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ABSTRACT

The front-capturing level-set (LS) method is widely employed in academia and industry to model
grain boundary (GB) migration during the microstructure evolution of polycrystalline materials un-
der thermo-mechanical treatments. During capillarity-driven grain growth, the conventional mean
curvature flow equation, v⃗ = −µγκn⃗, is used to compute the GB normal migration velocity. Over
recent decades, extensive efforts have been made to incorporate polycrystalline heterogeneity into
this framework. However, despite increased complexity and computational costs, these approaches
have yet to achieve fully satisfactory performance. This paper introduces a simple yet robust LS
formulation that accurately captures multiple junction kinetics, even with extreme GB energy ratios.
Validation against existing analytical solutions highlights the method’s accuracy and efficiency. This
novel approach offers significant potential for advancing the study of highly heterogeneous interface
systems.

Keywords Microstructure Evolution, Grain Boundary Migration, Multiple Junction Kinetics, Front-Capturing,
Level-Set, Finite Element.

1 Introduction

Most metallic materials used in modern industries exhibit polycrystalline microstructures, whose in-use properties are
predominantly determined by the characteristics of these microstructures. Understanding and predicting the evolution
of polycrystalline microstructures during various thermo-mechanical treatments in material forming processes are
therefore crucial for optimizing material properties [1]. With rapid advancements in computational infrastructure and
methods, numerical modeling and simulation have become indispensable for studying microstructure evolution in
polycrystalline materials [2, 3].

Full-field front-capturing approaches, such as the level-set (LS) and phase-field methods, are widely used to model
microstructure evolution in polycrystals due to their ability to naturally incorporate complex morphological and topo-
logical changes during grain boundary (GB) migration [4, 5, 3]. For hot metal forming, where materials undergo large
deformations, the LS method is often used in the state-of-the-art. Over recent decades, numerous LS frameworks,
based on finite difference methods using regular grids, finite element approaches with structured or unstructured finite
element meshes, and fast Fourier transformation techniques, have demonstrated their ability to statistically model the
evolution of polycrystalline microstructures [6]. However, existing models based on the well-known mean curvature
flow equation, v⃗ = −µγκn⃗, introduced by Mullins in 1956 [7], sometimes struggle to interpret the complex kinetic
behaviors of individual interfaces observed in recent experimental studies [8, 9]. This gap between experimental ob-
servations and numerical tools highlights the need for improved models that better capture the intricate kinetics of
GBs, promoting relevant reverse engineering based on the comparison between simulation results and 3D in situ data
[10].
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The kinetic properties of GBs, such as mobility µ and free energy γ, depend heavily on the underlying crystallography
at the GBs. This leads to significant spatial heterogeneity of GB kinetic properties in polycrystalline materials [11, 12].
To address the effects of this heterogeneity on the migration of GBs and multiple junctions, i.e., fundamental compo-
nents of polycrystalline microstructures, various continuum models have been proposed [13, 14, 15, 16]. Recently, a
LS formulation was proposed to account for heterogeneous GB energies by recourse to the thermodynamics of grain
growth [17] and applied to simulate 2D grain growth of polycrystals [18, 19]. Based on the disconnection-mediated
GB migration theory, a continuum equation of motion was developed, initially for individual GBs and triple junctions
(TJs) [20], and later extended to the polycrystalline scale [21]. These recent advances aim to improve predictive accu-
racy by extending the conventional mean curvature flow mechanism with increasingly complex velocity expressions.
Nevertheless, none of them fully captures the heterogeneity effects on the kinetic behavior of individual interfaces and
multiple junctions.

In this work, we address the problem from a novel perspective. Rather than modifying the velocity definition, we in-
troduce an additional source term on the right-hand side of the LS transport equation, while retaining the conventional
diffusive term corresponding to the classical mean curvature flow mechanism. Validation against analytical solutions
for quasi-static TJ migration velocity, equilibrium TJ dihedral angles and profiles demonstrates the accuracy and ro-
bustness of this formulation in capturing the effects of GB heterogeneity at multiple junctions, even for extreme GB
energy ratios traditionally deemed unstable by existing methods. Furthermore, the proposed formulation is simplistic,
computationally efficient, and straightforward to implement, avoiding the need for heavy computations of complex
velocity terms.

2 Results

2.1 Level-Set formulation for grain boundary migration

Considering the physical space Ω of a polycrystalline material, its microstructure is represented by a network of grain
boundaries (GBs) that divides Ω into a set of grains Gi, (i = 1, ..., N ), where N is the total number of grains. The
level-set (LS) method describes each grain Gi implicitly using a continuous scalar field ψi initialized as the signed
Euclidean distance to the grain’s boundaries (Γi = ∂Gi) [22]. The GBs correspond to the zero-isovalues of the LS
functions: {

ψi(x, t) = ±d(x,Γi(t)), x ∈ Ω

ψi(x, t) = 0 ⇔ x ∈ Γi(t).
(1)

By convention, ψi is assumed positive inside the grain Gi and negative outside. This sign convention directly affects
the definitions of the GB outward unit normal vector n⃗ and the mean curvature κ, given by n⃗ = −∇⃗ψ/||∇⃗ψ||,
κ = ∇⃗ · n⃗. The motion of GBs, characterized by the velocity field v⃗, is governed by the temporal evolution of the LS
functions through the transport equation:

∂ψi

∂t
+ v⃗ · ∇⃗ψi = 0. (2)

To preserve the distance metric property of the LS functions (||∇⃗ψ|| = 1), a re-initialization step is often applied
[23]. This simplifies the computation of n⃗ and κ to n⃗ = −∇⃗ψ, κ = −∆ψ. For curvature-driven motion, substituting
v⃗ = −µγκn⃗ into the transport equation yields the LS formulation for mean curvature flow:

∂ψi

∂t
− µγ∆ψi = 0. (3)

However, solving this equation alone can result in topological anomalies, such as overlaps or voids between adjacent
grains. These kinematic incompatibilities are traditionally addressed using one of the following approaches:

1. Post-solution correction [24]: Resolve an additional equation to separate overlapping grains and close voids after
solving Eq. (3):

ψi(x, t) =
1

2

[
ψi(x, t)−max

j ̸=i
ψj(x, t)

]
, (4)

2. Source term penalization [25]: Include a source term in the LS transport equation to penalize the appearance of
overlaps and voids:

∂ψi

∂t
− µγ∆ψi = λµ

1−
n∑

j=1

H(ψj)

 , (5)
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where H is the Heaviside function and λ is a Lagrange multiplier associated with a minimization problem.

While effective, these strategies fail to respect GB heterogeneity. For instance, in 2D, they enforce equal dihedral
angles near triple junctions, which is only valid for uniform GB properties. This limitation hinders the accurate
representation of GB heterogeneity, especially at junctions where GBs with different properties meet.

To address this limitation, we propose a novel LS formulation:

∂ψi

∂t
− µγ∆ψi = Λiµ

1−
n∑

j=1

H(ψj)

 . (6)

Although similar in form to Eq. (5), this formulation fundamentally differs in its treatment of heterogeneity. Each LS
function ψi, representing a grain, is associated with an auxiliary scalar field Λi, which is defined based on the kinetic
properties of the grain’s boundaries. Since Λi is defined in the same space as ψi, this approach is fully compatible with
existing numerical strategies at the polycrystalline scale, including the regrouping of non-adjacent grains into global
LS functions using coloring techniques to enhance computational efficiency in large-scale simulations [26, 27, 28].

Unlike other LS formulations that modify µ and γ or introduce additional convective terms to account for GB het-
erogeneity [29, 19], our approach preserves the conventional mean curvature flow description. Heterogeneous GB
properties are independently incorporated through a source term on the right-hand side of the LS transport equation.
This formulation provides a unified framework that seamlessly integrates the treatment of GB heterogeneity with the
correction of kinematic incompatibilities. In the following, this model is developed and validated in the context of a
disorientation angle-like dependency of γi, and consequently, Λi.

2.2 Validation against analytical solutions

To evaluate the performance of this novel level-set (LS) formulation in capturing the effects of grain boundary (GB)
heterogeneity on the microstructure evolution of polycrystals, it is validated thanks to the well-known 2D analytical
case proposed by Garcke [30]. As illustrated in Fig.1, this case describes the capillarity-driven migration of an initially
T-shaped symmetric triple junction (TJ). The curvature-driven evolution of this representative three-grain system
consists of two stages: an initial transient state followed by a quasi-static state. In the quasi-static state, analytical
solutions have been established for

1) the top dihedral angle at the TJ:

ξ0 = 2arccos

(
1

2Rγ

)
, (7)

2) the TJ migration velocity:
vTJ =

µγtop
Lx

(π − ξ0) , (8)

3) the TJ profile:

y(x, t) = vTJ t+
µγtop
vTJ

ln

(
cos

(
vTJ

µγtop

(
Lx

2
− |x|

)))
, x ∈

[
−Lx

2
,
Lx

2

]
(9)

where Rγ is the free energy ratio between the top and bottom GBs (Rγ = γtop/γbot), and Lx is the width of the
simulation domain. In the axially symmetric configuration, γtop = γ01 = γ02, γbot = γ12 (see Fig. 1). Using a
dimensionless setting (µ = γtop = Lx = 1), the analytical expressions for TJ velocity and profile simplify to

vTJ = π − ξ0, ξ0 ∈ (0, π] , (10)

y(x, t) = vTJ t+
1

vTJ
ln

(
cos

(
vTJ

(
1

2
− |x|

)))
, x ∈

[
−1

2
,
1

2

]
. (11)

The above analytical solutions are valid for the entire heterogeneity range beyond wetting limit, i.e., Rγ > 1/2.

The dimensionless analytical case of Garcke is particularly suited for validating GB kinetic models in heterogeneous
settings, since the exact solutions depend exclusively on the GB energy ratio Rγ , which reflects the inherent het-
erogeneity of the polycrystalline system. In line with the analytical configuration, where the GB energy is constant
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Figure 1: Schematic illustration for (a) Garcke’s analytical case with (b) zoom on TJ point.
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Figure 2: Numerically obtained quasi-static TJ top dihedral angle ξ0 and migration velocity vTJ along with their
projections on the analytical solution line: vTJ = π − ξ0.
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per interface and axially symmetric, we simplify here the Λi field as a constant per grain and also axially symmetric
(Λtop = Λ0, Λbot = Λ1 = Λ2). Numerical tests reveal that the quasi-static kinetics of TJs depends only on the ratio of
Λi values rather than their absolute magnitudes. Further simplification is hence achieved by normalizing Λi through
division by their maximum value, max(Λi), yielding λi = Λi/max(Λi), with λi ∈ (0, 1]. The ratio Rλ = λtop/λbot
is then analogous to Rγ . Since max(Λi) is independent of the kinetic problem, its value is chosen to minimize the
remaining vacuum at the TJ. For all simulations presented in this work, we consider a constant value of 600 for
max(Λi).

To demonstrate the accuracy and robustness of this LS formulation in replicating TJ kinetics, we conducted numerical
simulations using Garcke’s dimensionless configuration for a set of {λtop, λbot} (see table 1), covering the range
Rλ ∈ [10−3, 103].

Table 1: The set of {λtop, λbot} used in numerical simulations

λtop 10−3 10−2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λbot 1 1 1 1 1 1 1 1 1 1 1 1

λtop 1 1 1 1 1 1 1 1 1 1 1 1
λbot 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 10−2 10−3

In Fig. 2, the quasi-static values of {ξ0, vTJ} obtained from simulations using {λtop, λbot} as specified in Table 1 are
presented. The formulation accurately reproduces the TJ kinetics across the entire heterogeneous domain (Rγ > 0.5).
By projecting the numerical solutions onto the analytical solution line, one can extract the corresponding analytical
values of {ξ0, vTJ} and calculate Rγ using Eq. (7). Plotting these values of Rγ against Rλ (Fig. 3), one obtains the
following apparent relationship between γi and λi for a large range of Rγ values:

Rλ =
1

2Rγ − 1
. (12)

(a) (b)

Figure 3: (a) Relation between Rγ and Rλ with (b) zoom on low to medium heterogeneity range.

In the dimensionless configuration, the deviation of the numerical solutions from the analytical predictions is estimated
as the distance between the numerically obtained data points {ξ0, vTJ} and the analytical solution line vTJ = π − ξ0.
As shown in Fig. 4, this deviation increases logarithmically with vTJ in the high-velocity regime, reaching a maximum
of approximately 0.1. A sensitivity analysis confirms that our numerical solutions converge in both space and time to
the analytical predictions.

5
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Figure 4: Deviation of the numerical solutions {ξ0, vTJ} from the analytical solution line vTJ = π − ξ0.

Figure 5: Comparison between 2D (Cyan) numerical and (Black) analytical TJ profiles in quasi-static regimes (see
Eq. (11)).
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In Fig. 5, we present quasi-static TJ profiles obtained from simulations using a selected set of Rλ values listed in
Table 2. The corresponding analytical TJ profiles are derived by first computing the Rγ values with Eq. (12) and then
using successively Eqs. (7) (10) (11). As shown in Fig. 5, while vertically aligned at the top, the numerical TJ profiles
exhibit excellent agreement with their analytical counterparts.

Table 2: The set of {Rλ, Rγ} used to generate the numerical and analytical TJ profiles in Fig. 5

Rλ 10−3 0.2 0.5 1 2 5 20 102 103

Rγ 500.5 3 1.5 1 0.75 0.6 0.525 0.505 0.5005

To extend our validation to 3D, we extrude the 2D TJ point into a 3D TJ line of length 0.1 and rerun the simulations
for Rλ = 0.2, 1, 5. When projected along the TJ line, the 3D numerical TJ profiles again closely match the analytical
predictions (see Fig. 6).

(a) (b)

Figure 6: (a) Equilibrium 3D TJ profiles simulated with Rλ = 0.2, 1, 5. (b) Comparison with 2D analytical profiles
for Rγ = 3, 1, 0.6 (see Table 2) depicted in black.

With this, the proposed LS approach is validated against all analytical predictions proposed by Garcke across the
entire heterogeneity range. This LS front-capturing formulation achieves unprecedented accuracy and robustness
in modeling multiple junctions, even in the presence of extreme interface heterogeneity generally neglected in the
discussion of existing front-capturing models [31, 15].

2.3 Simulation of an arbitrary triple junction

In real-world applications, polycrystalline microstructures often exhibit complex grain boundary (GB) heterogeneities,
leading to arbitrary triple junction (TJ) configurations. Therefore, it is essential to validate our novel level-set (LS)
formulation in simulating the migration of arbitrary TJs, ensuring its applicability to realistic scenarios. However, for
arbitrary TJs, analytical solutions are only available for the TJ dihedral angles, which can be determined using Her-
ring’s equilibrium [32]. In our case, where GB energy remains constant for each interface, this equilibrium condition
simplifies to Young’s equation:

sin ξ0
γ12

=
sin ξ1
γ02

=
sin ξ2
γ01

, (13)

where ξi denotes the dihedral angle within grain Gi, and γij represents the free energy of the GB separating grains Gi

and Gj , for all i, j ∈ 1, 2, 3 and i ̸= j.
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Figure 7: Schematic representation of (a) the dimensionless triangular test case and (b) the range of λi values along
with the corresponding range of equilibrium TJ positions.

91.5� < ξ1, ξ2 < 176.5�

γ12 = 1

0.06 < γ01, γ02 ≤ 1

38.5� < ξ0 ≤ 120�

Figure 8: 161 equilibrium TJ profiles simulated using the dimensionless triangular test case and the corresponding
range of ξi and γij .
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(a) (b)

Figure 9: 169 measured values of (a) ξ1 and (b) ξ2 as functions of λ1 and λ2.

(a) (b)

Figure 10: (a) γ02 and (b) γ01 as functions of λ1 and λ2. For symmetric configurations, the predictions given by Eq.
(12) are depicted in black.

(a) (b)

Figure 11: (a) λ1 and (b) λ2 as functions of γ02 and γ01. For symmetric configurations, the predictions given by Eq.
(12) are depicted in black.
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To validate our LS formulation against Young’s equation for arbitrary triple junction (TJ) migration, we adopt the
dimensionless triangular test case introduced in [17]. The initial configuration is axially symmetric, with the TJ posi-
tioned at the incenter of an equilateral triangular domain, where the incircle diameter is 1. The three grain boundaries
(GBs) connect to the midpoints of the triangle’s sides, each with a length of 0.5, forming equal dihedral angles of
120◦ (see Fig. 7(a)). Exploiting this symmetry, we reduce the domain of interest to one-third of the triangle while still
capturing all possible TJ profiles. Dirichlet boundary conditions are applied to fix the intersection points of the three
GBs with the domain boundaries, thereby limiting the range of TJ migration, as illustrated in Fig. 7(b).

For the numerical simulations, we fix λ0 = 1 and vary λ1 and λ2 between 0 and 1. Specifically, they take 13 values:
{10−3, 10−2, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, resulting in a total of 13 × 13 = 169 parameter
combinations. Fig. 8 displays the equilibrium TJ profiles for 161 of these combinations, excluding the 8 cases where
λ1+λ2 < 0.1, as the imposed boundary conditions strongly influence the TJ equilibrium in these cases. The measured
equilibrium dihedral angles ξ1 and ξ2 for all 169 cases are shown in Fig. 9 as functions of λ1 and λ2. For λ1+λ2 < 0.1,
the results are obtained separately using the benchmark configuration presented in the previous subsection. Under the
dimensionless assumption γ12 = 1, the corresponding values of γ02 and γ01 are determined using Young’s equation:
γ02 = sin ξ1/ sin ξ0, γ01 = sin ξ2/ sin ξ0, where ξ0 = 2π− ξ1− ξ2. The resulting values of γ02 and γ01 are visualized
as functions of λ1 and λ2 in Fig. 10. Conversely, λ1 and λ2 are plotted as functions of γ02 and γ01 in Fig. 11. For
three symmetric configurations: (1) λ1 = λ2, (2) λ0 = λ2, and (3) λ0 = λ1, we also include the predictions given by
Eq. (12).

As demonstrated in Figs. 9, 10, and 11, any dihedral angle configuration {ξ1, ξ2} within the realistic heterogeneous
domain (beyond the wetting limit, i.e., γ02 + γ01 > 1) can be accurately reproduced by the LS formulation using an
appropriate set of {λ1, λ2} corresponding to {γ02, γ01} from the physical problem. For practical applications, one
may use numerically obtained data points to interpolate the relationship between γ and λ. The proposed LS approach
exhibits strong potential for fully capturing the evolution of real-world heterogeneous interface systems.

3 Discussion

In this paper, a novel level-set (LS) formulation is presented for simulating curvature-driven migration of multiple
junctions, a fundamental structural feature in materials with interface network microstructures, such as polycrystals.
This formulation is simple in form, straightforward to implement, and computationally efficient compared to existing
approaches. Notably, it achieves unprecedented accuracy and robustness in capturing the effects of heterogeneity on
multiple junction kinetics by decoupling the heterogeneous term from the conventional curvature-driving components.
In this approach, heterogeneity is incorporated through a source term on the right-hand side of the LS transport equa-
tion, which is defined based on the kinetic properties of the interfaces. The proposed LS formulation is validated by
comparing numerical simulation results of quasi-static triple junction (TJ) migration in both 2D and 3D with exist-
ing analytical solutions. The simulations accurately reproduce TJ dihedral angles, migration velocities, and profiles,
demonstrating excellent agreement with analytical predictions. Furthermore, a more general study on arbitrary TJ mi-
gration highlights the method’s broad applicability and strong potential to capture realistic TJ behaviors in real-world
scenarios.

Ongoing work focuses on extending the current framework to describe the evolution of multiple TJs in 2D and quadru-
ple junctions in 3D. This extension will enable the simulation of realistic microstructure evolution in polycrystalline
materials, with future validation against experimental observations. A key challenge in this regard is the accurate
definition of the auxiliary parameter field Λi, which encodes all heterogeneity information. While this study assumes
a constant energy per interface, future work will explore methods to incorporate spatially continuous variations in
grain boundary (GB) properties. Knowing that in certain polycrystalline systems, GB kinetic properties exhibit com-
plex dependencies and may vary continuously along GBs, e.g., as described by the 5-parameter GB energy model
[33]. Additionally, the recently developed disconnection-mediated theory of GB kinetics [34] may be considered to
introduce microscopic-scale insights into the LS framework.

4 Methods

The numerical simulations presented in this paper are performed using Cimlib [35, 36], an in-house finite-element
library developed at the host laboratory. For 2D simulations, we employ an unstructured triangular mesh with a
stabilized P1 solver [37]. To enhance computational efficiency, an adaptive remeshing strategy is adopted [38]. The
mesh is isotropically refined within a layer of thickness r = 2×10−2 centered at the interfaces, where a uniform mesh
size of ∆xmin = 1 × 10−3 is imposed. Outside this refined layer, a coarser uniform mesh with ∆xmax = 2 × 10−2

is used. This strategy significantly reduces computational costs while maintaining high resolution for accurately
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capturing the evolution of triple junctions and their constituent interfaces. For 3D simulations, no adaptive remeshing
is performed due to its high computational cost. Instead, we utilize an unstructured tetrahedral mesh with a uniform
element size of ∆x = 1× 10−2. Time integration is carried out using an implicit Euler scheme, with timesteps set to
∆t = 1×10−5 for 2D simulations and ∆t = 2×10−5 for 3D simulations to ensure numerical stability and accuracy. In
accordance with the corresponding benchmark testing configurations, classical von Neumann and Dirichlet boundary
conditions are applied in simulations presented in subsections 2.2 and 2.3, respectively.
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