Astrophysics > Earth and Planetary Astrophysics
[Submitted on 9 Feb 2022]
Title:First observation of a quadruple asteroid -- Detection of a third moon around (130) Elektra with SPHERE/IFS
View PDFAbstract:Aims. We aim to increase the contrast limits to detect new satellites orbiting known asteroids. We use cutting-edge data reduction techniques and data processing algorithms that are essential to best analyse the raw data provided by the instruments and increase their performances. Doing so, the unequalled performances of SPHERE also make it a unique tool to resolve and study asteroids in the solar system, expanding the domain of its main science targets.
Methods. We applied a newly developed data reduction pipeline for integral field spectrographs on archival SPHERE data of a resolved asteroid, (130) Elektra. It was coupled with a dedicated point spread function reconstruction algorithm to model the asteroid halo. Following the halo removal, the moon signal could be extracted more accurately. The moon positions were fitted at three epochs and were used to derive the orbital parameters via a genetic-based algorithm.
Results. We announce the discovery of S/2014 (130) 2, a third moon orbiting (130) Elektra, making it the first quadruple asteroid ever found. It is identified in three different epochs, 9, 30, and 31 Dec. 2014, at a respective angular separation of 258 mas (333 km), 229 mas (327 km), and 319 mas (457 km). We estimate that this moon has a period of 0.679 day and a semi-major axis of 344 km, with an eccentricity of 0.33 and an inclination of 38 degrees compared to the primary rotation axis. With a relative magnitude to the primary of 10.5, its size is estimated to be 1.6 km.
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.