Logistics," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
- Yanling Chang & Eleftherios Iakovou & Weidong Shi, 2020. "Blockchain in global supply chains and cross border trade: a critical synthesis of the state-of-the-art, challenges and opportunities," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2082-2099, April.
- Rahul Rai & Manoj Kumar Tiwari & Dmitry Ivanov & Alexandre Dolgui, 2021. "Machine learning in manufacturing and industry 4.0 applications," International Journal of Production Research, Taylor & Francis Journals, vol. 59(16), pages 4773-4778, August.
- Isaac Kofi Nti & Adebayo Felix Adekoya & Benjamin Asubam Weyori & Owusu Nyarko-Boateng, 2022. "Applications of artificial intelligence in engineering and manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1581-1601, August.
- Xin Feng & Feng Chu & Chengbin Chu & Yufei Huang, 2021. "Crowdsource-enabled integrated production and transportation scheduling for smart city logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 59(7), pages 2157-2176, April.
- Akter, Shahriar & Wamba, Samuel Fosso & Gunasekaran, Angappa & Dubey, Rameshwar & Childe, Stephen J., 2016. "How to improve firm performance using big data analytics capability and business strategy alignment?," International Journal of Production Economics, Elsevier, vol. 182(C), pages 113-131.
- Mehrdokht Pournader & Yangyan Shi & Stefan Seuring & S.C. Lenny Koh, 2020. "Blockchain applications in supply chains, transport and logistics: a systematic review of the literature," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2063-2081, April.
- Yue Wang & Xiang Li & Linda Zhang & Daniel Mo, 2021. "Configuring products with natural language: a simple yet effective approach based on text embeddings and multilayer perceptron," Post-Print hal-03604042, HAL.
- Raffaele Cioffi & Marta Travaglioni & Giuseppina Piscitelli & Antonella Petrillo & Fabio De Felice, 2020. "Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions," Sustainability, MDPI, vol. 12(2), pages 1-26, January.
- Clements, Lewis M. & Kockelman, Kara M. & Alexander, William, 2021. "Technologies for congestion pricing," Research in Transportation Economics, Elsevier, vol. 90(C).
- Parise, Salvatore & Guinan, Patricia J. & Kafka, Ron, 2016. "Solving the crisis of immediacy: How digital technology can transform the customer experience," Business Horizons, Elsevier, vol. 59(4), pages 411-420.
- Dmitry Ivanov & Christopher S. Tang & Alexandre Dolgui & Daria Battini & Ajay Das, 2021. "Researchers' perspectives on Industry 4.0: multi-disciplinary analysis and opportunities for operations management," International Journal of Production Research, Taylor & Francis Journals, vol. 59(7), pages 2055-2078, April.
- Benjamin Rolf & Ilya Jackson & Marcel Müller & Sebastian Lang & Tobias Reggelin & Dmitry Ivanov, 2023. "A review on reinforcement learning algorithms and applications in supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 61(20), pages 7151-7179, October.
- Abdul Jabbar & Samir Dani, 2020. "Investigating the link between transaction and computational costs in a blockchain environment," International Journal of Production Research, Taylor & Francis Journals, vol. 58(11), pages 3423-3436, June.
- Chunguang Bai & Joseph Sarkis, 2020. "A supply chain transparency and sustainability technology appraisal model for blockchain technology," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2142-2162, April.
- Garaus, Marion & Wagner, Udo & Rainer, Ricarda C., 2021. "Emotional targeting using digital signage systems and facial recognition at the point-of-sale," Journal of Business Research, Elsevier, vol. 131(C), pages 747-762.
- Ali Vatankhah Barenji & Zhi Li & W. M. Wang & George Q. Huang & David A. Guerra-Zubiaga, 2020. "Blockchain-based ubiquitous manufacturing: a secure and reliable cyber-physical system," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2200-2221, April.
- I.J. Bateman & A.P. Jones & A.A. Lovett & I.R. Lake & B.H. Day, 2002. "Applying Geographical Information Systems (GIS) to Environmental and Resource Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 219-269, June.
- Mehdi Foumani & Asghar Moeini & Michael Haythorpe & Kate Smith-Miles, 2018. "A cross-entropy method for optimising robotic automated storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 56(19), pages 6450-6472, October.
- Kietzmann, Jan H. & Hermkens, Kristopher & McCarthy, Ian P. & Silvestre, Bruno S., 2011. "Social media? Get serious! Understanding the functional building blocks of social media," Business Horizons, Elsevier, vol. 54(3), pages 241-251, May.
- Giuseppe Fragapane & Dmitry Ivanov & Mirco Peron & Fabio Sgarbossa & Jan Ola Strandhagen, 2022. "Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics," Annals of Operations Research, Springer, vol. 308(1), pages 125-143, January.
- Erik Hofmann, 2017. "Big data and supply chain decisions: the impact of volume, variety and velocity properties on the bullwhip effect," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5108-5126, September.
- Xiaohua Cao & Tiffany Li & Qiang Wang, 2019. "RFID-based multi-attribute logistics information processing and anomaly mining in production logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 57(17), pages 5453-5466, September.
- Vikas Singh & Purushottam Gangsar & Rajkumar Porwal & A. Atulkar, 2023. "Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 931-960, March.
- Riccardo Rosati & Luca Romeo & Gianalberto Cecchini & Flavio Tonetto & Paolo Viti & Adriano Mancini & Emanuele Frontoni, 2023. "From knowledge-based to big data analytic model: a novel IoT and machine learning based decision support system for predictive maintenance in Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 107-121, January.
- Reza Vatankhah Barenji, 2022. "A blockchain technology based trust system for cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1451-1465, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amin Vafadarnikjoo & Hadi Badri Ahmadi & James J. H. Liou & Tiago Botelho & Konstantinos Chalvatzis, 2023. "Analyzing blockchain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process," Annals of Operations Research, Springer, vol. 327(1), pages 129-156, August.
- Choi, Tsan-Ming & Siqin, Tana, 2022. "Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: An intra-inter-organizational framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
- Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
- Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023.
"Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams,"
Technological Forecasting and Social Change, Elsevier, vol. 193(C).
- Josip Marić & M. Opazo-Basáez & B. Vlačić & M. Dabić, 2023. "Innovation Management of Three-Dimensional Printing (3DP) Technology: Disclosing Insights from Existing Literature and Determining Future Research Streams," Post-Print hal-04435561, HAL.
- Archana A Mukherjee & Rajesh Kumar Singh & Ruchi Mishra & Surajit Bag, 2022. "Application of blockchain technology for sustainability development in agricultural supply chain: justification framework," Operations Management Research, Springer, vol. 15(1), pages 46-61, June.
- Qingyu Zhang & Salman Khan & Safeer Ullah Khan & Ikram Ullah Khan, 2023. "Understanding Blockchain Technology Adoption in Operation and Supply Chain Management of Pakistan: Extending UTAUT Model With Technology Readiness, Technology Affinity and Trust," SAGE Open, , vol. 13(4), pages 21582440231, October.
- Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
- Ahmad Ibrahim Aljumah & Mohammed T. Nuseir & Md. Mahmudul Alam, 2021. "Traditional marketing analytics, big data analytics and big data system quality and the success of new product development," Post-Print hal-03538161, HAL.
- Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).
- Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
- Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2020. "The Unknown Potential of Blockchain for Sustainable Supply Chains," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
- Antonello Cammarano & Vincenzo Varriale & Francesca Michelino & Mauro Caputo, 2023. "Blockchain as enabling factor for implementing RFID and IoT technologies in VMI: a simulation on the Parmigiano Reggiano supply chain," Operations Management Research, Springer, vol. 16(2), pages 726-754, June.
- Montecchi, Matteo & Plangger, Kirk & West, Douglas C., 2021. "Supply chain transparency: A bibliometric review and research agenda," International Journal of Production Economics, Elsevier, vol. 238(C).
- Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
- Tsan-Ming Choi & Alexandre Dolgui & Dmitry Ivanov & Erwin Pesch, 2022. "OR and analytics for digital, resilient, and sustainable manufacturing 4.0," Annals of Operations Research, Springer, vol. 310(1), pages 1-6, March.
- Jain, Geetika & Kamble, Sachin S. & Ndubisi, Nelson Oly & Shrivastava, Archana & Belhadi, Amine & Venkatesh, Mani, 2022. "Antecedents of Blockchain-Enabled E-commerce Platforms (BEEP) adoption by customers – A study of second-hand small and medium apparel retailers," Journal of Business Research, Elsevier, vol. 149(C), pages 576-588.
- Rajesh Chidananda Reddy & Biplab Bhattacharjee & Debasisha Mishra & Anandadeep Mandal, 2022. "A systematic literature review towards a conceptual framework for enablers and barriers of an enterprise data science strategy," Information Systems and e-Business Management, Springer, vol. 20(1), pages 223-255, March.
- Ulpan Tokkozhina & Ana Lucia Martins & Joao C. Ferreira, 2023. "Uncovering dimensions of the impact of blockchain technology in supply chain management," Operations Management Research, Springer, vol. 16(1), pages 99-125, March.
- Ghasemaghaei, Maryam & Calic, Goran, 2020. "Assessing the impact of big data on firm innovation performance: Big data is not always better data," Journal of Business Research, Elsevier, vol. 108(C), pages 147-162.
- Aljumah, Ahmad Ibrahim & Nuseir, Mohammed T. & Alam, Md. Mahmudul, 2021. "Organizational Performance and Capabilities to Analyze Big Data: Do the Ambidexterity and Business Value of Big Data Analytics Matter?," OSF Preprints an8er, Center for Open Science.
More about this item
Keywords
Artificial intelligence; Emerging technologies; Production systems; Operations management;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02244-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.