Astrophysics > Earth and Planetary Astrophysics
[Submitted on 9 Jun 2015 (v1), last revised 4 Aug 2015 (this version, v2)]
Title:How Sedna and family were captured in a close encounter with a solar sibling
View PDFAbstract:The discovery of 2012VP113 initiated the debate on the origin of the Sedna family of planetesimals in orbit around the Sun. Sednitos roam the outer regions of the Solar System between the Egeworth--Kuiper belt and the Oort cloud, in extraordinary wide (a>150au) orbits with a large perihelion distance of q>30au compared to the Earth's (a=1au and eccentricity e=(1-q/a) ~ 0.0167 or q=1au). This population is composed of a dozen objects, which we consider a family because they have similar perihelion distance and inclination with respect to the ecliptic i=10--30deg. They also have similar argument of perihelion omega=340+/-55deg. There is no ready explanation for their origin. Here we show that these orbital parameters are typical for a captured population from the planetesimal disk of another this http URL the orbital elements of Sednitos have not changed since they acquired their orbits, we reconstruct the encounter that led to their capture. We conclude that they might have been captured in a near miss with a 1.8MSun star that impacted the Sun at ~340au at an inclination with respect to the ecliptic of 17--34deg with a relative velocity at infinity of ~4.3km/s. We predict that the Sednitos-region is populated by 930 planetesimals and the inner Oort cloud acquired ~440 planetesimals through the same encounter.
Submission history
From: Lucie Jilkova [view email][v1] Tue, 9 Jun 2015 21:17:30 UTC (2,147 KB)
[v2] Tue, 4 Aug 2015 12:13:31 UTC (2,148 KB)
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.