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The Optimal Dartboard?
David F. Percy CMath FIMA, University of Salford

O ur challenge is to determine the best arrangement of the

numbers 1, 2, . . . , 20 on a dartboard. This problem has

been tackled before but we consider a new constraint and

a different optimality criterion that lead to an original solution.

1 Problem definition

There are 20! ≈ 2 × 1018 possible arrangements of the numbers

1, 2, . . . , 20 on a dartboard and 19!/2 ≈ 6 × 1016 distinct cycles

that allow for reflection and rotation. Our aim is to determine a cy-

cle that is optimal in some sense. There are three constraints that

we wish to impose on any cycle as follows.

1. Penalise mistakes by overambitious players. This was appar-

ent in the standard dartboard designed by Brian Gamlin in

1896, in which large numbers tend to be adjacent to small

numbers.

2. Alternate odd and even numbers. This parity criterion was

proposed by Eastaway and Haigh [1]. It is particularly ap-

pealing because it induces a degree of symmetry and ensures

a challenging endgame.

3. Exhibit rotational quasi-symmetry. We propose this criterion

to ensure that similar clusters of adjacent sectors all around

the dartboard offer similar rewards to players.

The notation that we adopt is as follows. Define the twenty num-

bers reading clockwise from the top of a dartboard to be xi for

i = 1, 2, . . . , 20. The ordered set (x1, x2, . . . , x20) forms a cycle

and we define x0 = x20 for convenience. The standard dartboard

has the arrangement

(20, 1, 18, 4, 13, 6, 10, 15, 2, 17, 3, 19, 7, 16, 8, 11, 14, 9, 12, 5)

as illustrated in Figure 1.
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Figure 1: Gamlin’s dartboard

2 Aggregate differences

The optimality criteria that dominate published research into this

problem involve maximising aggregate penalty measures corre-

sponding to specific forms of the p-norm

‖d‖p =

(
20∑
i=1

|di|p
)1/p

(1)

in terms of the differences

di = xi − xi−1

between pairs of adjacent numbers for i = 1, 2, . . . , 20. In par-

ticular, Everson and Bassom [2] and Eastaway and Haigh [1] con-

sider only the Manhattan norm ‖d‖1, Selkirk [3] and Eiselt and

Laporte [4] additionally consider the Euclidean norm ‖d‖2, and

Cohen and Tonkes [5], Curtis [6] and Liao et al. [7] consider solu-

tions for general p. Articles [3], [2] and [1] use analytical methods

of solution as an interesting problem in combinatorics, whereas ar-

ticles [4], [5], [6] and [7] use computational methods of solution as

a form of the NP-hard, travelling salesman problem.

It is easy to prove that 9!10!/2 ≈ 7×1011 distinct cycles achieve

max ‖d‖1 = 200. As noted in [1], these all take the form of alter-

nating numbers from the sets {1, 2, . . . , 10} and {11, 12, . . . , 20},

and it is impossible for any of these solutions to satisfy the par-

ity requirement of Constraint 2. In contrast, a unique cycle corre-

sponding to

(20, 1, 19, 3, 17, 5, 15, 7, 13, 9, 11, 10, 12, 8, 14, 6, 16, 4, 18, 2)
(2)

achieves max ‖d‖2 =
√
2, 642 and we illustrate the correspond-

ing dartboard in Figure 2. Without loss of generality, we orientate

the cycle so that x1 = 20 in accordance with the standard dartboard

and the number 1 is as close as possible to its standard position (the

same sector in this case). This solution also satisfies ‖d‖1 = 200
but fails the parity requirement miserably.

Singmaster [8] suggested that differences between adjacent

numbers do not necessarily penalise mistakes by overambitious

players, a view with which we concur. For example, the cycle

(20, 1, 12, 2, 19, 3, 17, 4, 16, 5, 15, 6, 14, 7, 13, 8, 11, 9, 18, 10)

achieves max ‖d‖1 = 200 but the differences either side of 12 are

11 and 10, whereas the differences either side of 18 are only 9 and

8, so players fare considerably better on average by aiming for the

18 sector rather than the 12 sector. He proposed that sums of ad-

jacent numbers should be about equal instead, this measure does

indeed satisfy Constraint 1. To achieve this, he sought to minimise

the variance of these sums and proved algebraically the existence

of a unique solution that achieves this optimality, which is equiv-

alent to Cycle (2) that maximises the Euclidean norm ‖d‖2. He

also proved that this criterion corresponds to minimising the cyclic

autocorrelation of lag one, which is an excellent interpretation of

the requirement implied by Constraint 1.

features
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Figure 2: Selkirk’s and Singmaster’s dartboard

3 Aggregate central sums

Although we support Singmaster’s recommendation to consider

sums of adjacent numbers rather than differences [8], we recall that

the solution based on minimising the variance of these sums fails

to satisfy the parity requirement of Constraint 2. Seeking other

possible variations on this theme inspired by equation (1), which

might lead to solutions that satisfy the parity requirement, we con-

sider optimality criteria that involve minimising aggregate penalty

measures corresponding to specific forms of the p-norm

‖c‖p =

(
20∑
i=1

|ci|p
)1/p

(3)

in terms of the central sums

ci = si − s̄ (4)

of pairs of adjacent numbers, where

si = xi + xi−1 (5)

for i = 1, 2, . . . , 20 and

s̄ =
1

20

20∑
i=1

si = 21 (6)

is the arithmetic mean of sums of pairs of adjacent numbers. Note

that

‖c‖2 =

√√√√ 20∑
i=1

(si − s̄)
2
,

which is proportional to the standard deviation of the sums. Con-

sequently, minimising the Euclidean norm ‖c‖2 is equivalent to

Singmaster’s optimality criterion [8] with a unique solution corre-

sponding to Cycle (2).

Exhaustive enumeration may be used to determine solutions

that minimise the Manhattan norm ‖c‖1. We do not pursue

this matter further here, though initial calculations suggest that

min ‖c‖1 = 18, which is achieved by Cycle (2) and other cycles

including

(20, 1, 18, 3, 16, 5, 14, 7, 12, 9, 11, 10, 13, 8, 15, 6, 17, 4, 19, 2).

Neither of these solutions satisfies the parity requirement in Con-

straint 2 and it is possible that none of the solutions that minimise

‖c‖1 does. Our reason for not considering this criterion in more

detail is because of the additional rotational quasi-symmetry re-

quirement that we proposed in Constraint 3.

Aggregate measures such as those used for the optimality cri-

teria in equations (1) and (3) do not guarantee rotational quasi-

symmetry. To demonstrate this, consider Cycle (2), which opti-

mises the norms ‖d‖2, ‖d‖1, ‖c‖2 and possibly ‖c‖1. The sum

of absolute differences in the semicircle that surrounds the num-

ber 20 is 149, whereas the sum of absolute differences in the op-

posite semicircle is 51. Together, these sum to max ‖d‖1 = 200
but this disparity in the subtotals reveals a clear and undesirable

lack of rotational quasi-symmetry. This particular cycle does not

exhibit a similar disparity when considering central sums, which

are evenly distributed around the board. However, it is conceiv-

able that similar disparities might occur more generally for optimal

cycles based on aggregate measures corresponding to the p-norms

‖d‖p and ‖c‖p.

4 Maximum absolute central sum

To avoid the possibility of violating the symmetry requirement of

Constraint 3, while retaining the measure of central sums to satisfy

the penalty requirement of Constraint 1 and imposing the parity

requirement of Constraint 2, we propose instead to minimise the

maximum norm

‖c‖∞ = lim
p→∞

(
20∑
i=1

|ci|p
)1/p

= max
i

|ci| (7)

subject to the parity constraint

ci
2

∈ Z (8)

for i = 1, 2, . . . , 20 where ci is defined by equations (4) to (6).

Any solution to this problem will ensure that each large number

has small numbers next to it, whereas each medium number has

medium numbers next to it. It will also ensure that odd numbers

alternate with even numbers around the board and that all clusters

of sectors offer similar rewards to the players.

As each number is adjacent to two others, it helps to note that

this criterion equivalently sets the 1-2-1 moving averages to be as

similar as possible and so is neutral around the board for players that

hit the desired sector half the time. Better players (with weighting

1-w-1 for w > 2) should aim for larger numbers such as 20 and 19

whereas worse players (with weighting 1-w-1 for w < 2) should

aim for smaller numbers such as 1 or 2. Several complementary

publications address this issue of where best to aim on a dartboard,

including Percy [9].

Theorem

The cycle defined by

(20, 1, 18, 5, 14, 9, 10, 13, 6, 17, 2, 19, 4, 15, 8, 11, 12, 7, 16, 3)
(9)

uniquely minimises the maximum norm of equation (7) subject to

the parity constraint of Relationship (8). �
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Proof

We first note that adjacent sums of pairs must differ because all

numbers appear only once:

si − si(mod20)+1 = xi−1 − xi(mod20)+1 �= 0

for i = 1, 2, . . . , 20. Consequently, not all pairs can sum to 21 and

hence ‖c‖∞ > 0. Moreover, all sums of pairs si are odd because

of the parity constraint ci/2 ∈ Z for i = 1, 2, . . . , 20. Thus, the

constrained minimum satisfies ‖c‖∞ ≥ 2 and the best that we can

hope for is that some pairs sum to 21, while equal numbers of pairs

sum to 19 and 23. Graph theory reveals a unique cycle that meets

this aspiration with ‖c‖∞ = 2.
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Figure 3: Construction of optimal cycle

Figure 3 shows the set of even numbers above the set of odd

numbers with all feasible links that sum to 19, 21 or 23. All num-

bers on a dartboard are adjacent to two others, so each vertex in

Figure 3 must have degree two by virtue of connecting to two

edges. This implies that we must remove eight edges from the

graph. As 20 already has degree 2, it must connect to 1 and 3.

Similarly, 1 already has degree 2 and so must connect to 20 and

18. We now observe that 18 cannot connect with 3 because then

the set {20, 1, 18, 3} would form a disjoint subgraph, which would

violate the constraint that the numbers 1, 2, . . . , 20 form a cycle.

Consequently, we must remove the edge linking 18 and 3. Pro-

ceeding inductively in this way from left to right, it is apparent that

all of the internal vertical edges must be removed, leaving a unique

solution that corresponds to Cycle (9) and so the proof is complete.

�
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Figure 4: New optimal dartboard

Figure 4 illustrates the new design of dartboard that the pre-

ceding theorem generates. Again without loss of generality, we

orientate the cycle so that x1 = 20 in accordance with the standard

dartboard and the number 1 is as close as possible to its standard po-

sition (the same sector in this case). Notice that 8 of the 20 numbers

are in the same positions as for the standard dartboard illustrated in

Figure 1.

5 Conclusions

In this paper, we determine an optimal arrangement for the num-

bers on a dartboard. To achieve this, we propose a new constraint

relating to rotational quasi-symmetry and a new criterion based on

minimising the maximum norm of central sums of pairs of adjacent

numbers. We also incorporate a desirable and recently proposed

parity constraint to construct a unique cycle displayed in Figure 4,

which is optimal according to this new criterion.

This paper argues that criteria other than minimisation of the

maximum norm ‖c‖∞ subject to ci/2 ∈ Z for i = 1, 2, . . . , 20 are

flawed due to non-compliance with the three constraints of penalty,

parity and symmetry imposed in Section 1. Nevertheless, it is in-

teresting to assess how well the different designs score under all of

these criteria. Table 1 presents this information concisely, though it

is important to note that the last column contains our preferred mea-

sure and only the last row satisfies the parity constraint. Selkirk’s

and Singmaster’s (S & S) dartboard is optimal under all of these

criteria but has the disadvantage of grouping all odd numbers to-

gether and all even numbers together. Our new design is at least as

good as Gamlin’s dartboard under all of these criteria and has the

added advantage of perfect parity. �

max. max. min. min. min.

Dartboard ‖d‖1 ‖d‖2 ‖c‖1 ‖c‖2 ‖c‖∞
Gamlin’s 198 49.8 52 13.5 5

S & S 200 51.4 18 4.2 1

New design 198 50.9 36 8.5 2

Table 1: Comparison of new and existing dartboard arrangements
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