Astrophysics > Earth and Planetary Astrophysics
[Submitted on 31 Oct 2023 (v1), last revised 16 Feb 2024 (this version, v3)]
Title:Primordial Orbital Alignment of Sednoids
View PDF HTML (experimental)Abstract:We examined the past history of the three most detached TransNeptunian Objects (TNOs) -- Sedna, 2012 VP113, and Leleakuhonua (2015 TG387) -- the three clearest members of the dynamical class known as sednoids, with high perihelia distances $q$. By integrating backward their nominal (and a set of cloned) orbits for the Solar System's age, we surprisingly find that the only time all their apsidal lines tightly cluster was 4.5 Gyr ago, at perihelion longitude $\varpi$ of $200^\circ$. This "primordial alignment" is independent of the observational biases that contribute to the current on-sky clustering in the large-semimajor axis Kuiper Belt. If future sednoid discoveries confirm these findings, this strongly argues for an initial event during the planet formation epoch which imprinted this particular apsidal orientation on the early detached TNO population. Their apsidal orientations were then subsequently modified only by the simple precession from the 4 giant planets (and weakly by the galactic tide). If other sednoids also cluster around the same primordial value, various models suggesting a still present planet in the outer Solar System would be incompatible with this alignment. We inspected two scenarios that could potentially explain the primordial alignment. First, a rogue planet model (where another massive planet raises perihelia near its own longitude until ejection) naturally produces this signature. Alternatively, a close stellar passage early in Solar System history raises perihelia, but it is poor at creating strong apsidal clustering. We show that all other known $35<q<55$ au TNOs are either too perturbed or orbits are still too uncertain to provide evidence for or against this paradigm.
Submission history
From: Yukun Huang [view email][v1] Tue, 31 Oct 2023 16:49:24 UTC (2,955 KB)
[v2] Thu, 15 Feb 2024 12:45:35 UTC (3,182 KB)
[v3] Fri, 16 Feb 2024 05:14:59 UTC (3,182 KB)
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.